㈠ 请问齿轮箱的传递能力中的计算功率和计算扭矩是怎么确定的
设:吵野主动齿轮传耐碰笑递扭矩为M
(N.m)
转速为n
(r/min)
则:主动齿轮传递功率为:P=M×n/9550
(kw);
齿轮箱在风力发电机组中的应用很广泛,在风力发电机组当中就经常用到,而且是一个重要的机械部件,齿轮箱其主要功用是将风轮在风力作用下所产生的动力传昌含递给发电机并使其得到相应的转速。通常风轮的转速很低,远达不到发电机发电所要求的转速,必须通过齿轮箱齿轮副的增速作用来实现,故也将齿轮箱称之为增速箱。
㈡ 单级齿轮减速器中的齿轮轴所承受的载荷情况是
减速器基本介绍减速器在原动机和工作机或执行机构之间起匹配转速和传递转矩的作用,在现代机械中应用极为广泛。减速器按用途可分为通用减速器和专用减速器两大类,两者的设计、制造和使用特点各不相同。减速器是原动机和工作机之间的独立的闭式传动装置,用来降低转速和增大转矩,以满足工作需要,在某些场合也用来增速,称为增速器。 选用减速器时应根据工作机的选用条件,技术参数,动力机的性能,经济性等因素,比较不同类型、品种减速器的外廓尺寸,传动效率,承载能力,质量,价格等,选择最适合的减速器。减速器是一种相对精密的机械,使用它的目的指巧是降低转速,增加转矩。基本分类1、减速器按用途可分为通用减速器和专用减速器两大类,两者的设计、制造和使用特点各不相同。 其主要类型:齿轮减速器;蜗杆减速器;齿轮—蜗杆减速器;行星齿轮减速器。 2、一般拍逗并的减速器有斜齿轮减速器(包括平行轴斜齿轮减速器、蜗轮减速器、锥齿轮减速器等等)、行星齿轮减速器、摆线针轮减速器、蜗轮蜗杆减速器、行星摩擦式机械无级变速机等等。 1)圆柱齿轮减速器 单级、二级、二级以上二级。布置形式:展开式、分流式、同轴式。 2)圆锥齿轮减速器 用于输入轴和输出轴位置成相交的场合。 3)蜗杆减速器 主要用于传动比i>10的场合,传动比较大时结构紧凑。其缺点是效率低。目前广泛应用阿基米德蜗杆减速器。 4)齿轮—蜗杆减速器 若齿轮传动在高速级,则结构紧凑;若蜗杆传动在高速级,则效率较高。 5)行星齿轮减速器 传动效率高,传动比范围广,传动功率12W~50000KW,体积和重量小。 3、 常见减速器的种类 1) 蜗轮蜗杆减速器的主要特点是具有反向自锁功能,可以有较大的减速比,输入轴和输出轴不在同一轴线上,也不在同一平面上。但是一般体积较大,传动效率不高,精度不高。 2) 谐波减速器的谐波传动是利用柔性元件可控的弹性变袭迹形来传递运动和动力的,体积不大、精度很高,但缺点是柔轮寿命有限、不耐冲击,刚性与金属件相比较差。输入转速不能太高。 3) 行星减速器其优点是结构比较紧凑,回程间隙小、精度较高,使用寿命很长,额定输出扭矩可以做的很大。但价格略贵。 减速器: 简言之,一般机器的功率在设计并制造出来后,其额定功率就不在改变,这时,速度越大,则扭矩(或扭力)越小;速度越小,则扭力越大。
单级圆柱齿轮减速器工作原理减速器是原动机与工作机之间独立封闭式传动装置。此外,减速器也是一种动力传达机构,利用齿轮的速度转换器,将马达的回转数减速到所要的回转数,并得到较大转矩的机构。降速同时提高输出扭矩,扭矩输出比例按电机输出乘减速比。基本构造减速器主要由传动零件(齿轮或蜗杆)、轴、轴承、箱体及其附件所组成。其基本结构有三大部分: 1、齿轮、轴及轴承组合 小齿轮与轴制成一体,称齿轮轴,这种结构用于齿轮直径与轴的直径相关不大的情况下,如果轴的直径为d,齿轮齿根圆的直径为df,则当df-d≤6~7mn时,应采用这种结构。而当df-d>6~7mn时,采用齿轮与轴分开为两个零件的结构,如低速轴与大齿轮。此时齿轮与轴的周向固定平键联接,轴上零件利用轴肩、轴套和轴承盖作轴向固定。两轴均采用了深沟球轴承。这种组合,用于承受径向载荷和不大的轴向载荷的情况。当轴向载荷较大时,应采用角接触球轴承、圆锥滚子轴承或深沟球轴承与推力轴承的组合结构。轴承是利用齿轮旋转时溅起的稀油,进行润滑。箱座中油池的润滑油,被旋转的齿轮溅起飞溅到箱盖的内壁上,沿内壁流到分箱面坡口后,通过导油槽流入轴承。当浸油齿轮圆周速度υ≤2m/s时,应采用润滑脂润滑轴承,为避免可能溅起的稀油冲掉润滑脂,可采用挡油环将其分开。为防止润滑油流失和外界灰尘进入箱内,在轴承端盖和外伸轴之间装有密封元件。 2、箱体 箱体是减速器的重要组成部件。它是传动零件的基座,应具有足够的强度和刚度。 箱体通常用灰铸铁制造,对于重载或有冲击载荷的减速器也可以采用铸钢箱体。单体生产的减速器,为了简化工艺、降低成本,可采用钢板焊接的箱体。 灰铸铁具有很好的铸造性能和减振性能。为了便于轴系部件的安装和拆卸,箱体制成沿轴心线水平剖分式。上箱盖和下箱体用螺栓联接成一体。轴承座的联接螺栓应尽量靠近轴承座孔,而轴承座旁的凸台,应具有足够的承托面,以便放置联接螺栓,并保证旋紧螺栓时需要的扳手空间。为保证箱体具有足够的刚度,在轴承孔附近加支撑肋。为保证减速器安置在基础上的稳定性并尽可能减少箱体底座平面的机械加工面积,箱体底座一般不采用完整的平面。
