1. 滚动轴承失效的4个阶段是什么
第一阶段,轴承失效初期
这个阶段轴承最先在次表面形成微观裂纹或晶格的错位,而轴承表面则看不到裂纹或者微小剥落,在振动信号的低频段不会形成比较明显的冲击信号,用传统的加速度传感器不能拾取到故障信号,但是次表面的微观裂纹或者晶格的错位会产生声发射信号或者应力波信号。因此,在这个阶段轴承的故障特征主要体现在超声频率段,可以通过声发射传感器或者基于共振的加速度传感器进行拾取,其主要表现为测得的信号峰值或者能量值变大。
第二阶段,轴承失效发展期,
在这个阶段轴承的微观劣化开始由次表面向表面扩展,并在轴承的接触表面产生裂纹或微小剥落等损伤点。当轴承元件表面与这些损伤点接触时,就会形成一定频率的冲击脉冲,根据傅里叶变换可知,短时的冲击信号在频域上是一个宽频信号,所以这个冲击信号必然会激起轴承零部件的高频固有频率发生共振,从而使得其振动加强,通过加速度传感器便能将这部分信号拾取到,再利用包络解调技术便能观察到轴承的故障特征频率,到了第二阶段的末期还能观察到故障特征频率的倍频。
在这个阶段,轴承的故障特征频率暂时被淹没在低频段较高的噪音当中,因此在故障特征频率段观察不到很清晰的故障特征频率。
第三阶段,轴承失效快速发展
在这个阶段,随着轴承损伤的加速发展,损伤点对轴承接触面的冲击越来越强烈,在共振频率段解调出来的轴承故障特征频率的倍频越来越多,而且其周期性冲击的能量大小已经足以直接通过振动信号的功率谱观察出来,这个时候可以直接在振动信号的功率谱上清晰的看到轴承的故障特征频率,并且其倍频有越来越多的趋势。
第四阶段,轴承失效末期,
在这个阶段,滚动轴承已经快达到寿命的终点,损伤点可以通过肉眼观察到,轴承运动的噪音变得特别大,温度急速的升高。此时直接功率谱上不仅可以清晰的看到轴承的故障特征频率及其倍频,如果损伤点交替的进入载荷区的话,还能在故障特征频率旁边看到明显的调制边频。在第四阶段的末期,频谱上谱线变得不是很清晰,在功率谱上会形成凸出的“茅草堆”,另外高频振动的能量在这时还可能不升反降,如果发现高频的监测量开始下降,不是表面轴承状态变好,而是说明轴承已经快到寿命的终点。
2. 如何利用频谱进行振动分析(轴承和齿箱)
完整的程序
%写上标题
%设计低通滤波器:
[N,Wc]=buttord()
%估算得到Butterworth低通滤波器的最小阶数N和3dB截止频率Wc
[a,b]=butter(N,Wc); %设计Butterworth低通滤波器
[h,f]=freqz(); %求数字低通滤波器的频率响应
figure(2); % 打开窗口2
subplot(221); %图形显示分割窗口
plot(f,abs(h)); %绘制Butterworth低通滤波器的幅频响应图
title(巴氏低通滤波器'');
grid; %绘制带网格的图像
sf=filter(a,b,s); %叠加函数S经过低通滤波器以后的新函数
subplot(222);
plot(t,sf); %绘制叠加函数S经过低通滤波器以后的时域图形
xlabel('时间 (seconds)');
ylabel('时间按幅度');
SF=fft(sf,256); %对叠加函数S经过低通滤波器以后的新函数进行256点的基—2快速傅立叶变换
w= %新信号角频率
subplot(223);
plot()); %绘制叠加函数S经过低通滤波器以后的频谱图
title('低通滤波后的频谱图');
%设计高通滤波器
[N,Wc]=buttord()
%估算得到Butterworth高通滤波器的最小阶数N和3dB截止频率Wc
[a,b]=butter(N,Wc,'high'); %设计Butterworth高通滤波器
[h,f]=freqz(); %求数字高通滤波器的频率响应
figure(3);
subplot(221);
plot()); %绘制Butterworth高通滤波器的幅频响应图
title('巴氏高通滤波器');
grid; %绘制带网格的图像
sf=filter(); %叠加函数S经过高通滤波器以后的新函数
subplot(222);
plot(t,sf); ;%绘制叠加函数S经过高通滤波器以后的时域图形
xlabel('Time(seconds)');
ylabel('Time waveform');
w; %新信号角频率
subplot(223);
plot()); %绘制叠加函数S经过高通滤波器以后的频谱图
title('高通滤波后的频谱图');
%设计带通滤波器
[N,Wc]=buttord([)
%估算得到Butterworth带通滤波器的最小阶数N和3dB截止频率Wc
