⑴ 糾偏系統的左右糾偏該怎麼調節怕自己亂調出事
按天機傳動的來是:左右糾偏的調節:根據糾偏實際需求;糾左邊調為左;糾右邊調為右。
⑵ 如何調節超聲波感測器測試距離
超聲波感測器測試距離採用超聲波回波測距原理,運用精確的時差測量技術,檢測感測器與目標物之間的距離,採用小角度,小盲區超聲波感測器,具有測量准確,無接觸,防水,防腐蝕, 低成本等優點,可應於液位,物位檢測,特有的液位,料位檢測方式,可保證在液面有泡沫或大的晃動,不易檢測到回波的情況下有穩定的輸出,應用行業:液位,物位,料位檢測,工業過程式控制制等
⑶ 超聲波感測器是怎麼使用的
是方波信號.發射頭是利用壓電效應來實現產生超聲波的。
就是在發射頭不斷給出一定頻率的如40KHZ的電壓信號.就可以產生超聲波.
你可以利用單片機或者SG3525來實現.當然你的功率不大,可以用單片機來實現,
51的頻率不夠.建議使用AVR或PIC速度快點的單片機.
⑷ 超聲波感測器怎麼調節
雙向超聲波感測器是一種既能接收又能發射的超聲波器件
而單向超聲波感測器是只能接收或者只能發射的超聲波器件
從原理上超聲波感測器是一種電聲轉換器件沒有單雙之分,而實際的應用中單雙向的超聲波感測器在製作工藝材料上有不同,所以應用場合就不同1、對於收發合一的超聲波感測器(即採用了你說的用反射的方式接收),不同的型號的最大探測范圍在1.5~6m之間,老闆說的單程15m考慮反射損耗在內也還算正常 2、R為receive(接收),T為translate(發射)一般加40KHz方波發射信號(要看具體型號),另外一個接外皮的腳接地 3、測量量為電壓,對於無源的接收器(兩腳),出來的電壓還要進行幾千幾萬倍的放大,所以出現4的情況應該是不正常的。 我這有個方案說明,你要的話留個郵箱,我發給你好了。學東西重要的在學方法。 你要知道你手頭上東西的型號,然後直接到google(我也想支持,但找國外的資料它確實不行)上搜原始的datasheet,上面的信息很全面,有了它基本上就不用參閱其它資料了。
⑸ 糾偏控制器工作原理是什麼
工作原理可來編程式控制制器(PLC)是採取自順序掃描,不斷循環的方式進行工作的,即在PLC運行時,PLC根據用戶按控制要求編好並存放於用戶程序存儲器中的程序,按指令步序號或地址號作周期性循環掃描。
如無跳轉指令,則從第一條指令開始逐條順序執行用戶程序,直至程序結束,然後重新返回第一條指令,開始下一輪掃描,在每一次掃描過程中,還要完成對輸入信號的采樣和對輸出狀態的刷新等工作。
控制器投入運行後,其工作過程一般分為三個階段,即輸入采樣、用戶程序執行和輸出刷新三個階段。完成上述三個階段稱作一個掃描周期,在整個運行期間,可編程邏輯控制器的CPU以一定的掃描速度重復執行上述三個階段。
⑹ 崔老師你好 知道你在超聲波這塊厲害 我用200k超聲波一體探頭做糾偏感測器
相比之下,頻率越低穿透性越強,而且空氣損耗更小,在小環境里不容易消散。
如果非要用40KHz做,我想要有幾方面需要調整:
1、發射、接收的角度要更小更精確,可以考慮加裝一個軟膠短管;
2、發射能量和接收靈敏度要恰當,過高的靈敏度容易檢測到二次回波(被多次反射的聲波);
3、如果距離特別短,40KHz的波長又太長,可以考慮相位檢測(這一點要留意一下其它公司是否採用的是這個技術)。
⑺ 超聲波感測器怎樣實現信號的調制解調
一般用調頻的方法。比如一個頻率代表0,一個頻率代表1.不過用超聲通信,還是比較復雜的。
⑻ 怎樣消除超聲波感測器的三角誤差 (當被測物體與感測器成一定角度,不是正對著牆壁時),求取准確距離
當被測物體的反射面不是正對著超聲波發射源時,距離測量只有2種可能:一種是無法測量,另一種是准確測量,不存在因反射面存在角度而產生可以消除的誤差。
這是因為,第一種情況時,發射面傾斜角度過大無法把超聲波反射回去,所以無法測量。
第二種情況時,反射面傾斜角度較小,可以反射回一部分超聲波,所以可以准確測量。
⑼ 超聲波感測器模塊返回信號跟觸發信號一模一樣,沒有改變
摘要超聲波測距器,可以應用於汽車倒車、建築施工工地以及一些工業現場的位置監控,也可用於如液位、井深、管道長度的測量等場合。要求測量范圍在0.10-5.00m,測量精度1cm,測量時與被測物體無直接接觸,能夠清晰穩定地顯示測量結果。由於超聲波指向性強,能量消耗緩慢,在介質中傳播的距離較遠,因而超聲波經常用於距離的測量,如測距儀和物位測量儀等都可以通過超聲波來實現。利用超聲波檢測往往比較迅速、方便、計算簡單、易於做到實時控制,並且在測量精度方面能達到工業實用的要求,因此在移動機器人的研製上也得到了廣泛的應用。
