『壹』 滚动轴承常见的故障形式有哪些
滚动轴承是转动设备中应用最为广泛的机械零件,同时也是最容易产生故障的零件。据统计,在使用滚动轴承的转动设备中,大约有30%的机械故障都是由于滚动轴承而引起的。滚动轴承的常见故障形式有以下几种。
1. 疲劳剥落(点蚀) 滚动轴承工作时,滚动体和滚道之间为点接触或线接触,在交变载荷的作用下,表面间存在着极大的循环接触应力,容易在表面处形成疲劳源,由疲劳源生成微裂纹,微裂纹因材质硬度高、脆性大,难以向纵深发展,便成小颗粒状剥落,表面出现细小的麻点,这就是疲劳点蚀。严重时,表面成片状剥落,形成凹坑;若轴承继续运转,将形成大面积的剥落。疲劳点蚀会造成运转中的冲击载荷,使设备的振动和噪声加剧。然而,疲劳点蚀是滚动轴承正常的、不可避免的失效形式。轴承寿命指的就是出现第一个疲劳剥落点之前运转的总转数,轴承的额定寿命就是指90%的轴承不发生疲劳点蚀的寿命。(利用轴承故障检测仪对轴承进行诊断)
2. 磨损 润滑不良,外界尘粒等异物侵入,转配不当等原因,都会加剧滚动轴承表面之间的磨损。磨损的程度严重时,轴承游隙增大,表面粗糙度增加,不仅降低了轴承的运转精度,而且也会设备的振动和噪声随之增大。
3. 胶合 胶合是一个表面上的金属粘附到另一个表面上去的现象。其产生的主要原因是缺油、缺脂下的润滑不足,以及重载、高速、高温,滚动体与滚道在接触处发生了局部高温下的金属熔焊现象。 通常,轻度的胶合又称为划痕,重度的胶合又称为烧轴承。 胶合为严重故障,发生后立即会导致振动和噪声急剧增大,多数情况下设备难以继续运转。
4. 断裂 轴承零件的裂纹和断裂是最危险的一种故障形式,这主要是由于轴承材料有缺陷和热处理不当以及严重超负荷运行所引起的;此外,装配过盈量太大、轴承组合设计不当,以及缺油、断油下的润滑丧失也都会引起裂纹和断裂。
5. 锈蚀 锈蚀是由于外界的水分带入轴承中;或者设备停用时,轴承温度在露点以下,空气中的水分凝结成水滴吸附在轴承表面上;以及设备在腐蚀性介质中工作,轴承密封不严,从而引起化学腐蚀。锈蚀产生的锈斑使轴承表面产生早期剥落,同时也加剧了磨损。
6. 电蚀 电蚀主要是转子带电,电流击穿油膜而形成电火化放电,使表面局部熔焊,在轴承工作表面形成密集的电流凹坑或波纹状的凹凸不平。
7. 塑性变形(凹坑及压痕) 对于转速极低(n<1 r/min)的轴承,或间歇摆动的轴承,其故障形式主要是永久性塑性变形,即在滚道上受力最大处形成凹坑。发生塑性变形,主要与过大的挤压应力有关,例如,工作载荷过重,冲击载荷过大,热变形影响等。轴承出现凹坑后,会产生很大的振动和噪声。 此外,当硬颗粒从外界进入滚动体与滚道之间时,会在滚道表面形成压痕。
8. 保持架损坏 润滑不良会使保持架与滚动体或座圈发生磨损、碰撞。装配不当所造成的保持架变形,会使保持架与滚动体或座圈之间产生卡涩,从而加速了保持架的磨损。保持架磨损后,间隙变大,与滚动体之间的撞击力增大,以致使保持架断裂。
滚动轴承的故障种类是多种多样的,然而,在实际应用中最常见和最有代表性的故障类型通常只是三种,,即疲劳剥落(点蚀)、磨损、胶合。其中,胶合从发生到轴承完全损坏的过程往往极短暂,因此一般难以通过定期检查及时发现。
『贰』 滚动轴承损坏的原因是什么损坏后产生的现象