3、减速器附件 为了保证减速器的正常工作,除了对齿轮、轴、轴承组合和箱体的结构设计给予足够的重视外,还应考虑到为减速器润滑油池注油、排油、检查油面高度、加工及拆装检修时箱盖与箱座的精确定位、吊装等辅助零件和部件的合理选择和设计。轴结构箱体结构单级圆柱减速器附件的选择和设计1)检查孔为检查传动零件的啮合情况,并向箱内注入润滑油,应在箱体的适当位置设置检查孔。检查孔设在上箱盖顶部能直接观察到齿轮啮合部位处。平时,检查孔的盖板用螺钉固定在箱盖上。 2)通气器减速器工作时,箱体内温度升高,气体膨胀,压力增大,为使箱内热胀空气能自由排出,以保持箱内外压力平衡,不致使润滑油沿分箱面或轴伸密封件等其他缝隙渗漏,通常在箱体顶部装设通气器。 3)轴承盖为固定轴系部件的轴向位置并承受轴向载荷,轴承座孔两端用轴承盖封闭。轴承盖有凸缘式和嵌入式两种。利用六角螺栓固定在箱体上,外伸轴处的轴承盖是通孔,其中装有密封装置。凸缘式轴承盖的优点是拆装、调整轴承方便,但和嵌入式轴承盖相比,零件数目较多,尺寸较大,外观不平整。 4)定位销为保证每次拆装箱盖时,仍保持轴承座孔制造加工时的精度,应在精加工轴承孔前,在箱盖与箱座的联接凸缘上配装定位销。安置在箱体纵向两侧联接凸缘上,对称箱体应呈对称布置,以免错装。 5)油面指示器检查减速器内油池油面的高度,经常保持油池内有适量的油,一般在箱体便于观察、油面较稳定的部位,装设油面指示器。 6)放油螺塞换油时,排放污油和清洗剂,应在箱座底部,油池的最低位置处开设放油孔,平时用螺塞将放油孔堵住,放油螺塞和箱体接合面间应加防漏用的垫圈。 7)启箱螺钉为加强密封效果,通常在装配时于箱体剖分面上涂以水玻璃或密封胶,因而在拆卸时往往因胶结紧密难于开盖。为此常在箱盖联接凸缘的适当位置,加工出~2个螺孔,旋入启箱用的圆柱端或平端的启箱螺钉。旋动启箱螺钉便可将上箱盖顶起。小型减速器也可不设启箱螺钉,启盖时用起子撬开箱盖,启箱螺钉的大小可同于凸缘联接螺栓 。
总结减速器的种类和使用条件有所不同,在选用减速器时要根据不同需要合理选择。
¥
5.9
网络文库VIP限时优惠现在开通,立享6亿+VIP内容
立即获取
单级圆柱齿轮减速器的分析
减速器基本介绍
减速器在原动机和工作机或执行机构之间起匹配转速和传递转矩的作用,在现代机械中应用极为广泛。减速器按用途可分为通用减速器和专用减速器两大类,两者的设计、制造和使用特点各不相同。
减速器是原动机和工作机之间的独立的闭式传动装置,用来降低转速和增大转矩,以满足工作需要,在某些场合也用来增速,称为增速器。 选用减速器时应根据工作机的选用条件,技术参数,动力机的性能,经济性等因素,比较不同类型、品种减速器的外廓尺寸,传动效率,承载能力,质量,价格等,选择最适合的减速器。减速器是一种相对精密的机械,使用它的目的是降低转速,增加转矩。
㈢ 滚动轴承外圈固定在轴承座孔中,内圈随轴旋转,则外圈承受的是什么负荷.
轴承内外圈承受的负荷一般情况是一样的,主要看轴承结构及轴系受力情况,比如三点球和圆柱、圆锥受力就不一样。不过一般都是考虑动圈过盈配合、静圈过渡或者间隙配合。
㈣ 带座外球面轴承载荷如何计算
带座外球面轴承是将滚动轴承与轴承座结合在一起的一种轴承单元。大部分外球面轴承都是将外径做成球面,与带有球状内孔的进口轴承座安装在一起,结构形式多样,通用性和互换性好。
带座外球面轴承载荷:
指一个轴承假想承受一个大小和方向恒定的径向(或中心轴向)负荷,在这一负荷作用下带座外球面轴承基本额定寿命为一百万转。
根据我国国家标准GB/T6391-1995的规定,计算公式:
参考链接:http://www.sdhrzc.cn/
㈤ 轴承端盖厚度计算公式
外压下端盖厚度计算假设制造材料已经确定,端盖尺寸由 边外圆直径,边外缘厚度,端盖总厚度,端盖内径,内径深度 五个量组成。其中,边外圆直径取决于轴承座的孔大小,边外缘厚度取决于轴承座预留的间隙大小,端盖内径由轴的粗细决定,这三个量是客观量,不可更改。1.端盖的有效厚度(即端盖总厚度-内径深度)与承受压力有关,压力越大,厚度越大,具体可查表。端盖总厚度,即:内径深度+有效厚度。2.外压是开孔所需补强面积是开孔减少面积的一半,接头系数=1,然后按照内压的开孔补强面积程序算。 满就是这个计算式需要计算厚度(外压要求的),不知怎么来的。3.就是这个计算式需要计算厚度(外压要求的),不知怎么来的。 gb150和asme都有计算外压的曲线图,比如假定管子2mm,带进去算,和设计压力比较,《ps,且相差不大,就是计算厚度,否则,要加厚,再试算4.外压是开孔所需补强面积是开孔减少面积的一半,接头系数=1,然后按照陪铅内压的开孔补强面积程序算。 满足外压开孔补强,细长的还要校核长度方向的稳定性,能满足稳定性的最小壁厚就是计算厚度吧。
¥
5
网络文库VIP限时优惠现在开通,立享6亿+VIP内容
立即获取
外压下端盖厚度计算
数据空间Datespace
外压下端盖厚度计算
假设制造材料已经确定,端盖尺寸由 边外圆直径,边外缘厚度,端盖总厚度,端盖内径,内径深度 五个量组成。其中,边外圆直径取决于轴承座的孔大小,边外缘厚度取决于轴承座预留的间隙大小,端袜颤盖内径由轴的粗细决定,这三个量是客观量,不可更改。
