A. 超聲波怎麼測量水管內部的流體液面高度
超聲波流量計的基本原理及類型超聲波在流動的流體中傳播時就載上流體流速的信息。因此通過接收到的超聲波就可以檢測出流體的流速,從而換算成流量。根據檢測的方式,可分為傳播速度差法、多普勒法、波束偏移法、雜訊法及相關法等不同類型的超聲波流量計。起聲波流量計是近十幾年來隨著集成電路技術迅速發展才開始應用的一種
非接觸式儀表,適於測量不易接觸和觀察的流體以及大管徑流量。它與水位計聯動可進行敞開水流的流量測量。使用超聲波流量比不用在流體中安裝測量元件故不會改變流體的流動狀態,不產生附加阻力,儀表的安裝及檢修均可不影響生產管線運行因而是一種理想的節能型流量計。
眾所周知,目前的工業流量測量普遍存在著大管徑、大流量測量困難的問題,這是因為一般流量計隨著測量管徑的增大會帶來製造和運輸上的困難,造價提高、能損加大、安裝不僅這些缺點,超聲波流量計均可避免。因為各類超聲波流量計均可管外安裝、非接觸測流,儀表造價基本上與被測管道口徑大小無關,而其它類型的流量計隨著口徑增加,造價大幅度增加,故口徑越大超聲波流量計比相同功能其它類型流量計的功能價格比越優越。被認為是較好的大管徑流量測量儀表,多普勒法超聲波流量計可測雙相介質的流量,故可用於下水道及排污水等臟污流的測量。在發電廠中,用攜帶型超聲波流量計測量水輪機進水量、汽輪機循環水量等大管徑流量,比過去的皮脫管流速計方便得多。超聲被流量汁也可用於氣體測量。管徑的適用范圍從2cm到5m,從幾米寬的明渠、暗渠到500m寬的河流都可適用。
另外,超聲測量儀表的流量測量准確度幾乎不受被測流體溫度、壓力、粘度、密度等參數的影響,又可製成非接觸及攜帶型測量儀表,故可解決其它類型儀表所難以測量的強腐蝕性、非導電性、放射性及易燃易爆介質的流量測量問題。另外,鑒於非接觸測量特點,再配以合理的電子線路,一台儀表可適應多種管徑測量和多種流量范圍測量。超聲波流量計的適應能力也是其它儀表不可比擬的。超聲波流量計具有上述一些優點因此它越來越受到重視並且向產品系列化、通用化發展,現已製成不同聲道的標准型、高溫型、防爆型、濕式型儀表以適應不同介質,不同場合和不同管道條件的流量測量。
超聲波流量計目前所存在的缺點主要是可測流體的溫度范圍受超聲波換能鋁及換能器與管道之間的耦合材料耐溫程度的限制,以及高溫下被測流體傳聲速度的原始數據不全。目前我國只能用於測量200℃以下的流體。另外,超聲波流量計的測量線路比一般流量計復雜。這是因為,一般工業計量中液體的流速常常是每秒幾米,而聲波在液體中的傳播速度約為1500m/s左右,被測流體流速(流量)變化帶給聲速的變化量最大也是10-3數量級.若要求測量流速的准確度為1%,則對聲速的測量准確度需為10-5~10-6數量級,因此必須有完善的測量線路才能實現,這也正是超聲波流量計只有在集成電路技術迅速發展的前題下才能得到實際應用的原因。
超聲波流量計由超聲波換能器、電子線路及流量顯示和累積系統三部分組成。超聲波發射換能器將電能轉換為超聲波能量,並將其發射到被測流體中,接收器接收到的超聲波信號,經電子線路放大並轉換為代表流量的電信號供給顯示和積算儀表進行顯示和積算。這樣就實現了流量的檢測和顯示。
超聲波流量計常用壓電換能器。它利用壓電材料的壓電效應,採用適出的發射電路把電能加到發射換能器的壓電元件上,使其產生超聲波振勸。超聲波以某一角度射入流體中傳播,然後由接收換能器接收,並經壓電元件變為電能,以便檢測。發射換能器利用壓電元件的逆壓電效應,而接收換能器則是利用壓電效應。