滚动轴承的故障现象一般表现为两种,一是轴承安装部位温度过高,二是轴承运转中有噪音。损坏的原因是金属退让性差(变形后无法复原)、抗冲击性能差、抗疲劳性能差、负荷过大等等,具体如下:
1、轴承温度过高。
在机构运转时,安装轴承的部位允许有一定的温度,当用手抚摸机构外壳时,应以不感觉烫手为正常,反之则表明轴承温度过高。
轴承温度过高的原因有:润滑油质量不符合要求或变质,润滑油粘度过高;机构装配过紧(间隙不足);轴承装配过紧;轴承座圈在轴上或壳内转动;负荷过大;轴承保持架或滚动体碎裂等。
2、轴承噪音。
滚动轴承在工作中允许有轻微的运转响声,如果响声过大或有不正常的噪音或撞击声,则表明轴承有故障。
滚动轴承产生噪音的原因比较复杂,轴承内、外圈配合表面磨损。由于这种磨损,破坏了轴承与壳体、轴承与轴的配合关系,导致轴线偏离了正确的位置,在轴在高速运动时产生异响。
当轴承疲劳时,其表面金属剥落,也会使轴承径向间隙增大产生异响。此外,轴承润滑不足,形成干摩擦,以及轴承破碎等都会产生异常的声响。轴承磨损松旷后,保持架松动损坏,也会产生异响。
(2)为什么滚动轴承容易点蚀扩展阅读
轴承生产的专业化为其生产自动化提供了条件。在生产中大量采用全自动、半自动化专用和非专用机床,且生产自动线逐步推广应用。如热处理自动线及装配自动线等。
基本特点好处:
(1)、节能显著。由于滚动轴承自身运动的特点,使其摩擦力远远小于滑动轴承,可减少消耗在摩擦阻力的功耗,因此节能效果显著。
主轴承采用滚动轴承的一般小型球磨机节电达30%~35%,中型球磨机节电达15%~20%,大型球磨机节电可达10%~20%。由于球磨机本身是生产中的耗能大户,这将意味着可节约一笔及其可观的费用。
(2)、维修方便,质量可靠。采用滚动轴承可以省去巴氏合金材料的熔炼、浇铸及刮瓦等一系列复杂其技术要求甚高的维修工艺过程以及供油、供水冷却系统,因此维修量大大减少。而且滚动轴承由于是由专业生产厂家制造,质量往往得到保证。
『叁』 滚动轴承的主要失效形式有哪些
1、接触疲劳失效
接触疲劳失效系指轴承工作表面受到交变应力的作用而产生的材料疲劳失效。接触疲劳失效常见的形式是接触疲劳剥落。接触疲劳剥落发生在轴承工作表面,往往伴随着疲劳裂纹,首先从接触表面以下最大交变切应力处产生,然后扩展到表面形成不同的剥落形状。
如点状为点蚀或麻点剥落,剥落成小片状的称浅层剥落。由于剥落面的逐渐扩大,会慢慢向深层扩展,形成深层剥落。深层剥落是接触疲劳失效的疲劳源。
2、磨损失效
磨损失效系指表面之间的相对滑动摩擦导致其工作表面金属不断磨损而产生的失效。持续的磨损将引起轴承零件逐渐损坏,并最终导致轴承尺寸精度丧失及其它问题。磨损失效是各类轴承常见的失效模式之一,按磨损形式通常可分为磨粒磨损和粘着磨损。
磨粒磨损是指轴承工作表面之间挤入外来坚硬粒子或硬质异物或金属表面的磨屑且接触表面相对移动而引起的磨损,常在轴承工作表面造成犁沟状的擦伤。
粘着磨损是指由于摩擦表面的显微凸起或异物使摩擦面受力不均,在润滑条件严重恶化时,因局部摩擦生热,易造成摩擦面局部变形和摩擦显微焊合现象,严重时表面金属可能局部熔化,接触面上作用力将局部摩擦焊接点从基体上撕裂而增大塑性变形。
3、断裂失效
轴承断裂失效主要原因是缺陷与过载两大因素。当外加载荷超过材料强度极限而造成零件断裂称为过载断裂。过载原因主要是主机突发故障或安装不当。
