❶ 無損檢測中的超聲波檢測缺陷怎麼計算他的深度一次波和二次波怎麼分辨
1 單個氣孔波形:可以用直探頭檢驗,當圍繞最大波高略微移動探頭時,由於氣孔表面光滑,多呈現球形,所以波形通常為水平不變,波高不變.
2 單個夾雜:可以用直探頭檢驗,當圍繞最大波高略微移動探頭時,水平不變,波高稍稍變小.
3 裂紋:種類比較多,如單條,一般為厚度方向,直探頭檢查時當量很小很難看出.當用斜探頭
可以測出厚度方向的寬度,寬度有變化,波高變化明顯.圍繞缺陷旋轉斜探頭,裂紋延長方向
波高基本看不到.焊縫中與條形夾雜有些相似,條形夾雜用單直探頭波高還是比較明顯的.同
時斜探頭檢測時,條形夾雜寬度在厚度方向變化不大,長度方向末端波高變化比裂紋小.
如多條,比如炸開形狀的裂紋,常出現大缺陷的補焊處.缺陷用直探頭就能分辨,缺陷波高明
顯,占寬大,底波衰減厲害有時候無底波.和縮孔波形相似,但中心移動探頭波高高度變化比
縮孔大,一般縮孔位置為中間和熱結處,而多條裂紋則位置不固定,由於應力原因多不在工件
中間.
4 未融合:位置出現在母材與焊材的熔合線上,同時由於斜探頭角度的原因,熔合線兩側波高明顯不同.
5 未焊透:和焊接坡口有關,檢測時通過深度來判斷,此缺陷出現在坡口狹窄處,同時兩側波高相差不明顯.
以上淺見,不能絕對,僅供參考.探傷總有確定不準的時候,當無法確認種類,建議按嚴重的種類評定,寧枉勿縱.
❷ 非金屬超聲波檢測儀怎麼測裂縫深度
非金屬超聲檢測儀主要用於檢測混凝土的強度、裂縫深度、混凝土勻質性、損傷層厚度、混凝土厚度、樁身完整性、結構內部缺陷、鋼管混凝土內部缺陷。
聲速測量原理: 用黃油或其它耦合劑使探頭與被測介質良好接觸, 如果被測介質長 度 L 為已知,那麼只要測出從發射至接收之間的傳播時間 t ,則聲速 c 由下式決定: c = L / t ; L-被測介質的長度(m) ; t-超聲脈沖在試件中的傳播時間(s) 。 c-超聲波傳播速度(m/s) 實際上儀器上讀得的超聲脈沖傳播時間 t』> t ,即: t』= t + t 0 這里的 t0 即為零讀數,零讀數的產生是因為儀器、電纜、探頭中有種種電延時和聲延 時,故即使發射、 接收探頭直接耦合, 儀器仍有一定的時間讀數,這就是零讀數。它隨儀器、 電纜長度、換能器以及讀時方法而異。所以在測試中必須設法扣除。
❸ 混凝土梁裂縫測量方法有哪些
下面介紹一些檢查裂縫的方法:
讀數顯微鏡
裂縫寬度的量測常用讀數顯微鏡,它是由光學透鏡與游標刻度等組成的復合儀器,用於檢測混凝土和其它材料的裂縫寬度的裂縫讀數顯微鏡,自帶冷光源,確保在無光線的情況下也能看到清晰的裂縫寬度,常見的放大倍數有20-40倍。其最小刻度值要求不大於0.05mm。其次,也有用印刷有不同寬度線條的裂縫標准寬度板,與裂縫對比測量;或用一組具有不同標准厚度的塞尺進行試插對比,剛好插入裂縫的塞尺厚度,即裂縫寬度。
裂縫寬度測試儀
裂縫寬度測試儀的測量范圍是0.01毫米~2.00毫米,讀數精度是0.005毫米,放大倍數是40倍。
1.適用於構件的單側裂縫,不適用於雙面貫通的裂縫;
2.裂縫內不能有積水、泥漿;
3.裂縫縱深走向應與混凝土表面基本垂直,否則對測試結果產生影響;
4.混凝土表面清潔平整;
5.換能器通過耦合劑與混凝土表面耦合,耦合劑可選用較廉價的膏體,如凡士林、黃油、漿糊等;
6.為了避免混凝土內部的繞射聲波被橫跨裂縫的鋼筋短路,兩個換能器的連線方向不宜與混凝土內部的鋼筋走向平行,而應形成一定的夾角。
超聲法檢測混凝土裂縫深度
注意事項:裂縫的兩壁不得有水或者泥土雜物,兩壁保持乾燥潔凈。