超聲波流量計換能器的壓電元件常做成圓形薄片,沿厚度振動。薄片直徑超過厚度的10倍,以保證振動的方向性。壓電元件材料多採用鋯鈦酸鉛。為固定壓電元件,使超聲波以合適的角度射入到流體中,需把元件故人聲楔中,構成換能器整體(又稱探頭)。聲楔的材料不僅要求強度高、耐老化,而且要求超聲波經聲楔後能量損失小即透射系數接近1。常用的聲楔材料是有機玻璃,因為它透明,可以觀察到聲楔中壓電元件的組裝情況。另外,某些橡膠、塑料及膠木也可作聲楔材料。
超聲波流量計的電子線路包括發射、接收、信號處理和顯示電路。測得的瞬時流量和累積流量值用數字量或模擬量顯示。
根據對信號檢測的原理,目前超聲波流量計大致可分傳播速度差法(包括:直接時差法、時差法、相位差法、頻差法)波束偏移法、多普勒法、相關法、空間濾波法及雜訊法等類型,如圖所示。其中以雜訊法原理及結構最簡單,便於測量和攜帶,價格便宜但准確度較低,適於在流量測量准確度要求不高的場合使用。由於直接時差法、時差法、頻差法和相位差法的基本原理都是通過測量超聲波脈沖順流和逆流傳報時速度之差來反映流體的流速的,故又統稱為傳播速度差法。其中頻差法和時差法克服了聲速隨流體溫度變化帶來的誤差,准確度較高,所以被廣泛採用。按照換能器的配置方法不同,傳播速度差撥又分為:Z法(透過法)、V法(反射法)、X法(交叉法)等。波束偏移法是利用超聲波束在流體中的傳播方向隨流體流速變化而產生偏移來反映流體流速的,低流速時,靈敏度很低適用性不大.多普勒法是利用聲學多普勒原理,通過測量不均勻流體中散射體散射的超聲波多普
勒頻移來確定流體流量的,適用於含懸浮顆粒、氣泡等流體流量測量。相關法是利用相關技術測量流量,原理上,此法的測量准確度與流體中的聲速無關,因而與流體溫度,濃度等無關,因而測量准確度高,適用范圍廣。但相關器價格貴,線路比較復雜。在微處理機普及應用後,這個缺點可以克服。雜訊法(聽音法)是利用管道內流體流動時產生的雜訊與流體的流速有關的原理,通過檢測雜訊表示流速或流量值。其方法簡單,設備價格便宜,但准確度低。
以上幾種方法各有特點,應根據被測流體性質.流速分布情況、管路安裝地點以及對測量准確度的要求等因素進行選擇。一般說來由於工業生產中工質的溫度常不能保持恆定,故多採用頻差法及時差法。只有在管徑很大時才採用直接時差法。對換能器安裝方法的選擇原則一般是:當流體沿管軸平行流動時,選用Z法;當流動方向與管鈾不平行或管路安裝地點使換能器安裝間隔受到限制時,採用V法或X法。當流場分布不均勻而表前直管段又較短時,也可採用多聲道(例如雙聲道或四聲道)來克服流速擾動帶來的流量測量誤差。多普勒法適於測量兩相流,可避免常規儀表由懸浮粒或氣泡造成的堵塞、磨損、附著而不能運行的弊病,因而得以迅速發展。隨著工業的發展及節能工作的開展,煤油混合(COM)、煤水泥合(CWM)燃料的輸送和應用以及燃料油加水助燃等節能方法的發展,都為多普勒超聲波流量計應用開辟廣闊前景。
B. 超聲波流量計是如何正確通過信號進行測量
超聲波流量計是以「速度差法」為原理,採用了先進的多脈沖技術、信號數字化處理技術及糾錯技術,使流量儀表更能適應工業現場的環境,計量更方便、經濟、准確。產品達到國內外先進水平,可廣泛應用於石油、化工、冶金、電力、給排水等領域
根據對信號檢測的原理超聲流量計可分為傳播速度差法(直接時差法、時差法、相位差法和頻差法)、波束偏移法、多普勒法、互相關法、空間濾法及雜訊法等
C. 急急急。哪位高手知道超聲波流量計的感測器安裝距離怎麼算