轴承零件的微裂纹、缩孔、气泡、大块外来杂物、过热组织及局部烧伤等缺陷在冲击过载或剧烈振动时也会在缺陷处引起断裂,称为缺陷断裂。
应当指出,轴承在制造过程中,对原材料的入厂复验、锻造和热处理质量控制、加工过程控制中可通过仪器正确分析上述缺陷是否存在。但一般来说,通常出现的轴承断裂失效大多数为过载失效。
4、腐蚀失效
有些滚动轴承在实际运行当中不可避免的接触到水、水汽以及腐蚀性介质,这些物质会引起滚动轴承的生锈和腐蚀。另外滚动轴承在运转过程中还会受到微电流和静电的作用,造成滚动轴承的电流腐蚀。
滚动轴承的生锈和腐蚀会造成套圈、滚动体表面的坑状锈、梨皮状锈及滚动体间隔相同的坑状锈、全面生锈及腐蚀。最终引起滚动轴承的失效。
5、游隙变化失效
滚动轴承在工作中,由于外在或内在因素的影响,使得原有配合间隙改变,精度降低,乃至造成“咬死",称为游隙变化失效。外界因素如过盈量过大,安装不到位,温升引起的膨胀量、瞬时过载等;内在因素如残余奥氏体和残余应力处于不稳定状态等,均是造成游隙变化失效的主要原因。
(3)为什么滚动轴承容易点蚀扩展阅读
滚动轴承中的向心轴承(主要承受径向力)通常由内圈、外圈、滚动体和滚动体保持架4部分组成。内圈紧套在轴颈上并与轴一起旋转,外圈装在轴承座孔中。
在内圈的外周和外圈的内周上均制有滚道。当内外圈相对转动时,滚动体即在内外圈的滚道上滚动,它们由保持架隔开,避免相互摩擦。推力轴承分紧圈和活圈两部分。
紧圈与轴套紧,活圈支承在轴承座上。套圈和滚动体通常采用强度高、耐磨性好的滚动轴承钢制造,淬火后表面硬度应达到HRC60~65。保持架多用软钢冲压制成,也可以采用铜合金夹布胶木或塑料等制造。
『肆』 轴承使用一段时间后滚动体出现麻点是什么原因!
滚动体出现的麻点 分为:梨皮状点蚀 和电蚀两种。
下面分别说明:
第一种:梨皮状点蚀:一般出现在滚道面上产生的弱光泽的暗色梨皮状点蚀
产生的原因:润滑过程中出现的异物咬入;由于空气中的水分而结露; 润滑不良。
防范措施:改善密封装置。充分过滤润滑油。使用合适的润滑剂。
第二种:电蚀:电流在旋转中的轴承的滚道轮和滚动体的接触部分流动时,通过薄薄的润滑 油膜发出火花,其表面出现局部的地熔融和凹凸现象。
产生原因:外圈与内圈间的电位差
防范措施:在设定电路时,电流要不流过轴承部分。对轴承进行绝缘。
『伍』 轴承是如何疲劳损坏的
一、轴承疲劳损坏的现象分析:
1、轴承从开始使用导第一个材料疲劳的现象出现的这个期间长短是和轴承的转速,负载的大小,润滑干净度有关系的。
2、疲劳是负载表面下剪应力周期性出现所形成的结果,经过一段时间后,这些剪应力便引发细小的裂颅,然后渐渐延伸到表面,当滚动件经过这些裂颅后,便有些裂块脱落,形成所谓“剥皮现象”,然后随着剥皮的情况继续扩大,轴承即损坏不堪使用。
3、以上是轴承疲劳的描述,它最初是发生在表面以下的,虽然最初的剥皮情况通常非常轻微,但是随着应力的增加和裂块的增多,导致剥皮面积的蔓延,这种破坏形势通常维持很长一段时间,其明显可见的阶段是在噪音及震动增加的时候。