超聲波檢測混凝土裂縫的步驟:
①選擇測試部位;
②打磨清理混凝土表面;
③布置超聲測點;
④分別作跨縫和不跨縫超聲測試;
⑤記錄首波反相時的測試距離;
⑥求不跨縫各測點的聲波實際傳播距離及混凝土聲速;
⑦根據裂縫深度公式計算
鑽孔檢查
風鑽鑽孔壓水檢查裂縫深度,多用於混凝土壩塊側面裂縫,也可以用於頂平面裂縫,但頂平面裂縫縫面漏水,不易見到,只有用漏水量來判斷。檢測時在裂縫兩側同時鑽孔,只有一側裂縫深度達到壩塊深度的一半則說明裂縫是管穿性的,孔的布置在同一水平面上由淺到深,從裂縫底部往上布孔直到裂縫梢上。
壓水檢查
壓水檢查分為三級加壓:
一級加壓,首先加壓0.1Mpa,觀察裂縫是否滲漏出水,若裂縫出水,則表明裂縫已達到鑽孔深度,壓水檢查結束。
二級加壓:若加壓到0.1Mpa,縫面不漏水,則再升壓到0.2Mpa,縫面漏水,則停止,表明已達到裂縫鑽孔深度,檢查結束。
三級加壓:若加壓到0.2Mpa縫面沒有滲漏水,待穩壓1h後,再升壓到0.3Mpa,出水則檢查結束,不出水則觀察穩壓後孔中進水量,進水量小,而且小於混凝土的滲透率,說明裂縫未達到深度,也有可能是裂縫偏移,未達到縫面,在這樣的情況下,可在縫對面對稱鑽孔,按照上面壓水檢查的方法進行檢查,不出水則未到達深度。若縫面不漏水,孔中進水量大,穩壓1h,還是進水量大,可能是混凝土內部不密實或者內部水漏了,持續穩壓2h,仍然水量大,雖然縫面不見滲水,認為內部有裂縫,則同上重新鑽一排深孔壓水來判斷。
總結
只有用檢測方法查清裂縫,才能進行下一步的灌縫工作,所以做好第一步是非常有必要的,這樣才能更好的更有效的實驗我們的灌縫膠,悍馬灌縫膠達到最好的效果。
❹ 超聲波檢測裂紋原理
樓主:
您好!
超聲檢測(UT)基本原理為:金屬中有氣孔、裂紋、分層等缺陷(缺陷中有氣體)或夾雜,超聲波傳播到金屬與缺陷的界面處時,就會全部或部分反射。反射回來的超聲波被探頭接收,通過儀器內部的電路處理,在儀器的熒光屏上就會顯示出不同高度和有一定間距的波形。可以根據波形的變化特徵判斷缺陷在工件重的深度、位置和形狀。
關於超聲檢測,本人也參加過核級超聲波(UT)II級的培訓,其相干因素較多,實際操作時,並非如原理說的那麼簡單,譬如材料的種類、材料的結構形狀、缺陷的開口方向、探頭K值的計算、不同位置的回波反射選擇、超聲儀器、超聲人員的操作經驗,及如平底孔、大平底、短橫孔、長橫孔等的選擇等等。
目前普通材料的UT檢測較為成熟,爭議較大也即難度較高的屬奧氏體不銹鋼,因為奧氏體不銹鋼的晶粒比較粗大,同時部分奧氏體不銹鋼屬鑄造,相比鍛造的奧氏體不銹鋼,其晶粒更為粗大,晶粒度級別常為3級以下,此時超聲信號的衰減非常厲害,即信噪比低。尤其是焊縫組織,其即為鑄造,在沒有脈沖、低熱輸入等的保證下,很難得到晶粒細化,故而有著較高的檢測難度。
同比其他NDE方法而言,UT檢測有著較高的優勢,主要表現為UT檢測對面積性缺陷的檢測靈敏度優勢(如RT是利用材料的厚度及密度差異對射線的吸收不同從而在底片上反應出不同的黑度,而UT只要有缺陷,就會有反射回波)。
2008-2009年度期間,本人曾負責一個課題研究即核電站主管道窄間隙TIG焊接接頭的超聲波檢測研究內容,涉及未熔合、裂紋、氣孔的缺陷預埋,及校準試塊、缺陷對比試塊的製作,與不同的探頭組合檢測研究等。
關於超聲檢測如對裂紋的檢測原理,實際情況較為復雜,目前國內在此方面做的較好的高校屬江西的南昌航空航天大學的測控技術與儀器專業,研究較為透徹的當屬目前的國核電站運行服務技術公司(原上海無損檢測公司),當然如江蘇的蘇州熱工院在這方面的實力也是屈指可數的!