關鍵詞 單片機AT82S51超聲波感測器測量距離
一、設計要求
設計一個超聲波測距器,可以應用於汽車倒車、建築施工工地以及一些工業現場的位置監控,也可用於如液位、井深、管道長度的測量等場合。要求測量范圍在0.10-3.00m,測量精度1cm,測量時與被測物體無直接接觸,能夠清晰穩定地顯示測量結果。
二、設計思路
超聲波感測器及其測距原理
超聲波是指頻率高於20KHz的機械波。為了以超聲波作為檢測手段,必須產生超生波和接收超聲波。完成這種功能的裝置就是超聲波感測器,習慣上稱為超聲波換能器或超聲波探頭。超聲波感測器有發送器和接收器,但一個超聲波感測器也可具有發送和接收聲波的雙重作用。超聲波感測器是利用壓電效應的原理將電能和超聲波相互轉化,即在發射超聲波的時候,將電能轉換,發射超聲波;而在收到回波的時候,則將超聲振動轉換成電信號。
超聲波測距的原理一般採用渡越時間法TOF(timeofflight)。首先測出超聲波從發射到遇到障礙物返回所經歷的時間,再乘以超聲波的速度就得到二倍的聲源與障礙物之間的距離
測量距離的方法有很多種,短距離的可以用尺,遠距離的有激光測距等,超聲波測距適用於高精度的中長距離測量。因為超聲波在標准空氣中的傳播速度為331.45米/秒,由單片機負責計時,單片機使用12.0M晶振,所以此系統的測量精度理論上可以達到毫米級。
由於超聲波指向性強,能量消耗緩慢,在介質中傳播距離遠,因而超聲波可以用於距離的測量。利用超聲波檢測距離,設計比較方便,計算處理也較簡單,並且在測量精度方面也能達到要求。
超聲波發生器可以分為兩類:一類是用電氣方式產生超聲波,一類是用機械方式產生超聲波。本課題屬於近距離測量,可以採用常用的壓電式超聲波換能器來實現。
根據設計要求並綜合各方面因素,可以採用AT89S51單片機作為主控制器,用動態掃描法實現LED數字顯示,超聲波驅動信號用單片機的定時器完成,超聲波測距器的系統框圖如下圖所示:
超聲波測距器系統設計框圖
三、系統組成
硬體部分
主要由單片機系統及顯示電路、超聲波發射電路和超聲波檢測接收電路三部分組成。採用AT89S51來實現對CX20106A紅外接收晶元和TCT40-10系列超聲波轉換模塊的控制。單片機通過P1.0引腳經反相器來控制超聲波的發送,然後單片機不停的檢測INT0引腳,當INT0引腳的電平由高電平變為低電平時就認為超聲波已經返回。計數器所計的數據就是超聲波所經歷的時間,通過換算就可以得到感測器與障礙物之間的距離。
軟體部分
主要由主程序、超聲波發生子程序、超聲波接收中斷程序及顯示子程序等部分。
四、系統硬體電路設計
1.單片機系統及顯示電路
單片機採用89S51或其兼容系列。採用12MHz高精度的晶振,以獲得較穩定的時鍾頻率,減小測量誤差。單片機用P1.0埠輸出超聲波轉化器所需的40KHz方波信號,利用外中斷0口檢測超聲波接受電路輸出的返回信號。顯示電路採用簡單實用的4位共陽LED數碼管,段碼用74LS244驅動,位碼用PNP三極體驅動。單片機系統及顯示電路如下圖所示
單片機及顯示電路原理圖
2.超聲波發射電路原理圖參考期刊如圖所示:
超聲波發射電路原理圖
壓電超聲波轉換器的功能:利用壓電晶體諧振工作。內部結構上圖所示,它有兩個壓電晶片和一個共振板。當它的兩極外加脈沖信號,其頻率等於壓電晶片的固有振盪頻率時,壓電晶片將會發生共振,並帶動共振板振動產生超聲波,這時它就是一超聲波發生器;如沒加電壓,當共振板接受到超聲波時,將壓迫壓電振盪器作振動,將機械能轉換為電信號,這時它就成為超聲波接受轉換器。超聲波發射轉換器與接受轉換器其結構稍有不同。
3.超聲波檢測接受電路
參考紅外轉化接收期刊的電路採用集成電路CX20106A,這是一款紅外線檢波接收的專用晶元,常用於電視機紅外遙控接收器。考慮到紅外遙控常用的載波頻率38KHz與測距超聲波頻率40KHz較為接近,可以利用它作為超聲波檢測電路。實驗證明其具有很高的靈敏度和較強的抗干擾能力。適當改變C4的大小,可改變接受電路的靈敏度和抗干擾能力。
超聲波接收電路圖
五、系統程序設計