1.端盖的有效厚度(即端盖总厚度-内径深度)与承受压力有关,压力越大,厚度越大,具体可查表。端盖总厚度,即:内径深度+有效厚度。
第 1 页
2.外压是开孔所需补强面积是开孔减少面积的一半,接头系数=1,然后按照内压的开孔补强面积程序算。 满就是这个计算式需要计算厚度(外压要求的),不知怎么来的。
3.就是这个计算式需要计算厚度(外压要求的),不知怎么来的。 gb150和asme都有计算外压的曲线图,比如假定管子2mm,带进去算,和设计压力比较,《ps,且相差不大,就是计算厚度,否则,要加厚,再试算
4.外压是开孔所需补强面积是开孔减少面积的一半,接头系数=1,然后按照内压的开孔补强面积程序算。 满足外压开孔补强,细长的还要校核长度方向的稳定性,能满足稳定性的最小壁厚就是计算厚芦好好度。
㈥ 多大的轴承能承重3吨左右的重量
平板车上用的轮子轴承,只要是正规企业生产的合格轴承,一般选择6305ZZ就可以了,内孔直径:25MM,外径:62MM,厚度:17MM,单个轴承的承载力:11KN,四个轴承可负载:5吨以上,碰到不平的路面等冲击力也能承受,计算承载常规是按二个轮子达总负载的70%就可。
三泰轴承提供此类深沟球轴承。
(6)怎么计算齿轮箱轴承座孔处的载荷扩展阅读
当前我国轴承行业主要面临三大突出问题:分别是行业生产集中度低、研发和创新能力低、制造技术水平低。
第一,行业生产集中度低。在全世界轴承约300亿美元的销售额中,世界8大跨国公司占75%~80%。德国两大公司占其全国总量的90%,日本5家占其全国总量的90%,美国1家占其全国总量的56%。而我国瓦轴等10家最大的轴承企业,销售额仅占全行业的24.7%,前30家的生产集中度也仅为37.4%
第二,研发和创新能力低。全行业基础理论研究弱,参与国际标准制订力度弱,少原创技术,少专利产品。
当前我们的设计和制造技术基本上是模仿,产品开发能力低,表现在:虽然对国内主机的配套率达到80%,但高速铁路客车、中高档轿车、计算机、空调器、高水平轧机等重要主机的配套和维修轴承,基本上靠进口。
第三,制造技术水平低。我国轴承工业制造工艺和工艺装备技术发展缓慢,车加工数控率低,磨加工自动化水平低,全国仅有200多条自动生产线。对轴承寿命和可靠性至关重要的先进热处理工艺和装备,如控制气氛保护加热、双细化、贝氏体淬火等覆盖率低,许多技术难题攻关未能取得突破。
轴承钢新钢种的研发,钢材质量的提高,润滑、冷却、清洗和磨料磨具等相关技术的研发,尚不能适应轴承产品水平和质量提高的要求。因而造成工序能力指数低,一致性差,产品加工尺寸离散度大,产品内在质量不稳定而影响轴承的精度、性能、寿命和可靠性。
早期的直线运动轴承形式,就是在一排撬板下放置一排木杆。现代直线运动轴承使用的是同一种工作原理,只不过有时用球代替滚子。
最简单的旋转轴承是轴套轴承,它只是一个夹在车轮和轮轴之间的衬套。这种设计随后被滚动轴承替代,就是用很多圆柱形的滚子替代原先的衬套,每个滚动体就像一个单独的车轮。
㈦ 深沟球轴承轴向载荷怎么计算多大的轴承能承受200Kg的轴向力
深沟球轴承理论不受轴向力,所以无法计算。
特点是摩擦阻力小,转速高,能用于承受径向负荷或径向和轴向同时作用的联合负荷的机件上,也可用于承受轴向负荷的机件上,例如小功率电动机、汽车及拖拉机变速箱、机床齿轮箱,一般机器、工具等。
当增大轴承径向游隙时,具有一定的角接触球轴承的性能,可以承受径、轴向联合载荷。在转速较高又不宜采用推力球轴承时,也可用来承受纯轴向载荷。与深沟球轴承规格尺寸相同的其它类型轴承比较,此类轴承摩擦系数小,极限转速高。但不耐冲击,不适宜承受重载荷。
(7)怎么计算齿轮箱轴承座孔处的载荷扩展阅读:
轴承内并答族圈举斗与轴使紧配合,外圈与轴承座孔是较松配合时,可用压力机将轴承先压装在轴上,然后将轴连同轴承一起装入轴承座孔内,压装时在轴承内圈端面上,垫一软金属材料做的装配套管(铜或软钢),轴承外圈与轴承座孔紧配合。
内圈与轴为较松配合时,可将轴承先压入轴承座孔内,这时装配套管的外径应略小于座孔的直径。如果轴承套圈与轴及座孔都是紧配合时,安装室内圈和外圈要同时压入轴和座孔,装配套管的结绝弊构应能同时押紧轴承内圈和外圈的端面。
㈧ 轴承座中心高度怎样计算
内外圈沟径之和除以2。轴承座中辩汪心高度计算公侍配式是内外圈沟径之和除以2,轴承座引是一种可以接受综合载荷、构造特别的大型和特大型轴承座,其具有构造紧凑、回转灵敏、装置维护方便等特点,老灶指有轴承的地方就要有支撑点,轴承的内支撑点是轴,外支撑就是常说的轴承座。
㈨ 求二级圆柱斜齿轮减速器的说明书还有cad图纸,根据我的数据来算
设计课题:
设计一用于带式运输机上的两级展开式圆柱齿轮减速器.运输机连续单向运转,载荷变化不大,空载起动,卷筒效率为0.96(包括其支承轴承效率的损失),减速器小批量生产,使用期限8年(300天/年),两班制工作,运输容许速度误差为5%,车间有三相交流,电压380/220V
表一:
题号
参数 1 2 3 4 5
运输带工作拉力(kN) 2.5 2.3 2.1 1.9 1.8