這個安裝距離都是流量計主機自動算的,輸入管徑,壁厚,粗糙度,安裝方式(Z法或V法),會自動計算出探頭安裝距離的.北京康納森技術人員為您解答
D. 超聲波流量計的測量方法
超聲波流量計一般常用的有兩種測量方式,第一種是非接觸測量,意思是只要在既設管道外部安裝上轉換器即可,這一非接觸式在用於一些自來水、純水、葯液、食用油等一些較干凈無污染的工況中使用的較為廣泛,都是不直接接觸到被測介質的。
第二種常用的測量方式是適用於一些大型圓形管道和矩形管道,且原理上不不受管徑限制、它對於大型管道不僅帶來方便,可認為在無法實現實流校驗的情況下是優先考慮的選擇方案,可以解決一些特殊的測量問題。
E. 外夾式超聲波流量計探頭安裝距離變大了計量結果會怎樣
外夾式超聲波流量計探頭安裝距離變大了計量結果會誤差較大或者檢測不到流量,安裝距離必須根據管徑壁厚等計算得出的值正確安裝。
F. 超聲波流量計參數如何設置
可以輸入內徑,也可以輸入外徑,當輸入外徑時,要同時輸入管壁厚度才可以。管道材質類型是指管子的材質。同時還要輸入襯里材質等參數。還有不明白的可以再提問哦。
G. 超聲波流量計的測量原理
當超聲波束在液體中傳播時,液體的流動將使傳播時間產生微小變化,並且其傳播時間的變化正比於液體的流速,其關系符合下列表達式
其中
θ為聲束與液體流動方向的夾角
M 為聲束在液體的直線傳播次數
D 為管道內徑
Tup 為聲束在正方向上的傳播時間
Tdown為聲束在逆方向上的傳播時間
ΔT=Tup –Tdown
設靜止流體中的聲速為c,流體流動的速度為u,傳播距離為L,當聲波與流體流動方向一致時(即順流方向),其傳播速度為c+u;反之,傳播速度為c-u.在相距為L的兩處分別放置兩組超聲波發生器和接收器(T1,R1)和(T2,R2)。當T1順方向,T2逆方向發射超聲波時,超聲波分別到達接收器R1和R2所需要的時間為t1和t2,則
t1=L/(c+u); t2=L/(c-u)
由於在工業管道中,流體的流速比聲速小的多,即c>>u,因此兩者的時間差為 ▽t=t2-t1=2Lu/cc 由此可知,當聲波在流體中的傳播速度c已知時,只要測出時間差▽t即可求出流速u,進而可求出流量Q。利用這個原理進行流量測量的方法稱為時差法。此外還可用相差法、頻差法等。 如果超聲波發射器發射連續超聲脈沖或周期較長的脈沖列,則在順流和逆流發射時所接收到的信號之間便要產生相位差▽O,即▽O=w▽t=2wLu/cc
式中,w為超聲波角頻率。當測得▽O時即可求出u,進而求得流量Q。此法用測量相位差▽O代替了測量微小的時差▽t,有利於提高測量精度。但存在者聲速c對測量結果的影響。 為了消除聲速c的影響,常採用頻差法。由前可知,上、下游接收器接受到的超聲波的頻率之差為▽f可用下式表示 ▽f=[(c+u)/L]-[(c-u)/L]=2u/L
由此可知,只要測得▽f就可求得流量Q,並且此法與聲速無關。超聲波技術及其應用一、沒測量水位概況
水電站多採用浮子式液位計或投入式液位計來進行水位測量。其缺點為:測量精度低,不可靠,經常出現浮子卡死不動和感測器堵塞導致測不準;維護工作量大,安裝、調試不便,採集到的僅是模擬告警信號,不能直接進入電廠計算機監控系統。對無人值班電廠不實用。
通過對攔污柵水位測量系統進行了反復對比,優化得出最後的方案設計,採用超聲波液位計對柵前、柵後水位進行實時准確監測,超聲波液位計用PLC對採集量進行處理。並且把實時水位和壓差數據送到中控室,超聲波液位計顯示和越限報警。超聲波液位計同時採用RS422/RS232介面,又把實時數據送到大壩集中控制室工控機,處理成計算機通信報文,最終將採集量送到電廠計算機監控系統上位機。
