1. 电主轴温升都有哪些抑制措施方法
一、减小轴承发热量的措施
(1)适当减小轴承滚珠直径
减小滚珠直径可以减小离心力,从而减小摩擦力矩。但是,滚珠直径的减小应以不过多削弱轴承的刚度为限。一般高速精密滚动轴承的滚珠直径约为标准系列滚珠轴承滚珠直径的70%,而且做成小直径密珠的结构形式,通过增加轴承的滚珠数和滚珠与内外套圈的接触点,提高滚珠轴承的刚度。
(2)采用新材料
陶瓷球轴承与钢质角接触球轴承相比,在高速回转时,滚珠与滚道间的滚动和滑动摩擦减小,发热量降低。比如陶瓷球轴承与钢质角接触球轴承相比的主要优点有:
1、质量轻。材料密度仅为3.218×103kg/m3,只相当于钢球的40%。在高速回转时,滚动体的离心力和陀螺力矩可显著减小从而接触应力减小,摩擦功耗下降,发热量降低。
2、线膨胀系数小。α=3.2×10-6/℃,约为钢球的25%,使得在不同温升的条件下,球与内外环的配合间隙变化小,提高了轴承工作的可靠性,并减小了温升导致的轴承轴向位移,也使得预加载荷变化小。
二、电主轴单元发热的解决方法
电主轴单元异常发热后如何将热量尽快带走,从而有效控制温升。
(1)主轴轴承的润滑冷却措施———油气润滑系统
油气润滑是将微量的润滑油均匀、连续地混入压缩空气流,再把喷入要润滑的摩擦副内的一种润滑方法。除了具有很好的润滑性能之外,还有极强的冷却效果。虽油气润滑系统比较昂贵,但对于高精密加工中心来说,一套油气润滑系统不至于将产品成本提高很多。
油气润滑在加工中心中应用,应注意以下事项:
①喷嘴距滚动轴承端面的距离可在3~25mm之间;
②在轴承腔壁上需开设排气孔,以便流通;
③油气润滑系统的用油量极少,大约1mL/h;
④油气润滑系统的含油量:采用油气润滑时影响轴承温升的因素之一是供油量。供油量决定着油气两者混合流中的含油量,给定速度下的轴承温升与该含油量有关,初始阶段轴承温升随含油量增加而迅速下降,而后其影响减弱,当含油量增加到某一数值后温升缓慢增加,继而急剧上升,因而油气两者的混合流中的含油量达到一个最佳值,才能既保证轴承的润滑充足又保证轴承的强力冷却。为此,油气润滑系统参数确定为:空气压力为0.4MPa,空气流量为(3.3~6.7)×10-4m3/s,润滑油运动粘度为32mm2/s,润滑油流量约为(0.28~0.83)×10-10m3/s,调整润滑油流量取得最佳含油量;
⑤油气润滑系统供油的均匀性:采用油气润滑时影响轴承温升的因素之二是供油的均匀性。决定供油均匀性的最主要参数是供油频率。为了获得合适的供油量,不能只降低供油频率,而是合理匹配活塞直径、冲程、供油频率(2~8min),取得最佳方案,获得理想的供油量。轴承润滑方式的选择与轴承的转速、负荷、许用温升及轴承类型有关,一般根据速度因数dm·n值选择。
其中:dm为轴承中径(mm):n为工作转速(r/min)。采用油气润滑系统来解决高速电主轴中陶瓷球轴承的润滑与冷却问题。
油气润滑系统的基本原理是,利用具有一定压力的压缩空气和由定量分配器每隔一定时间定量输出微量的润滑油,在一定长度的管道中混合,通过压缩空气在管道中的流动,带动润滑油沿管道内壁不断地流动,把油气混合物输送到安装于轴承近处的喷嘴(孔径1mm中),经喷嘴射向内圈和滚动体的接触点实现润滑和冷却,达到“最佳供油量”和“压缩空气进行冷却”