运输带工作速度(m/s) 1.0 1.1 1.2 1.3 1.4
卷筒直径(mm) 250 250 250 300 300
二. 设计要求
1.减速器装配图一张(A1)。
2.CAD绘制轴、齿轮零件图各一张(A3)。
3.设计说明书一份。
三. 设计步骤
1. 传动装置总体设计方案
2. 电动机的选择
3. 确定传动装置的总传动比和分配传动比
4. 计算传动装置的运动和动力参数
5. 设计V带和带轮
6. 齿轮的设计
7. 滚动轴承和传动轴的设计
8. 键联接设计
9. 箱体结构设计
10. 润滑密封和谈设计
11. 联轴器设计
1.传动装置总体设计方案:
1. 组成:传动装置由电机、减速器、工作机组成。
2. 特点:齿轮相对于轴承不对称分布,清空故沿轴向载荷分布不均匀,
要求轴有较大的刚度。
3. 确定传动方案:考虑到电机转速高,传动功率大,将V带设置在高速级。
其传动方案如下:
图一:(传动装置总体设计图)
初步确定传动系统总体方案如:传动装置总体设计图所示。
选择V带传动和二级圆柱斜齿轮减速答棚瞎器(展开式)。
传动装置的总效率
=0.96×××0.97×0.96=0.759;
为V带的效率,为第一对轴承的效率,
为第二对轴承的效率,为第三对轴承的效率,
为每对齿轮啮合传动的效率(齿轮为7级精度,油脂润滑.
因是薄壁防护罩,采用开式效率计算)。
2.电动机的选择
电动机所需工作功率为: P=P/η=1900×1.3/1000×0.759=3.25kW, 执行机构的曲柄转速为n==82.76r/min,
经查表按推荐的传动比合理范围,V带传动的传动比i=2~4,二级圆柱斜齿轮减速器传动比i=8~40,
则总传动比合理范围为i=16~160,电动机转速的可选范围为n=i×n=(16~160)×82.76=1324.16~13241.6r/min。
综合考虑电动机和传动装置的尺寸、重量、价格和带传动、减速器的传动比,
选定型号为Y112M—4的三相异步电动机,额定功率为4.0
额定电流8.8A,满载转速1440 r/min,同步转速1500r/min。
方案 电动机型号 额定功率
P
kw 电动机转速
电动机重量
N 参考价格
元 传动装置的传动比
同步转速 满载转速 总传动比 V带传动 减速器
1 Y112M-4 4 1500 1440 470 230 16.15 2.3 7.02
中心高
外型尺寸
L×(AC/2+AD)×HD 底脚安装尺寸A×B 地脚螺栓孔直径K 轴伸尺寸D×E 装键部位尺寸F×GD
132 515× 345× 315 216 ×178 12 36× 80 10 ×41
3.确定传动装置的总传动比和分配传动比
(1) 总传动比
由选定的电动机满载转速n和工作机主动轴转速n,可得传动装置总传动比为=n/n=1440/82.76=17.40
(2) 分配传动装置传动比
=×
式中分别为带传动和减速器的传动比。
为使V带传动外廓尺寸不致过大,初步取=2.3,则减速器传动比为==17.40/2.3=7.57
根据各原则,查图得高速级传动比为=3.24,则==2.33
4.计算传动装置的运动和动力参数
(1)各轴转速
==1440/2.3=626.09r/min
==626.09/3.24=193.24r/min
= / =193.24/2.33=82.93 r/min
==82.93 r/min
(2)各轴输入功率
=×=3.25×0.96=3.12kW
=×η2×=3.12×0.98×0.95=2.90kW
=×η2×=2.97×0.98×0.95=2.70kW
=×η2×η4=2.77×0.98×0.97=2.57kW
则各轴的输出功率:
=×0.98=3.06 kW
=×0.98=2.84 kW
=×0.98=2.65kW
=×0.98=2.52 kW
各轴输入转矩
=×× N·m
电动机轴的输出转矩=9550 =9550×3.25/1440=21.55 N·
所以: =×× =21.55×2.3×0.96=47.58 N·m
=×××=47.58×3.24×0.98×0.95=143.53 N·m
=×××=143.53×2.33×0.98×0.95=311.35N·m
=××=311.35×0.95×0.97=286.91 N·m
输出转矩:=×0.98=46.63 N·m
=×0.98=140.66 N·m
=×0.98=305.12N·m
=×0.98=281.17 N·m
运动和动力参数结果如下表
轴名 功率P KW 转矩T Nm 转速r/min
输入 输出 输入 输出
电动机轴 3.25 21.55 1440
1轴 3.12 3.06 47.58 46.63 626.09
2轴 2.90 2.84 143.53 140.66 193.24
3轴 2.70 2.65 311.35 305.12 82.93
4轴 2.57 2.52 286.91 281.17 82.93
5.设计V带和带轮
⑴确定计算功率
查课本表9-9得:
,式中为工作情况系数, 为传递的额定功率,既电机的额定功率.
⑵选择带型号
根据,,查课本表8-8和表8-9选用带型为A型带.