總之,對非專業人員來說,簡單了解即可,對專業人員來說,想在這方面有較高的建樹,還需付出更多的努力。恐怕目前國內還沒有一個人敢說他的超聲水平很牛,如果他對超聲比較了解的話。
未知以上解答對您是否有用,若想有進一步的了解,我們可作後續溝通,參考資料為網路中超聲中比較普通的一些常識。
謝謝!
目前超聲檢測在
❺ 混凝土裂縫長度,寬度,深度的最新檢測方法
長度直接量。
寬度有專門的測量儀,也就是把縫放大在屏幕上,屏幕上有標尺,直接可讀出。
深度用超聲波測~
❻ 超聲波檢測混凝土裂縫的方式有哪些
摘 要】目前超聲波技術被廣泛應用於各種工程的質量檢測上。超聲波檢測是混凝土非破損檢測技術中的一個重要方面,特別是在檢測混凝土內部缺陷與勻質性等方面非常有效。闡述超聲波檢測混凝土裂縫的原理與意義,介紹該方法涉及的主要聲學參數和常用方法,並討論超聲波檢測技術的發展趨勢。
中國論文網 http://www.xzbu.com/6/view-3989382.htm
【關鍵詞】超聲波檢測;混凝土結構;裂縫;工程質量
混凝土結構由於各種原因普遍存在裂縫。裂縫的出現會降低建築物的抗滲能力,影響建築物的使用功能,同時也會引起鋼筋的銹蝕和混凝土的碳化,降低材料的耐久性,影響建築物的承載能力。因此,要對裂縫制定合理的檢測方案,判定裂縫的性質,確定裂縫的危害性及制定相應的補救措施。
應用超聲波檢測混凝土裂縫是重要的混凝土結構無損檢測方法之一。超聲波檢測是20世紀60年代發展起來的一種非破損性檢測,其利用超聲波傳播速度及回彈值同混凝土抗壓強度之間的相互聯系來反映混凝土的抗壓強度,並且可以利用超聲波在混凝土中傳播的時間(聲時)和波幅值、頻率值的變化來計算裂縫深度、確定內部裂縫的位置。該方法具有操作簡單、快捷准確、費用低廉等優點,在混凝土工程中得到廣泛的應用。
1超聲波單面平測法檢測原理和方法
1.1超聲波單面平測法檢測基本原理
將電—聲換能器接觸在混凝土表面,由發射換能器發射的超聲波被接收換能器接收,超聲波在混凝土中遇到裂縫時將產生繞射、反射和衰減。根據聲時、波幅等參數變化,通過回歸分析,由此判別和計算裂縫深度大小。
1.2超聲波單面平測檢測方法
當結構的裂縫部位有一個可測表面估計裂縫深度又不大於500mm時,可採用單面平測法。平測時應在裂縫的被測部位以不同的測距按跨縫和不跨縫布置測點,布置測點時應用鋼筋混凝土雷達定位儀確定裂縫檢測區域的鋼筋位置,避開鋼筋的影響進行檢測,其檢測步驟如下:
1)將T,R換能器置於裂縫附近同一側,分別測量兩個換能器內邊緣間距li'=100mm,150mm,200mm,250mm……的聲時值ti。由於超聲波的實際傳輸距離要大於兩個換能器內邊緣間距,並且很難直接確定,為了求取的超聲波傳播聲速值誤差最小,應採用最小二乘方法來做線性回歸,以便確定較為精確的超聲波實際傳輸li距離以及不跨縫時混凝土中的超聲波傳播聲速值,見圖1。線性回歸方程如下:
li=vti+a (1)
其中,v為回歸系數,即為不跨縫時混凝土中的聲速值,km/s;a為回歸常數。
2)將T,R換能器置於以裂縫為軸線的對稱兩側(見圖2)。兩換能器中心連線垂直於裂縫走向,以li'=100mm,150mm,200mm,250mm,300mm分別讀取聲時值,同時觀察首波相位的變化。