該項目實施後不僅滿足欄污柵柵前、柵後水位及壓差的多點實時監測,及報警功能,而且結束了攔污柵測量系統獨立工作,無法與電廠計算機監控系統通訊的局面。實現與閘門系統的監視功能、控制功能以及故障時ON-CALL尋呼系統功能的集成。滿足了無人值班電站的需要。該技術在雲南省電力系統還是第一家。 超聲波液位計測量水位的原理以及安裝要求 超聲波液位計工作時,高頻脈沖聲波由換能器(探頭)發出,遇被測物體(水面)表面被反射,折回的反射回波被同一換能器(探頭)接收,轉換成電信號。脈沖發送和接收之間的時間(聲波的運動時間)與換能器到物體表面的距離成正比,聲波傳輸的距離S與聲速C和傳輸時間T之間的關系可以用公式表示:S=CⅩT/2
例如:聲速C=344m/s,傳輸時間為50ms,即可算出傳輸的距離為17.2m,測定距離為8.6m。
三.可編程超聲波式攔污柵水位測量系統在田壩電站應用產生的效果
用超聲波液位計測量大壩水位在當今國內尚不普遍,技術上尚無經驗可以借鑒。在這樣的情況下,我們充分利用PLC與超聲波液位計這一領域的先進技術,按照總體規劃,長遠考慮,一次到位,避免重復改造,重復投資的這一原則,對該項目進行自行設計,全面順利地完成了這一課題。在該領域取得了較有價值的經驗。為目前我國國內水電站實現對大壩水位監測系統提供了一個可以借鑒的範例。
H. 超聲波流量計 V法兩探頭間距與管徑的關系
換能器軸向距離計算公式
以下的計算公式只適用於傳播速度差法超聲波流量計(以下簡稱流量計),並且L與換能器的安裝方法有關。以下就常用的Z法、V法、X法分別列出計算公式。
1流量計的換能器按Z法安裝時,L按(1)至(4)式計算。
在具體安裝換能器時:一般方法計算出L,在管道上劃線定位,以便准確的安裝。亦可用坐標紙剪成寬為L的長條,圍在管壁上,使其紙長等於周長,然後對折,定出換能器的安裝位置。各生產廠家均會給出安裝換能器的方法,可參照執行。
L=2L1+L2(1)
L1=δtanθ1(2)
L2=Dtanθ(3)
計算L時,如已知C0、C1、C,則可根據(4)式求得θ1和θ(一般θ0由廠家給出)。
sin/C=sinθ1/C=sinθ/C(4)
式中各量(見圖1):
δ——管壁厚;
D——管內徑;
θ0——聲濾入射至管外壁的入射角;
θ1——聲波在管壁中的折射角;
θ——聲波在流體中的折射角;
C0——聲波在聲楔中的聲速(指縱波);
C1——管壁中的聲速(一般指橫波);
C——流體中的聲速。
2流量計的換能器按V法安裝時L按(5)式計算。
L=2(L1+L2)
式中各量見圖2,L1、L2分別按(2)式與(3)式計算
3流量計的換能器按X方式安裝時L按(6)式計算。
L=2L1+L2
式中各是見圖3,L1、L2分別按(2)、(3)式計算。
都是手打的哦,如有疑問請咨詢北京康納森技術部 O(∩_∩)O~
I. 請問超聲波明渠流量計,在探頭下面升高液位同時升高探頭流量還准確嗎
當然准確了。
首先糾正你的這句話:「在探頭下面升高液位同時升高探頭流量還准確嗎?」
你是不是想問:在探頭下面升高液位同時升高流速還准確嗎?」
否則啥叫升高探頭流量。
真正意義上的明渠流量計 是包括對渠內液位高度和流速都有測量的,在儀表初始化設定時候 設定了寬度,然後和液位高度、流速算出流量,輸出數值。