⑶选取带轮基准直径
查课本表8-3和表8-7得小带轮基准直径,则大带轮基准直径,式中ξ为带传动的滑动率,通常取(1%~2%),查课本表8-7后取。
⑷验算带速v
在5~25m/s范围内,V带充分发挥。
⑸确定中心距a和带的基准长度
由于,所以初步选取中心距a:,初定中心距,所以带长,
=.查课本表8-2选取基准长度得实际中心距
取
⑹验算小带轮包角
,包角合适。
⑺确定v带根数z
因,带速,传动比,
查课本表8-5a或8-5c和8-5b或8-5d,并由内插值法得.
查课本表8-2得=0.96.
查课本表8-8,并由内插值法得=0.96
由公式8-22得
故选Z=5根带。
⑻计算预紧力
查课本表8-4可得,故:
单根普通V带张紧后的初拉力为
⑼计算作用在轴上的压轴力
利用公式8-24可得:
6.齿轮的设计
(一)高速级齿轮传动的设计计算
齿轮材料,热处理及精度
考虑此减速器的功率及现场安装的限制,故大小齿轮都选用硬齿面渐开线斜齿轮
(1) 齿轮材料及热处理
① 材料:高速级小齿轮选用钢调质,齿面硬度为小齿轮 280HBS 取小齿齿数=24
高速级大齿轮选用钢正火,齿面硬度为大齿轮 240HBS Z=i×Z=3.24×24=77.76 取Z=78.
② 齿轮精度
按GB/T10095-1998,选择7级,齿根喷丸强化。
2.初步设计齿轮传动的主要尺寸
按齿面接触强度设计
确定各参数的值:
①试选=1.6
查课本图10-30 选取区域系数 Z=2.433
由课本图10-26
则
②由课本公式10-13计算应力值环数
N=60nj =60×626.09×1×(2×8×300×8)
=1.4425×10h
N= =4.45×10h #(3.25为齿数比,即3.25=)
③查课本 10-19图得:K=0.93 K=0.96
④齿轮的疲劳强度极限
取失效概率为1%,安全系数S=1,应用公式10-12得:
[]==0.93×550=511.5
[]==0.96×450=432
许用接触应力
⑤查课本由表10-6得: =189.8MP
由表10-7得: =1
T=95.5×10×=95.5×10×3.19/626.09
=4.86×10N.m
3.设计计算
①小齿轮的分度圆直径d
=
②计算圆周速度
③计算齿宽b和模数
计算齿宽b
b==49.53mm
计算摸数m
初选螺旋角=14
=
④计算齿宽与高之比
齿高h=2.25 =2.25×2.00=4.50
= =11.01
⑤计算纵向重合度
=0.318=1.903
⑥计算载荷系数K
使用系数=1
根据,7级精度, 查课本由表10-8得
动载系数K=1.07,
查课本由表10-4得K的计算公式:
K= +0.23×10×b
=1.12+0.18(1+0.61) ×1+0.23×10×49.53=1.42
查课本由表10-13得: K=1.35
查课本由表10-3 得: K==1.2
故载荷系数:
K=K K K K =1×1.07×1.2×1.42=1.82
⑦按实际载荷系数校正所算得的分度圆直径
d=d=49.53×=51.73
⑧计算模数
=
4. 齿根弯曲疲劳强度设计
由弯曲强度的设计公式
≥
⑴ 确定公式内各计算数值
① 小齿轮传递的转矩=48.6kN·m
确定齿数z
因为是硬齿面,故取z=24,z=i z=3.24×24=77.76
传动比误差 i=u=z/ z=78/24=3.25
Δi=0.032%5%,允许
② 计算当量齿数
z=z/cos=24/ cos14=26.27
z=z/cos=78/ cos14=85.43
③ 初选齿宽系数
按对称布置,由表查得=1
④ 初选螺旋角
初定螺旋角 =14
⑤ 载荷系数K
K=K K K K=1×1.07×1.2×1.35=1.73
⑥ 查取齿形系数Y和应力校正系数Y
查课本由表10-5得:
齿形系数Y=2.592 Y=2.211
应力校正系数Y=1.596 Y=1.774
⑦ 重合度系数Y
端面重合度近似为=[1.88-3.2×()]=[1.88-3.2×(1/24+1/78)]×cos14=1.655
=arctg(tg/cos)=arctg(tg20/cos14)=20.64690
=14.07609
因为=/cos,则重合度系数为Y=0.25+0.75 cos/=0.673
⑧ 螺旋角系数Y
轴向重合度 ==1.825,
Y=1-=0.78
⑨ 计算大小齿轮的
安全系数由表查得S=1.25
工作寿命两班制,8年,每年工作300天
小齿轮应力循环次数N1=60nkt=60×271.47×1×8×300×2×8=6.255×10
大齿轮应力循环次数N2=N1/u=6.255×10/3.24=1.9305×10
查课本由表10-20c得到弯曲疲劳强度极限
小齿轮 大齿轮
查课本由表10-18得弯曲疲劳寿命系数:
K=0.86 K=0.93
取弯曲疲劳安全系数 S=1.4
[]=
[]=
大齿轮的数值大.选用.
⑵ 设计计算
计算模数
对比计算结果,由齿面接触疲劳强度计算的法面模数m大于由齿根弯曲疲劳强度计算的法面模数,按GB/T1357-1987圆整为标准模数,取m=2mm但为了同时满足接触疲劳强度,需要按接触疲劳强度算得的分度圆直径d=51.73来计算应有的齿数.于是由:
z==25.097 取z=25
那么z=3.24×25=81
② 几何尺寸计算
计算中心距 a===109.25
将中心距圆整为110
按圆整后的中心距修正螺旋角
=arccos
因值改变不多,故参数,,等不必修正.
计算大.小齿轮的分度圆直径
d==51.53
d==166.97
计算齿轮宽度
B=
圆整的
(二) 低速级齿轮传动的设计计算
⑴ 材料:低速级小齿轮选用钢调质,齿面硬度为小齿轮 280HBS 取小齿齿数=30
速级大齿轮选用钢正火,齿面硬度为大齿轮 240HBS z=2.33×30=69.9 圆整取z=70.