4、自行车轴承在损坏的最初级阶段,可能仅是转动时难以感觉的,而后期发现转动时有麻点感,而一但出现麻点感,轴承并不是不能使用,只是在每次前进珠子和轴碗和轴档都发生更大的磨损和更严重的损坏,由于自行车是一种低速高极压类型的轴承方式,所以即使表面剥皮现象严重,也不是不堪使用的,而是无形无声中消耗你的动力,而你的感觉可能仅是觉得车子不知道为什么不好骑不顺了。
5、因此在轴承完全破坏前,它提供使用者足够的发现时间,不要忽视这种摩擦的存在,它会令骑行的速度下降,让长距离体力的消耗更大速度更慢。
如果对于表面的粗糙程度细微,若润滑油膜有适当厚度时,则表面应力生成的机率相当的低,这也就是为什么要适当的选择适合的机油来进行润滑的原因,然而,如果压力的负荷超过了油膜的pu值(疲劳负荷极限值,如过高的转速,过高的压强冲击),则材料的疲劳迟早会来。
二、轴承损坏的原因及解决办法:
1、轴承提前损坏的原因-(润滑不当)
尽管可以安装“免维护”的胶封轴承,但是提前失效的轴承中仍然有百分36是由于润滑脂技术应用不正确而造成的。
任何润滑不当的轴承,都不可避免的提前失效,由于轴承是花鼓中胶不容易装拆的部位,而先天使用了不正确的润滑脂,而后期使用时不更换润滑脂,或者在润滑脂发生碳化变质污染后不进行及时更换,那你的花鼓就很难有足够长的寿命和良好的润滑度。
自行车使用的配林我们现在碰到大多数都是深沟球的小规格轴承,如609,6000,6001,6200,这些在工业上都是用于小规模电机的定子和转子使用的培林,而这样的小培林在购买时通常预装的是低粘度,高润滑度的广谱润滑脂。
而我们过去也曾经大量错误的购买和使用价格相当昂贵的这类润滑脂,比如我们过去购买的SKF的LGMT-2合成锂基脂,这是一种低扭距,低摩擦的小电机润滑油,也正是大多数小号skf培林中使用的,当时的价格还很贵,200克的包装价格高达60多元,但是这样油料的粘稠度仅110,对高负荷,极压,往复运动的能力都差,而根据自行车轴的使用情况,这应该是一种低转速,高极压(因为大量压力仅集中在几个细小的培林上,且冲击跳跃时会产生更大压力),所以我们后来选择了SKF的LGEP-2合成锂基脂,而这种虽然价格也贵(155元),但是其粘度达到200,高负荷,高防水,高防锈,高抗震,虽然在低扭距摩擦指标上不如LGMT-2,但是却完全适合自行车的前后中轴和车首碗组(今天我们对一些老款花鼓,如rm40的修复中都是使用LGEP-2润滑)。
2、轴承提前损坏的原因-(装配不当)
另一个损坏高达百分16的原因,就是这个装配不当,而错误或者暴力的装入方法,使得那些培林在装入时就已经发生了光滑铛碗表面的敲击硬伤。
为了让培林卡紧轴心,防止轴套摩擦现象的产生(这种现象会在高速转动机械上瞬间产生高温,造成润滑油烧干甚至导致热涨卡死,造成停机),所以轴承的内铛和外碗(工业上也称轴承箱)使用一种“过盈”现象,通俗的说就是轴比内铛大,或者外碗比装入物大,这种过盈需要很大的力量才能装入,而这样的装入对培林进行敲击需要极大的力量,这会造成培林在敲击的过程中损伤,所以工业上的大轴承通常采用加热,液压顶入等方式。
自行车使用的是胶封深沟球轴承,这样的轴承最怕敲击(滚针培林和大培林对敲击的抵抗力稍强),且也不可使用加温装入方法,但是由于自行车培林的过盈很小,甚至如青豪培林花鼓可以用手放入培林,所以使用胶锤的敲入是相对安全的,但是顶入的垫背物却是需要有非常平的表面,而使用静力压入,比如台钳压紧,是最佳的方式。