超聲波測距軟體設計主要由主程序,超聲波發射子程序,超聲波接受中斷程序及顯示子程序組成。下面對超聲波測距器的演算法,主程序,超聲波發射子程序和超聲波接受中斷程序逐一介紹。
1.超聲波測距器的演算法設計
下圖示意了超聲波測距的原理,即超聲波發生器T在某一時刻發出的一個超聲波信號,當超聲波遇到被測物體後反射回來,就被超聲波接收器R所接受。這樣只要計算出發生信號到接受返回信號所用的時間,就可算出超聲波發生器與反射物體的距離。
距離計算公式:d=s/2=(c*t)/2
*d為被測物與測距器的距離,s為聲波的來迴路程,c為聲速,t為聲波來回所用的時間
聲速c與溫度有關,如溫度變化不大,則可認為聲速是基本不變的。如果測距精度要求很高,則應通過溫度補償的方法加以校正。聲速確定後,只要測得超聲波往返時間,即可求得距離。在系統加入溫度感測器來監測環境溫度,可進行溫度被償。這里可以用DS18B20測量環境溫度,根據不同的環境溫度確定一聲速提高測距的穩定性。為了增強系統的可靠性,應在軟硬體上採用抗干擾措施。
不同溫度下的超聲波聲速表
溫度/
-30
-20
-10
0
10
20
30
100
聲速c(m/s)
313
319
325
323
338
344
349
386
2.主程序
主程序首先對系統環境初始化,設置定時器T0工作模式為16位的定時計數器模式,置位總中斷允許位EA並給顯示埠P0和P2清0。然後調用超聲波發生子程序送出一個超聲波脈沖,為避免超聲波從發射器直接傳送到接收器引起的直接波觸發,需延遲0.1ms(這也就是測距器會有一個最小可測距離的原因)後,才打開外中斷0接收返回的超聲波信號。由於採用12MHz的晶振,機器周期為1us,當主程序檢測到接收成功的標志位後,將計數器T0中的數(即超聲波來回所用的時間)按下式計算即可測得被測物體與測距儀之間的距離,設計時取20℃時的聲速為344m/s則有:
d=(C*T0)/2=172T0/10000cm(其中T0為計數器T0的計數值)
測出距離後結果將以十進制BCD碼方式LED,然後再發超聲波脈沖重復測量過程。主程序框圖如下
3.超聲波發生子程序和超聲波接收中斷程序
超聲波發生子程序的作用是通過P1.0埠發送2個左右的超聲波信號頻率約40KHz的方波,脈沖寬度為12us左右,同時把計數器T0打開進行計時。超聲波測距器主程序利用外中斷0檢測返回超聲波信號,一旦接收到返回超聲波信號(INT0引腳出現低電平),立即進入中斷程序。進入該中斷後就立即關閉計時器T0停止計時,並將測距成功標志字賦值1。如果當計時器溢出時還未檢測到超聲波返回信號,則定時器T0溢出中斷將外中斷0關閉,並將測距成功標志字賦值2以表示此次測距不成功。
六.軟硬體調試及性能
超聲波測距儀的製作和調試,其中超聲波發射和接收採用Φ15的超聲波換能器TCT40-10F1(T發射)和TCT40-10S1(R接收),中心頻率為40kHz,安裝時應保持兩換能器中心軸線平行並相距4~8cm,其餘元件無特殊要求。若能將超聲波接收電路用金屬殼屏蔽起來,則可提高抗干擾能力。根據測量范圍要求不同,可適當調整與接收換能器並接的濾波電容C4的大小,以獲得合適的接收靈敏度和抗干擾能力。
硬體電路製作完成並調試好後,便可將程序編譯好下載到單片機試運行。根據實際情況可以修改超聲波發生子程序每次發送的脈沖寬度和兩次測量的間隔時間,以適應不同距離的測量需要。根據所設計的電路參數和程序,測距儀能測的范圍為0.07~5.5m,測距儀最大誤差不超過1cm。系統調試完後應對測量誤差和重復一致性進行多次實驗分析,不斷優化系統使其達到實際使用的測量要求。
後續工作需實驗後才能驗證
根據參考電路和集成的電路器件測距范圍有限10m以內為好。
希望對你有幫助!
⑽ FIFE糾偏,哪個國家的
美國MAXCESS國際集團,專業生產產品(Fife糾偏檢驗、MAGPOWR張力控制、Tidland分切卷取)。
FIFE已成立70多年,是全球第一套自動糾偏系統的製造者和發明者,是糾偏系統的技術和市場的領導者,可對各種卷材(如捲筒紙、薄膜、橡膠塑料、金屬箔、無紡布、織布)等進行糾偏工作。FIFE糾偏系統可以按您的需求提供各種不同的檢測方式:跟邊糾偏、跟線糾偏、固定式對中糾偏、可移動式對中糾偏,FIFE糾偏系統還可以配合不同的探頭使用,以適合檢測不同卷材的需要,如:超聲波、紅外線、電容和電感、DAC探頭等。