3)各測點裂縫深度計算值按式(2)計算。
(2)
測試部位裂縫深度的平均值按式(3)計算。
其中,hci為裂縫深度;l為超聲測距;ti為不跨縫測量的混凝土聲時; 為跨縫測量的混凝土聲時;v為不跨縫測量的混凝土聲速。
1.3裂縫深度的確定方法
1)三點平均值法:在跨縫測試發現首波反相時,用該測距與其兩個相鄰測距的聲時測量值分別計算hci,取三點hci的平均值作為該裂縫的深度hc。
2)平均值加剔除法:當跨縫測量難以發現首波反相時,可先求出各測距計算深度(hci)的平均值(mhc)。再將各測距li'與mhc相比較,若測距li'<mhc和li'>3mhc,則剔除hci,取餘下hci的平均值作為該裂縫深度hc。
2超聲波檢測的主要聲學參數
超聲波在混凝土中的傳播速度不僅與混凝土的彈性性質有關,還與其內部結構和組成成分關系密切。混凝土超聲檢測目前主要是採用「穿透法」,即用一發射換能器重復發射超聲脈沖波,讓超聲波在所檢測的混凝土中傳播,然後由接收換能器接收,被接收到的超聲波轉化為電信號後經過超聲儀放大顯示於屏幕上,用超聲儀測量接收到的超聲波信號的聲學參數。目前,在混凝土檢測中常用的聲學參數有聲速(波速)、振幅、頻率以及波形。
3超聲波檢測混凝土裂縫的常用方法
對混凝土淺裂縫深度50cm以下的超聲波檢測主要有tc—t0法和英國標准BS-4408法(如圖3所示)。BS-4408法是以二換能器的邊到邊計算,tc-t0法是以二換能器的中到中計算。
4結語
在製作混凝土時,由於振搗不均勻會大大降低混凝土的強度,從而引起工程的隱患。初步的研究結果表明,用超聲波對混凝土材料進行無損檢測是一種非常有潛力的檢測手段,有良好的發展空間。可以利用超聲波法來檢測混凝土試塊在振搗後是否均勻,這樣便保證了混凝土的質量,彌補了製作過程中的漏洞,加強了結構工程的可靠性,避免出現質量缺陷。由於混凝土的組成成分非常復雜,在成型過程中受到多種因素的影響,所以對超聲波在混凝土中的傳播理論還需深入研究,以使超聲波檢測混凝土缺陷的技術得到完善。
❼ 超聲波檢測混凝土裂縫的步驟有哪些
超聲波檢測混凝土裂縫的步驟有哪些
①選擇測試部位;
②打磨清理混凝土表面;
③布置超聲測點;
④分別作跨縫和不跨縫超聲測試;
⑤記錄首波反相時的測試距離;
⑥求不跨縫各測點的聲波實際傳播距離及混凝土聲速;
⑦根據裂縫深度公式計算
悍馬裂縫修補材料總結
❽ 簡述使用超聲波探傷判斷金屬內部裂紋的方法
鋼結構在現代工業中佔有重要地位,更是海洋石油行業重要的基礎設施,在國民經濟和社會發展中起到十分重要的作用。鋼結構在建造焊接過程中受到各種因素的影響,難免產生各種缺陷,甚至是裂紋等危害性較大的缺陷,若在建造過程中不及時發現並將其移除,將可能發生重大突發事件,甚至危及生命安全。因此,無損檢測在建造環節中尤為重要,目前常用的無損檢測方法有:射線檢測、超聲波檢測、磁粉檢測、滲透檢測等,而超聲波檢測由於其效率高、靈敏度高、無輻射無污染等優點,在海洋鋼結構的建造中得到廣泛的應用。
1 超聲波檢測基礎
超聲檢測是指超聲波與工件相互作用,就反射、透射和散射波進行研究,對工件進行宏觀缺陷檢測、幾何特性測量、組織結構和力學性能變化的檢測和表徵,並進而對其特定應用性進行評價的技術。