油气润滑与油雾润滑的主要区别在于供给轴承的润滑油未被雾化,而是以油粒状被压缩空气吹入轴承,向大气中排放的仅是空气,因此对环境没有污染。具有一定压力的润滑油在接触点除润滑外还有带走热量和密封的作用。由于油滴是喷射而出,故可穿透在高速运转时由于离心力的作用而在轴承周围形成的空气涡流,实现润滑轴承的目的。油气润滑用大量的压缩空气来冷却轴承,使得轴承的温升比用油雾润滑时要低很多。实验表明,使用油气润滑的轴承温升可比使用脂润滑时降低5~80℃,比油雾润滑降低9~160℃,随着dm·n值的增大,降温的效果更明显。
轴承润滑的目的是减少轴承内部摩擦及磨损,防止烧粘,延长疲劳寿命,排出摩擦热,冷却。传统的滚动轴承润滑方法,如油浴润滑法、油杯润滑法、飞溅润滑法、循环润滑法和油雾润滑法等已均不能满足高速主轴轴承对润滑的要求,这是因为高速主轴轴承不仅对油的粘度有严格要求,而且对供油量也有着严格要求。为了获得最佳的润滑效果,供油量过多或过少都是有害的。而油气润滑系统则可以精确地控制各个摩擦点的润滑油量,可靠性极高,因而可在高速主轴轴承领域应用。
(2)主轴轴承外环和内装式电动机的循环冷却措施———油—水热交换系统
为了提高轴承外环的散热效果,在主轴设计中可采用主轴套筒螺旋槽冷却剂热交换系统,对主轴套筒进行强制冷却,从而带走主轴轴承外环异常产生的热量。主轴套筒螺旋槽冷却剂热交换系统采用连续、大流量、冷却液对主轴套筒进行循环冷却,冷却液从主轴套筒上的入油口输入,通过主轴轴承外环主轴套筒上的螺旋槽,与主轴套筒进行充分的热交换,将主轴轴承外环产生的绝大部分热量转移到冷却液中,从主轴套筒上的出油口输出,然后流经热交换器,进行再一次热交换,将冷却液温度降到接近室温后,流回冷却箱,再经过压力泵增压输到入油口,从而实现循环冷却。
主轴套筒螺旋槽冷却剂热交换系统在加工中心中应用,应考虑以下内容:
①冷却剂的选择:常用的冷却剂有制冷剂、水、油及油水混合物,因产品具体情况选取,其中水冷降热比高、价格低廉、维护方便,深受广大用户青睐;
②冷却液或油或油水混合物冷却时介质压力约0.4MPa为宜,介质流量约50L/min为宜。由于主轴电动机两端就是主轴轴承,电动机的发热会直接降低轴承的工作精度,如果主电动机的散热解决得不好,将会影响到机床工作的可靠性和稳定性。有限元分析表明,电主轴的定子和转子是电主轴的两大热源。另外,电动机高速运转条件下,有近1/3的电动机发热量是由电动机转子产生的,并且转子产生的绝大部分热量都通过转子与定子间的气隙传入定子中,只有少部分热量直接传入主轴和端盖上,其余2/3的热量产生于电动机定子。
转子散热条件差,又直接安装在主轴上,设计中应尽量减小电动机径向传热热阻,使转子的发热量尽可能多地通过气隙传到定子和壳体中去,并由冷却液带走。为了提高散热效果,保证电动机的绝缘安全,高速电主轴采用油一水热交换循环冷却系统。系统采用连续、大流量、冷却油对定子进行循环冷却,冷却油从主轴壳体上的入油口输入,通过定子冷却套上的螺旋槽,与电动机定子进行充分的热交换,将电动机产生的绝大部分热量转移到油中,从壳体的出油口输出,然后流经逆流式冷却交换器,与冷却水进行再一次热交换,将热油温度降到接近室温后,流回油箱,再经过压力泵增压输到入油口,从而实现循环冷却。根据主轴电动机的要求,冷却油的入口温度T在10~40℃之间,温升不得超过10℃。