⑵ 齿轮精度
按GB/T10095-1998,选择7级,齿根喷丸强化。
⑶ 按齿面接触强度设计
1. 确定公式内的各计算数值
①试选K=1.6
②查课本由图10-30选取区域系数Z=2.45
③试选,查课本由图10-26查得
=0.83 =0.88 =0.83+0.88=1.71
应力循环次数
N=60×n×j×L=60×193.24×1×(2×8×300×8)
=4.45×10
N=1.91×10
由课本图10-19查得接触疲劳寿命系数
K=0.94 K= 0.97
查课本由图10-21d
按齿面硬度查得小齿轮的接触疲劳强度极限,
大齿轮的接触疲劳强度极限
取失效概率为1%,安全系数S=1,则接触疲劳许用应力
[]==
[]==0.98×550/1=517
[540.5
查课本由表10-6查材料的弹性影响系数Z=189.8MP
选取齿宽系数
T=95.5×10×=95.5×10×2.90/193.24
=14.33×10N.m
=65.71
2. 计算圆周速度
0.665
3. 计算齿宽
b=d=1×65.71=65.71
4. 计算齿宽与齿高之比
模数 m=
齿高 h=2.25×m=2.25×2.142=5.4621
=65.71/5.4621=12.03
5. 计算纵向重合度
6. 计算载荷系数K
K=1.12+0.18(1+0.6+0.23×10×b
=1.12+0.18(1+0.6)+ 0.23×10×65.71=1.4231
使用系数K=1
同高速齿轮的设计,查表选取各数值
=1.04 K=1.35 K=K=1.2
故载荷系数
K==1×1.04×1.2×1.4231=1.776
7. 按实际载荷系数校正所算的分度圆直径
d=d=65.71×
计算模数
3. 按齿根弯曲强度设计
m≥
一确定公式内各计算数值
(1) 计算小齿轮传递的转矩=143.3kN·m
(2) 确定齿数z
因为是硬齿面,故取z=30,z=i ×z=2.33×30=69.9
传动比误差 i=u=z/ z=69.9/30=2.33
Δi=0.032%5%,允许
(3) 初选齿宽系数
按对称布置,由表查得=1
(4) 初选螺旋角
初定螺旋角=12
(5) 载荷系数K
K=K K K K=1×1.04×1.2×1.35=1.6848
(6) 当量齿数
z=z/cos=30/ cos12=32.056
z=z/cos=70/ cos12=74.797
由课本表10-5查得齿形系数Y和应力修正系数Y
(7) 螺旋角系数Y
轴向重合度 ==2.03
Y=1-=0.797
(8) 计算大小齿轮的
查课本由图10-20c得齿轮弯曲疲劳强度极限
查课本由图10-18得弯曲疲劳寿命系数
K=0.90 K=0.93 S=1.4
[]=
[]=
计算大小齿轮的,并加以比较
大齿轮的数值大,选用大齿轮的尺寸设计计算.
计算模数
对比计算结果,由齿面接触疲劳强度计算的法面模数m大于由齿根弯曲疲劳强度计算的法面模数,按GB/T1357-1987圆整为标准模数,取m=3mm但为了同时满足接触疲劳强度,需要按接触疲劳强度算得的分度圆直径d=72.91来计算应有的齿数.
z==27.77 取z=30
z=2.33×30=69.9 取z=70
② 初算主要尺寸
计算中心距 a===102.234
将中心距圆整为103
修正螺旋角
=arccos
因值改变不多,故参数,,等不必修正
分度圆直径
d==61.34
d==143.12
计算齿轮宽度
圆整后取
低速级大齿轮如上图:
V带齿轮各设计参数附表
1.各传动比
V带 高速级齿轮 低速级齿轮
2.3 3.24 2.33
2. 各轴转速n
(r/min) (r/min) (r/min)
(r/min)
626.09 193.24 82.93 82.93
3. 各轴输入功率 P
(kw) (kw) (kw) (kw)
3.12 2.90 2.70 2.57
4. 各轴输入转矩 T
(kN·m) (kN·m) (kN·m) (kN·m)
47.58 143.53 311.35 286.91
5. 带轮主要参数
小轮直径(mm) 大轮直径(mm)
中心距a(mm) 基准长度(mm)
带的根数z
90 224 471 1400 5
7.传动轴承和传动轴的设计
1. 传动轴承的设计
⑴. 求输出轴上的功率P,转速,转矩
P=2.70KW =82.93r/min
=311.35N.m
⑵. 求作用在齿轮上的力
已知低速级大齿轮的分度圆直径为
=143.21
而 F=
F= F
F= Ftan=4348.16×0.246734=1072.84N
圆周力F,径向力F及轴向力F的方向如图示:
⑶. 初步确定轴的最小直径
先按课本15-2初步估算轴的最小直径,选取轴的材料为45钢,调质处理,根据课本取
输出轴的最小直径显然是安装联轴器处的直径,为了使所选的轴与联轴器吻合,故需同时选取联轴器的型号
查课本,选取
因为计算转矩小于联轴器公称转矩,所以
查《机械设计手册》
选取LT7型弹性套柱销联轴器其公称转矩为500Nm,半联轴器的孔径
⑷. 根据轴向定位的要求确定轴的各段直径和长度
为了满足半联轴器的要求的轴向定位要求,Ⅰ-Ⅱ轴段右端需要制出一轴肩,故取Ⅱ-Ⅲ的直径;左端用轴端挡圈定位,按轴端直径取挡圈直径半联轴器与 为了保证轴端挡圈只压在半联轴器上而不压在轴端上, 故Ⅰ-Ⅱ的长度应比 略短一些,现取
初步选择滚动轴承.因轴承同时受有径向力和轴向力的作用,故选用单列角接触球轴承.参照工作要求并根据,由轴承产品目录中初步选取0基本游隙组 标准精度级的单列角接触球轴承7010C型.