1.1 超聲波檢測原理
利用超聲波對材料中的宏觀缺陷進行探測,依據的是超聲波在材料中傳播時的一些特性,如:聲波在通過材料時能量會有損失,在遇到兩種介質的分界時,會發生反射等等,其工作原理是:
1)用某種方式向被檢試件中引入或激勵超聲波;
2)超聲波在試件中傳播並與其中的物體相互作用,其傳播的方向或特徵會被改變;
3)改變後的超聲波又通過檢測設備被檢測到,並可對其處理和分析;
4)根據接收的超聲波的特徵評估試件本身及其內部存在的缺陷特徵。
通常用以發現缺陷並對缺陷進行評估的基本信息為:
1)來自材料內部各種不連續的反射信號的存在及其幅值;
2)入射信號與接收信號之間的傳播時間;
3)聲波通過材料以後能量的衰減。
圖1 超聲檢測示意圖
1.2 超聲波檢測的優點和局限性
1.2.1 優點
與其他無損檢測方法相比,超聲檢測方法的主要優點有:
(1)適用於金屬、非金屬、復合材料等多種材料的無損評價。
(2)穿透能力強,可對較大厚度范圍的試件內部缺陷進行檢測,可進行整個試件體積的掃查。
(3)靈敏度高,可檢測到材料內部很小的缺陷。
(4)可較准確的測出缺陷的深度位置,這在很多情況下世十分必要的。
(5)設備輕便,對人體和環境無害,可作現場檢測。
1.2.2 局限性
(1)由於縱波脈沖反射法存在盲區,和缺陷取向對檢測靈敏度的影響,對位於表面和近表面的某些缺陷常常難以檢測。
(2)試件形狀的復雜性,如不規則形狀,小曲率半徑等,對超聲波檢測的課實施性有較大影響。
(3)材料的某些內部結構,如晶粒度,非均勻性等,會使靈敏度和信噪比變差。
2 橫向裂紋檢驗
橫向裂紋不僅給生產帶來困難,而且可能帶來災難性的事故。裂紋焊接中最危險的缺陷之一,他嚴重削弱了工件的承載能力和腐蝕能力,即使不太嚴重的裂紋,由於使用過程中造成應力集中,成為各種斷裂的斷裂源。正因為裂紋有如此大的危害性,像JB/T 4730, GB 11345,AWS D1.1, API RP 2X等國內外各大標准中都有「裂紋不可接受」等類似描述。而超聲波檢測對缺陷性質判定沒有射線檢測直觀,如果檢測方法不當等原因造成橫向裂紋的漏檢或誤判,其都有不良結果:若把其他缺陷判為橫向裂紋造成不必要的返修,進而影響材料韌性等性能;把裂紋判為點狀缺陷放過,則工程就存在較大的安全隱患。所以正確選擇探測方法和對回波特性分析,對橫向裂紋的超聲波檢測尤為重要。
2.1 探頭角度的選擇
縱波直探頭:橫向裂紋屬面狀缺陷,一般和探測面垂直,而0°直探頭適用於發現與探測面平行的缺陷,所以直探頭不能有效的探測出橫向裂紋。
橫波斜探頭:對同一缺陷,70°和60°探頭聲程較大,聲波能量由於被吸收和散射造成衰減嚴重,尤其只在檢測母材厚度較大的焊縫時,回波高度較低,對發現缺陷波和波形分析不利,進而影響是否為橫向裂紋的判定。而45°探頭具有聲束集中、聲程短衰減小,聲壓往復透射率高的特點,所以選用45°探頭具有良好的效果。圖2是70°,60°和45°探頭在相同的基準靈敏度的前提下,對同一橫向裂紋的回波比較:
(a)70°探頭回波 (b)60°探頭回波
(c)45°探頭回波
圖2 70°,60°和45°探頭對同一橫向裂紋的回波