现有的高速主轴主要是通过在主轴壳体内加冷却油,并不断地循环,把热量带走,来进行冷却。其基本的冷却路线是:首先从主轴冷却油温控制器流出冷却油,经过在靠近前端盖的入水口,冷却油进入前端轴承的外围,对前端轴承进行冷却。接着流向主轴的定子和后端轴承进行冷却,最后从出水口流回主轴冷却油温控制器完成循环。
(3)主轴轴承内环和内装式电动机转子的冷却措施———B型内冷
采用主轴套筒螺旋槽冷却液热交换系统,与不采用主轴套筒热交换系统冷却时轴承内环的温度也下降了一些,只有4~5℃,这表明主轴套筒热交换系统对轴承内环的散热效果不明显。要减少主轴轴承内环的温升和热影响,必须采用冷却剂对主轴中心孔冷却(B型内冷),提高主轴轴承内环的散热来实现。
2. 高压电机运行中给电机轴承加油脂,如何操作能控制好温升,确保在短时间内完成加油脂工作。
转速?有无绝缘要求?非密封轴承
填满轴承内部空间
轴承座内加入30 - 50%的滑脂
确保密封润滑良好
如转速低,加脂量可以大于 50%
密封(终生润滑) / 高速轴承
30% 的轴承内部空间(密封轴承)
公式 : G (克)= 0.005 D(轴承外径, mm) x B(轴承宽度, mm)
例 : 150 马力 的电机其轴承型号为:313
65 mm 内径
140 mm 外径
33 mm 宽度
答案: G = 0.005 x 140 x 33 = 23 克
23 g/ (28.3 g/盎司) = 0.8 oz
0.8 x (33 次/盎司) = 27 次
补充滑脂的方法
加脂管线(通路)必须将滑脂导至轴承的相互运动的表面
轴承座应有一个出口便于多余的滑脂排出
在注脂前清洁油嘴
如有可能,应在轴承转动时加脂 (对于有些电机来说并非如此)
经过几次补充润滑脂后,应清洁轴承及轴承座,重新加脂
影响补脂周期的因素
轴承的类型
如果 L = 给定尺寸和转速的轴承的补脂周期:
1xL= 球轴承补脂周期
L/2 = 圆柱滚子轴承的补脂周期
L/10=球面滚子轴承或圆锥滚子轴承的补脂周期
轴承的转速
轴承转速越高,要求的补脂频率越高
轴承的温度
绝缘等级, 电机类型 (防滴电机, TENV全封闭不通风电机, TEFC全封闭风冷式电机)
环境温度, 电机功率系数
轴承温度每增加 15 °C, 补脂周期减半
轴承尺寸
轴承尺寸越大,补脂越频繁
轴承安装方向
安装在立轴上的轴承,其补脂周期为水平轴轴承的一半
工作环境
潮湿 / 粉尘的环境应缩短补脂周期
滑脂的质量
一些高性能的滑脂 (如 POLYREX EM) 其润滑寿命远远长于一般锂基滑脂
3. 轴承温度的标准
表面温度:轴承在规定工况下运转时,内装式轴承处外表面温度不应高出输送介质温度20℃,最高温度不高于80℃。外装式轴承处外表面温升不应高处环境温度40℃。最高温度不高于80℃。
使用温度:轴承温升不得超过环境温度35℃,最高温度不得超过75℃。
滚动轴承的润滑目有减少轴承内部摩擦及磨损,防止烧粘;延长其使用寿命;排出摩擦热、冷却,防止轴承过热,防止润滑油自身老化;也有防止异物侵入轴承内部,或防止生锈、腐蚀之效果。
轴承的密封可分为自带密封和外加密封两类。所谓轴承自带密封就是把轴承本身制造成具有密封性能装置的。如轴承带防尘盖、密封圈等。这种密封占用空间很小,安装拆卸方便,造价也比较低。