D B 轴承代号
45 85 19 58.8 73.2 7209AC
45 85 19 60.5 70.2 7209B
45 100 25 66.0 80.0 7309B
50 80 16 59.2 70.9 7010C
50 80 16 59.2 70.9 7010AC
50 90 20 62.4 77.7 7210C
2. 从动轴的设计
对于选取的单向角接触球轴承其尺寸为的,故;而 .
右端滚动轴承采用轴肩进行轴向定位.由手册上查得7010C型轴承定位轴肩高度mm,
③ 取安装齿轮处的轴段;齿轮的右端与左轴承之间采用套筒定位.已知齿轮的宽度为75mm,为了使套筒端面可靠地压紧齿轮,此轴段应略短于轮毂宽度,故取. 齿轮的左端采用轴肩定位,轴肩高3.5,取.轴环宽度,取b=8mm.
④ 轴承端盖的总宽度为20mm(由减速器及轴承端盖的结构设计而定) .根据轴承端盖的装拆及便于对轴承添加润滑脂的要求,取端盖的外端面与半联轴器右端面间的距离 ,故取.
⑤ 取齿轮距箱体内壁之距离a=16,两圆柱齿轮间的距离c=20.考虑到箱体的铸造误差,在确定滚动轴承位置时,应距箱体内壁一段距离 s,取s=8,已知滚动轴承宽度T=16,
高速齿轮轮毂长L=50,则
至此,已初步确定了轴的各端直径和长度.
5. 求轴上的载荷
首先根据结构图作出轴的计算简图, 确定顶轴承的支点位置时,
查《机械设计手册》20-149表20.6-7.
对于7010C型的角接触球轴承,a=16.7mm,因此,做为简支梁的轴的支承跨距.
传动轴总体设计结构图:
(从动轴)
(中间轴)
从动轴的载荷分析图:
6. 按弯曲扭转合成应力校核轴的强度
根据
==
前已选轴材料为45钢,调质处理。
查表15-1得[]=60MP
〈 [] 此轴合理安全
7. 精确校核轴的疲劳强度.
⑴. 判断危险截面
截面A,Ⅱ,Ⅲ,B只受扭矩作用。所以A Ⅱ Ⅲ B无需校核.从应力集中对轴的疲劳强度的影响来看,截面Ⅵ和Ⅶ处过盈配合引起的应力集中最严重,从受载来看,截面C上的应力最大.截面Ⅵ的应力集中的影响和截面Ⅶ的相近,但是截面Ⅵ不受扭矩作用,同时轴径也较大,故不必做强度校核.截面C上虽然应力最大,但是应力集中不大,而且这里的直径最大,故C截面也不必做强度校核,截面Ⅳ和Ⅴ显然更加不必要做强度校核.由第3章的附录可知,键槽的应力集中较系数比过盈配合的小,因而,该轴只需胶合截面Ⅶ左右两侧需验证即可.
⑵. 截面Ⅶ左侧。
抗弯系数 W=0.1=0.1=12500
抗扭系数 =0.2=0.2=25000
截面Ⅶ的右侧的弯矩M为
截面Ⅳ上的扭矩为 =311.35
截面上的弯曲应力
截面上的扭转应力
==
轴的材料为45钢。调质处理。
由课本表15-1查得:
因
经插入后得
2.0 =1.31
轴性系数为
=0.85
K=1+=1.82
K=1+(-1)=1.26
所以
综合系数为: K=2.8
K=1.62
碳钢的特性系数 取0.1
取0.05
安全系数
S=25.13
S13.71
≥S=1.5 所以它是安全的
截面Ⅳ右侧
抗弯系数 W=0.1=0.1=12500
抗扭系数 =0.2=0.2=25000
截面Ⅳ左侧的弯矩M为 M=133560
截面Ⅳ上的扭矩为 =295
截面上的弯曲应力
截面上的扭转应力
==K=
K=
所以
综合系数为:
K=2.8 K=1.62
碳钢的特性系数
取0.1 取0.05
安全系数
S=25.13
S13.71
≥S=1.5 所以它是安全的
8.键的设计和计算
①选择键联接的类型和尺寸
一般8级以上精度的尺寸的齿轮有定心精度要求,应用平键.
根据 d=55 d=65
查表6-1取: 键宽 b=16 h=10 =36
b=20 h=12 =50
②校和键联接的强度
查表6-2得 []=110MP
工作长度 36-16=20
50-20=30
③键与轮毂键槽的接触高度
K=0.5 h=5
K=0.5 h=6
由式(6-1)得:
<[]
<[]
两者都合适
取键标记为:
键2:16×36 A GB/T1096-1979
键3:20×50 A GB/T1096-1979
9.箱体结构的设计
减速器的箱体采用铸造(HT200)制成,采用剖分式结构为了保证齿轮佳合质量,
大端盖分机体采用配合.
1. 机体有足够的刚度
在机体为加肋,外轮廓为长方形,增强了轴承座刚度
2. 考虑到机体内零件的润滑,密封散热。
因其传动件速度小于12m/s,故采用侵油润油,同时为了避免油搅得沉渣溅起,齿顶到油池底面的距离H为40mm
为保证机盖与机座连接处密封,联接凸缘应有足够的宽度,联接表面应精创,其表面粗糙度为
3. 机体结构有良好的工艺性.
铸件壁厚为10,圆角半径为R=3。机体外型简单,拔模方便.