2.2 橫向裂紋的掃查
圖3 焊縫UT掃查方式平面圖
常見的焊接缺陷(如夾渣、未熔合、未焊透等)大多與焊縫軸線平行或接近平行,或以點狀形式存在,針對這種情況,綜合使用圖3中的方式A、方式B和方式C即可,但該三種掃查方式對橫向裂紋等與焊縫軸線垂直(與聲束方向平行)的橫向缺陷無回波顯示,即無法被檢出。為能有效探出焊縫橫向裂紋應盡可能使聲束盡可能平行於焊縫。可用如下幾種掃查方式探測橫向裂紋:
2.2.1 騎縫掃查
如果焊縫較平滑或焊縫加強高已經打磨處理,探頭「騎」在焊縫上探測是檢查橫向裂紋的極為有效的方法,可採用在焊縫上直接掃查的方式,如圖3方式D所示。
2.2.2 斜平行掃查
若焊縫表面較為粗糙且不宜進行打磨處理,為探測出焊縫中的橫向裂紋,可用探頭與焊縫軸線成一個小角度或以平行於焊縫軸線方向移動掃查,如圖3方式E所示。 2.2.3 用雙探頭橫跨焊縫掃查法
將兩個斜探頭放在焊縫兩側,組成一發一收裝置,此時若焊縫中有橫向裂紋,發射的超聲波經反射後會被接收探頭接收從而檢出缺陷,如圖4所示。
圖4 雙探頭橫跨焊縫掃查法
該三種方法各有特點,斜平行掃查操作簡單、效率高、焊縫無需處理、耦合較好,但由於聲束方向與裂紋不能完全垂直而造成靈敏度不高;雙探頭橫跨焊縫掃查法操作精度要求高困難大、效率不高;騎縫掃查對焊縫表面要求較高,對埋弧焊或其他焊接方法但焊縫表面進過處理的焊縫,表面相對較平滑,能夠有效的耦合,該方法較為直接,且效率高,靈敏度高,所以在很多情況下「騎縫掃查」是首選。
2.3 掃查靈敏度
按照各項目業主所規定的標准調節。
3 橫向裂紋的判別
根據形狀,我們把缺陷分為點狀缺陷、線狀缺陷和面狀缺陷(裂紋、未熔合)。顯然,反射體形狀不同,超聲波反射特性必然存在一定的差異,反過來,通過分析反射波、缺陷位置、焊接工藝等信息,就可以推測缺陷的性質。
橫向裂紋具有較強的方向性,當聲束與裂紋垂直時,回波高度較大,波峰尖銳,探頭轉動時,聲束與裂紋角度變化,聲束能量被大量反射至其他位置而無法被探頭接收,回波高度急劇下降,這一特性是判定橫向裂紋的主要依據。
檢測過程中橫向裂紋的判別可以按以下步驟:
1)在掃查靈敏度下將探頭放在的焊縫縫上掃查(參考2.2節掃查方式);
2)發現橫向顯示後,找到最高波,確定是否為缺陷回波;
3)定缺陷回波後,定出缺陷的具體位置,並在焊縫上做出標記;
4)探頭圍繞缺陷位置做環繞掃查(如圖5所示);
圖5 環繞掃查示意圖 圖6 動態波形圖1
環繞掃查時回波高度基本相同,變化幅值不大,其動態波形如圖6所示,則可以判定其為點狀缺陷;若環繞掃查時其動態波形如圖7或圖8所示,結合靜態波形,可判斷為橫向裂紋,在條件允許的情況下可用同樣的方法到焊縫背面掃查確認。
圖7 動態波形圖2 圖8 動態波形圖3
5)若條件允許可打磨到裂紋深度,藉助磁粉檢驗(MT)進一步驗證。
圖9 橫向裂紋MT驗證
4 結論
超聲波探傷是檢出焊縫橫向裂紋的有效手段,尤其是厚壁焊縫,射線檢測靈敏度下降,難以發現其中的橫向裂紋。用超聲波檢測方法,選擇正確的參數、合適的掃查方式,掌握橫向裂紋的靜態和動態波形特點,能夠有效的判別橫向裂紋,這已舉措已經在海洋石油工程的各個項目中得到應用,並多次准確成功檢測出橫向裂紋,保證了多項工程質量。