所谓轴承外加密封性能装置,就是在安装端盖等内部制造成具有各种性能的密封装置。轴承外加密封又分为非接触式密封与接触式密封两种。
其中非接触式密封适用于高速和高温场合,有间隙式、迷宫式和垫圈式等不同结构形式。接触式密封适用于中、低速的工作条件,常用的有毛毡密封、皮碗密封等结构形式。
(3)高速运转轴承温度怎么控制扩展阅读:
额定动载荷
为比较轴承抗点蚀的承载能力,规定轴承的额定寿命为一百万转(106)时,所能承受的最大载荷为基本额定动载荷,以C表示。
也就是轴承在额定动载荷C作用下,这种轴承工作一百万转(106)而不发生点蚀失效的可靠度为90%,C越大承载能力越高。
对于基本额定动载荷
1、向心轴承是指纯径向载荷
2、推力球轴承是指纯轴向载荷
3、向心推力轴承是指产生纯径向位移得径向分量
4. 轴承温度过高怎么办
轴承温度过高是矿山机械常见且损害较大的故障,如原因不明,处理不妥,往往会得不偿失,将削减轴承的运用寿数,添加检修费用,甚至会构成轴承烧坏。因而,迅速判别故障发作的原因,采纳得当的办法处理,才是设备接连安全运转的确保。
一、轴承温度过高原因
导致轴承温度过高的原因有许多。
1、光滑不良
光滑对轴承的运用寿数和冲突、磨损、振荡等有重要影响,良好的光滑是确保轴承正常作业的必要条件。据统计,40%左右的轴承损坏都和光滑不良有关。
光滑对轴承的作用主要包含:
1)避免金属锈蚀;
2)避免异物侵入,起到密封作用;
3)排出冲突热,避免轴承温升过高;
4)减轻冲突及磨损,延伸轴承寿数。
通常构成轴承光滑不良的要素有:
1)光滑油(光滑脂)缺乏;
2)光滑油管被异物阻塞等;
3)光滑油(光滑脂)质量有问题;
4)未按时添加光滑油(光滑脂);
5)光滑油(光滑脂)内含有杂质。
2、轴承磨损
轴承作为重要零件,运用于各种大小型机械,而一些机械(例如破碎机)的作业环境粉尘多,当部分细粉尘进入高速作业的轴承座内,构成轴承座内的光滑油或光滑脂蜕变,光滑不良,继而使轴承呈现磨损。
轴承在磨损状态下继续作业,由于冲突力增大,热量添加,从而导致轴承温度升高。
破碎机在粉尘环境中作业。
3、装置不妥
装置不妥是轴承发热的另一重要原因。由于轴承装置的正确与否,对其寿数和主机精度有着直接影响,故装置时要求轴与轴承孔的中心线有必要重合。
假如轴承装置不正,精度低,轴承存在挠度,滚动时就会发作力矩,引起轴承发热或磨损。别的,轴承还会发作振荡,噪声增大,也会使温升递增。
4、冷却缺乏
冷却缺乏通常表现为:管路阻塞,冷却器选用不适宜,冷却作用差等。
光滑管路的冷却器结垢阻塞,会致使冷却作用变差,特别是夏季出产,此问题尤其普遍。个别厂家不吝加大或并串联冷却器来加强冷却作用。
冷却器结垢严峻,轴承温度过高频频报警的状况在许多出产现场都会遇到,比较有用的处理办法是每年入夏之前对冷却器进行酸洗除垢。
5、振荡大
例如联轴器找正工艺差不符合要求,转子存在动、静不平衡,基础刚性差、地脚虚,旋转失速和喘振。
有些转子在运转过程中由于遭到介质的腐蚀或固体杂质的磨损,或者是轴呈现弯曲,就会导致发作不平衡的离心力,从而使轴承发热、振荡,滚道严峻磨损,直至破坏。
6、查看替换不及时
轴承如发现严峻的疲劳脱落、氧化锈蚀、磨损的凹坑、裂纹,或有过大噪音无法调整时,若替换不及时,则会构成轴承呈现发热、异声、振荡等状况,从而影响正常的出产。