4. 对附件设计
A 视孔盖和窥视孔
在机盖顶部开有窥视孔,能看到 传动零件齿合区的位置,并有足够的空间,以便于能伸入进行操作,窥视孔有盖板,机体上开窥视孔与凸缘一块,有便于机械加工出支承盖板的表面并用垫片加强密封,盖板用铸铁制成,用M6紧固
B 油螺塞:
放油孔位于油池最底处,并安排在减速器不与其他部件靠近的一侧,以便放油,放油孔用螺塞堵住,因此油孔处的机体外壁应凸起一块,由机械加工成螺塞头部的支承面,并加封油圈加以密封。
C 油标:
油标位在便于观察减速器油面及油面稳定之处。
油尺安置的部位不能太低,以防油进入油尺座孔而溢出.
D 通气孔:
由于减速器运转时,机体内温度升高,气压增大,为便于排气,在机盖顶部的窥视孔改上安装通气器,以便达到体内为压力平衡.
E 盖螺钉:
启盖螺钉上的螺纹长度要大于机盖联结凸缘的厚度。
钉杆端部要做成圆柱形,以免破坏螺纹.
F 位销:
为保证剖分式机体的轴承座孔的加工及装配精度,在机体联结凸缘的长度方向各安装一圆锥定位销,以提高定位精度.
G 吊钩:
在机盖上直接铸出吊钩和吊环,用以起吊或搬运较重的物体.
减速器机体结构尺寸如下:
名称 符号 计算公式 结果
箱座壁厚 10
箱盖壁厚 9
箱盖凸缘厚度 12
箱座凸缘厚度 15
箱座底凸缘厚度 25
地脚螺钉直径 M24
地脚螺钉数目 查手册 6
轴承旁联接螺栓直径 M12
机盖与机座联接螺栓直径 =(0.5~0.6) M10
轴承端盖螺钉直径 =(0.4~0.5) 10
视孔盖螺钉直径 =(0.3~0.4) 8
定位销直径 =(0.7~0.8) 8
,,至外机壁距离 查机械课程设计指导书表4 34
22
18
,至凸缘边缘距离 查机械课程设计指导书表4 28
16
外机壁至轴承座端面距离 =++(8~12) 50
大齿轮顶圆与内机壁距离 >1.2 15
齿轮端面与内机壁距离 > 10
机盖,机座肋厚 9 8.5
轴承端盖外径 +(5~5.5) 120(1轴)125(2轴)
150(3轴)
轴承旁联结螺栓距离 120(1轴)125(2轴)
150(3轴)
10. 润滑密封设计
对于二级圆柱齿轮减速器,因为传动装置属于轻型的,且传速较低,所以其速度远远小于,所以采用脂润滑,箱体内选用SH0357-92中的50号润滑,装至规定高度.
油的深度为H+
H=30 =34
所以H+=30+34=64
其中油的粘度大,化学合成油,润滑效果好。
密封性来讲为了保证机盖与机座联接处密封,联接
凸缘应有足够的宽度,联接表面应精创,其表面粗度应为
密封的表面要经过刮研。而且,凸缘联接螺柱之间的距离不宜太
大,国150mm。并匀均布置,保证部分面处的密封性。
11.联轴器设计
1.类型选择.
为了隔离振动和冲击,选用弹性套柱销联轴器.
2.载荷计算.
公称转矩:T=95509550333.5
查课本,选取
所以转矩
因为计算转矩小于联轴器公称转矩,所以
查《机械设计手册》
选取LT7型弹性套柱销联轴器其公称转矩为500Nm
希望对你有帮助~!
㈩ 轴承与轴之间的公差如何确定
1、以普通级(P0级)6308的轴承为例:
可以在轴承公差表中查到,轴承的外圈公差是:上差:0下差是:-0.011。
2、根据轴承的旋转方式、承载方式:
外圈一般相对内圈固定,承载是固定承载、不是主要承载。根据这些内容,在外壳孔推荐配合表中可以查到:使用轴承座的轴承,推荐外壳孔公差带为H8.H8公差带:上公差+0.054,下差0.说明是间隙配合,最大间隙量:0.065,最小间隙量0。
3、轴承内圈与轴的配合:6308轴承内圈公差是:上差0,下差-0.012.根据:内圈旋转载荷、普通载荷,得出推荐轴的配合公差带是:m5,上差:+0.020,下差:0.009.说明:最大间隙是0.020,最大过盈量0.003。
4、综上所述:确定轴承与轴、与外壳孔的配合,可根据轴承的旋转形势、载荷大小、精度等级,查询一系列的表格,就可以轻松的得出了。需要不同的配合,也可以根据列表,作出调整。
(10)怎么计算齿轮箱轴承座孔处的载荷扩展阅读:
公差等级的选择
与轴承配合的轴或轴承座孔的公差等级与轴承精度有关。与P0级精度轴承配合的轴,其公差等级一般为IT6,轴承座孔一般为IT7。对旋转精度和运转的平稳性有较高要求的场合(如电动机等),应选择轴为IT5,轴承座孔为IT6。
公差带的选择
当量径向载荷P分成“轻”、“正常”和“重”载荷等几种情况,其与轴承的额定动载荷C之关系为:轻载荷P≤0.06C正常载荷0.06C。
轴公差带安装向心轴承和角接触轴承的轴的公差带参照相应公差带表。就大多数场合而言,轴旋转且径向载荷方向不变,即轴承内圈相对于载荷方向旋转的场合,一般应选择过渡或过盈配合。
静止轴且径向载荷方向不变,即轴承内圈相对于载荷方向是静止的场合,可选择过渡或小间隙配合(太大的间隙是不允许的)。
外壳孔公差带安装向心轴承和角接触轴承的外壳孔公差带参照相应公差带表。选择时注意对于载荷方向摆动或旋转的外圈,应避免间隙配合。当量径向载荷的大小也影响外圈的配合选择。
轴承座结构形式的选择滚动轴承的轴承座除非有特别需要,一般多采用整体式结构,剖分式轴承座只是在装配上有困难,或在装配上方便的优点成为主要考虑点时才采用,但它不能应用于紧配合或较精密的配合,又如公差等级为IT6或更精密的座孔,都不得采用剖分式轴承座。