别的,轴承拆卸不妥、设备地脚螺栓松动构成的振荡,也会导致轴承滚道和滚动体发作压痕,轴承内、外座圈的开裂。轴承运转过程中,应按规则周期进行查看。
7、轴承质量不良
滚动轴承零件以点接触或线接触的方式,在高的交变接触应力下长时间作业。主机的精度、寿数和可靠性很大程度上决定于轴承,因而在轴承的收购检验环节中一定要留意查看,采用正规厂家的合格优质产品。
8、轴承选型不妥
选用轴承时应留意该轴承的极限转速、负载能力,不能超转速、超负荷运用,那样只会缩短轴承的运用寿数,得不偿失。
二、轴承降温有好方法
当轴承温度高时,应先从以下几个方面处理问题。
1、加油量不妥,光滑油脂过多或过少时:
应当按照作业的要求定时给轴承箱加油。轴承加油后有时也会呈现温度高的状况,主要是加油过多。
电机轴承光滑油脂缺乏导致轴承烧坏:
这时现象为温度继续不断上升,到达某点后(一般在比正常运转温度高10℃——15℃左右)就会保持不变,然后会逐渐下降。
2、所加油脂不符合要求或被污染时:
光滑油脂选用不适宜,不易构成均匀的光滑油膜,无法削减轴承内部冲突及磨损,光滑缺乏,轴承温度升高。
当不同类型的油脂混合时,可能会发作化学反应,构成油脂蜕变、结块,降低光滑作用。
油脂受污染也会使轴承温度升高,加油脂过程中落入尘埃,构成油脂污染,导致轴承箱内部油脂劣化破坏轴承光滑,温度升高。
因而应选用适宜的油脂,检修中对轴承箱及轴承进行清洗,加油管路进行查看疏通,不同类型的油脂不许混用;若替换其它类型的油脂时,应先将原来油脂整理干净;运转保护中定时加油脂,油脂应妥善保管做防潮防尘办法。
3、冷却缺乏时:
查看管路是否阻塞,进油温度及回水温度是否超支。
若冷却器选用不适宜,冷却作用差,无法满意运用要求时,应及时进行替换或并排装置新冷却器。轴流式引风机还应查看中芯筒的保温文密封性。
4、以上方面都不存在问题时,查看联轴器:
联轴器的找正要符合工艺标准。在轴流式引风机、液力耦合器等找正时还应考虑运转中设备受热膨胀的问题。
5. 滚动轴承的温度不能超过多少
一般工作温度不超过50℃。
轴承和轴承室内过多的油脂将造成油脂的过度搅拌,从而产生极高的温度。轴承充填润滑剂的数量以充满轴承内部空间1/2~1/3为宜,高速时应减少到1/3。
在机构运转时,安装轴承的部位允许有一定的温度,当用手抚摸机构外壳时,应以不感觉烫手为正常,反之则表明轴承温度过高。
轴承温度过高的原因有:润滑油质量不符合要求或变质,润滑油粘度过高;机构装配过紧(间隙不足);轴承装配过紧;轴承座圈在轴上或壳内转动;负荷过大;轴承保持架或滚动体碎裂等。
(5)高速运转轴承温度怎么控制扩展阅读
轴承安装前应清洗干净。安装时,应使用专用工具将辅承平直均匀地压入,不要用手锤敲击,特别禁止直接在轴承上敲击。当轴承座圈与座孔配合松动时,应当修复座孔或更换轴承,不要采用在轴承配合表面上打麻点或垫铜皮的方法勉强使用。轴承拆卸时应使用合适的拉器将轴承拉出,不要用凿子、手锤等敲击轴承。
滚动轴承中任一元件出现接触疲劳磨损前的运转总转数或在一定转速下的总工作时数,称为轴承寿滚动轴承的寿命参差很大,同一批生产的轴承在相同条件下运转,其寿命可相差数倍甚至数十倍。同一批轴承中的90%在疲劳剥落前能达到或超过的总转数(或工作时数)时称为额定寿命L。
额定寿命为100万转时所能承受的载荷为额定动负荷C。承受载荷最大的滚动体与滚道接触处的塑性变形量之和达到万分之一滚动体直径时,所能承受的负荷为额定静负荷C0。
额定负荷越大,轴承的负荷能力越强。向心轴承的额定负荷是纯径向负荷,推力轴承的额定载荷是纯轴向载荷。轴承的实际负荷情况常与额定负荷不同,须换算成当量负荷。
6. 电动机运转时,轴承温度过高,可能由哪些原因引起怎样解决
1,电动机运转时,轴承温度过高,可能由以下原因引起的,轴承损坏,应换新;润滑脂牌号不对或过多、过少;滑动轴承润滑油不够或有杂质,或油环卡住,应修复;轴承与端盖配合过松(走外或过紧)。
2,过松时将轴颈喷涂金属;过紧时重新加工;轴承与端盖配合过松(走外圆)或过紧。过松时端盖镶套;过紧时重新加工;电动机两侧端盖或轴承盖没装配好。重新装平;传动带过紧或过松,联轴器不对中,应进行调整。
3,一般应用
3
号锂基脂或
3
号复合钙基脂、
ZL3
(
SY1412-75
)或复合钙基脂。将轴承及盖清洗干净后,加油脂达净容积的
1/2
左右;
7. 关于高速轴承发热 怎么办
轴承发热原因:
(1)轴承配合不合理。与轴承内孔、外圈的配合部位,即轴承台、轴承室的尺寸公差超差。与轴承配合的部位其尺寸及表面光洁度是关系到轴承运行状况是否良好的直接因素,如果轴承台的尺寸偏大,或者轴承室的尺寸偏小时,当轴承热装后,就会减小轴承的径向游隙,使轴承转动困难,导致轴承发热,严重时引起轴承抱死;如果轴承台的尺寸偏小,则轴承内圈与轴配合转动时就会出现松动,出现内圈与滚动体-起转动,致使轴承内圈与轴发生严重磨损,发生轴承振动、发热故障。
(2)轴承安装歪斜。在重新处理轴承台精度或重新加工轴承台时,转轴轴承挡与轴肩端面的垂直度没有保证,导致轴承安装后内外圈偏斜或不同心,滚动体不在轴承滚道的正确位置滚动,滚道局部过负荷,引起了轴承过热。
(3)润滑脂添加不适当。轴承在运转过程中,润滑是很重要的,对于双面是密封轴承可不用再添加润滑脂,正确使用就能够保证它的正常寿命。而对于非密封轴承,添加不干净和过量的润滑脂是导致轴承发热的主要因素,在修理高速电机过程中,常遇到这样的情况,电机组装后成品试验时,轴承温度迅速上升,检查其它部件均未发现异常,二次分解后,发现轴承内部及内外小盖内润滑脂添加过量,取出部分后,再次组装试验时,轴承温升稳定,达到了出厂要求。另外,润滑脂添加太少,轴承滚动体得不到有效润滑也会导致轴承发热。
轴承是高速电机上极为重要的零部件,电机出现机械故障的大多数原因都集中在轴承部位,只要从轴承的选用、装配、润滑及现场运行维护等过程中层层把关,严格按照电机特点选配轴承,高速电机的轴承运行温度就会得到有效控制。
正确选用轴承型号滚动轴承在电机零部件中属于标准部件,其型号由基本代号、前置代号和后置代号组成,各代号分别表示轴承的尺寸、结构和公差等级等,高速电机在选用轴承型号时,要以电机转速对轴承的要求作为选型依据。选型时要重点考虑以下5个方面 :(1)球轴承与滚子轴承相 比较,有较高的极限转速,故在高速时优先选用了球轴承;(2)在内径相同的条件下,外径越小,则滚动体就越小,运转时滚动体加在外圈滚道上的离心力也就越小,所以在高速时,宜选用相同内径而外径较小的轴承,即轻系列轴承;(3)若电机体积较大,用-个外径较小的轴承其承载能力达不到要求时,可再并装-个相同的轴承 ;(4)保持架的材料和结构对轴承的转速影响也很大,实体保持架比冲压保持架允许高-些的转速,青铜实体架可允许更高的转速。(5)若电机转速很高,如2极电机则考虑选用公差等级较高、游隙较大的轴承,这时选择轴承时多注重轴承后置代号中字母及数字的选择。
正确选择轴承配合正确地选择轴承配合,对保证电机正常运转,提高轴承的使用寿命,充分利用轴承的承载能力关系很大。在选择轴承配合时,应综合考虑以下因素:轴承的工作条件;作用在轴承上负荷的大孝方向和性质;轴承类型和尺寸;与轴承相配的轴和壳体孔的材料和结构,工作温度、装卸和调整等。其中,轴承内孔与轴颈的配合采用基孔制,外径与壳体孔的配合采用基轴制,与轴承相配合的轴颈、壳体孔的公差带要从公差与配合国家标准中选出
正确装配轴承装配轴承的方法可根据轴承的外形尺寸、过盈量大型电机结构特点来确定,-般都采用热装,通过轴承加热器加热后,施工人通过干净辅助工具对中轴颈平稳推到位,使轴承与轴肩贴严,若过程中稍有歪斜可用铜锤轻轻对称敲打轴承外圈使其顺利靠位,绝不能用锤子猛力固定敲打-处,这很容易损坏轴承游隙。另外,在轴承装配过程中-定要考虑轴向间隙,因为高速电机在运转时,转轴因温度的变化导致轴向方向发生变化,从而使轴承径向间隙减少或轴承外圈与小盖止口摩擦导致升温,所以在检修高速电机时轴承室相关尺寸的测量是很有必要的。
为避免这种现象,电机负荷侧轴承装配时需在轴承与侧盖间预留0.3~0.5 mm的间隙。
8. 高速主轴正常温度多少
电主轴电机在高速运转的过程中,内部产生功率损耗(包括机械损耗、电损耗等),从而使电机发热。由于电主轴电机装在主轴单元壳体内,所以主轴电机不能直接采用风扇散热,自然散热条件也比较差。调查结果表明,电动机在高速旋转时,电动机转子的工作温度达140~160℃,定子的温度也在45~85℃。电动机产生的热量会直接传递给主轴,引起主轴热变形而产生加工误差。
电主轴冷却回路的目的是保持主轴温度恒定,且其温度与主轴转速无关,因而可以避免主轴前端伸长并且保护主轴轴承,从而保证主轴的精度不受电动机发热的影响;电动机冷却回路主要在于电机定子的冷却,只要将定子的温度控制在较低的范围之内,就能将电机的温度加以控制。
9. 如何解决高速电主轴运转中的发热和温升问题
高速电主轴单元的内部有两个主要热源:一是电主轴轴承,另一个是内藏式主电动机。其中最突出的问题就是内藏式主电动机的发热。由于主电动机旁边就是电主轴轴承,如果主电动机的兆族散热问题解决不好,还会影响机床工作的可靠性。主要的解决方法是采用循环冷却结构,分外循环和内循环两种,冷却介质可以是水或油,使电动机与前后电主轴轴承都能得到充分冷却。
高速电主轴轴承是电机主轴的核心支承,也是电机主轴的主要热源之一。当前高速电机主轴,大多数采用角接触陶瓷球轴承。由于电机主轴的运转速度高,因此对电主轴轴承的动态、热态性能有严格要求。合理的预紧力,良好而充分的润滑是保证电主轴正常运转的必要条件。采用油雾润滑,雾化发生器进气压为0.25~0.3mpa,选用20#透平油,油滴速度控制在80~100滴/min。润滑油雾在充分润滑轴承的同时,还带走了大量的热量。前后电主轴轴承的润镇誉滑油分配是非常重要的问题,必须加以严格控制。进气口截面大于前后喷油口截面御猜段的总和,排气应顺畅,各喷油小孔的喷射角与轴线呈15o夹角,使油雾直接喷入轴承工作区。高速电机www.84385453.com