[a,b]=butter(N,Wc); %设计Butterworth带通滤波器
[h,f]=freqz(); %求数字带通滤波器的频率响应
figure(4);
subplot(221);
plot(f,abs(h)); %绘制Butterworth带通滤波器的幅频响应图
title('butter bandpass filter');
grid; %绘制带网格的图像
sf=filter(a,b,s); %叠加函数S经过带通滤波器以后的新函数
subplot(222);
plot(t,sf); %绘制叠加函数S经过带通滤波器以后的时域图形
xlabel('Time(seconds)');
ylabel('Time waveform');
SF=fft(); %对叠加函数S经过带通滤波器以后的新函数进行256点的基—2快速傅立叶变换
w=( %新信号角频率
subplot(223);
plot(')); %绘制叠加函数S经过带通滤波器以后的频谱图
title('带通滤波后的频谱
3. 如何用听棒判断电机轴承的好坏轴承跑内圈、外圈又是怎么回事``怎么判断
1、滚道声
滚道声是由于轴承旋转时滚动体在滚道中滚动而激发出一种平稳且连续性的噪声,只有当其声压级或声调极大时才引起人们注意。其实滚道声所激发的声能是有限的,如在正常情况下,优质的6203轴承滚道声为25~27dB。这种噪声以承受径向载荷的单列深沟球轴承为最典型,它有以下特点:a.噪声、振动具有随机性;b.振动频率在1kHz以上;c.不论转速如何变化,噪声主频率几乎不变而声压级则随转速增加而提高;d.当径向游隙增大时,声压级急剧增加;e.轴承座刚性增大,总声压级越低,即使转速升高,其总声压级也增加不大;f.润滑剂粘度越高,声压级越低,但对于脂润滑,其粘度、皂纤维的形状大小均能影响噪声值。
1、电机轴窜问题,是导致轴承过热的主要原因?
答:首先回答电机的轴窜问题:一般的电机,用得最多的是深沟球轴承和圆柱滚子轴承。安装时,一端做轴向定位,另一端做轴向浮动。你说的窜动,首先应该查一下,你的轴向定位做得怎么样?定位是否可靠。如果可靠,对于深沟球轴承来说,它的轴向窜动量就应该是它的轴向游隙,一般不会太大。但是取决于你选的径向游隙。对于圆柱棍子轴承,对于N和NU系列的,不能作为定位轴承,如果你用他们做定位,那一定窜动过大。其次,你说的轴窜动导致轴承发热了,我想,如果定位轴承承受了过大的轴向负荷,会导致轴承发热烧毁。所以,选择定位轴承的时候要看看轴向负荷有多大,你选的轴承是否承受得了。如果是NJ系列的圆柱棍子轴承,这种轴向负荷完全是由滑动部分承受的,所以不行,对于深沟球轴承,它的轴向能力最多有径向的四分之一。对于不同的轴承各有不同的轴向能力,要根据电机的情况进行选择。
4. 什么是轴承的特征频率,它有什么用途。 此频率和故障特征频率是一回吗
轴承失效四个阶段,
第一阶段(超声频率) 轴承问题的最早期表现在超声频率的异常,从250kHz
到350kHz范围;此后随故障的发展,异常频率逐步下移到20kHz到
60kHz范围,可由冲击包络监测到,一般可达到0.5gE
,实际值与测点位置、轴承型号和机器转速相关;
可采集加速度包络频谱确认轴承是否进入第一失效阶段
第二阶段(轴承固有频率)
轴承产生轻微缺陷,激起轴承部件固有频率(fn)振动或
轴承支承结构共振,一般在500Hz到2kHz范围;
在第二阶段末期,固有频率周围开始出现边频带;
第三阶段(轴承缺陷频率及其倍频)
在第三阶段,轴承缺陷频率及其倍频出现;随着轴承内磨损的发展,更多的缺陷频率倍频开始出现,围绕这些倍频以及
轴承部件固有频率的边频带的数量也逐步上升,冲击包络值继续上升
第四阶段(随机宽带振动)
在第四阶段,轴承失效接近尾声,甚至工频1X 也受影响而上升,
并产生许多工频的倍频 原先离散的轴承缺陷频率和固有频率开始“消失”,取而代之是随
机的宽带高频“噪声振动”
轴承缺陷频率:
轴承缺陷频率术语/ Terms of Defect Freqs
1. BPFI: Ball Pass Frequency on Inner race
内圈缺陷频率
2. BPFO:Ball Pass Frequency on Outer race
外圈缺陷频率
3. BSF: Ball Spin Frequency
滚珠缺陷频率
4. FTF: Fundamental Train Frequency
保持架缺陷频率
轴承缺陷频率与轴承部件尺寸及轴的转速相
轴承缺损频率计算/Compute Defect Freqs
BPFI=Nb/2*S(1+(Bd/Pd)*cosA)
BPFO=Nb/2*S(1-(Bd/Pd)*cosA)
BSF=(Pd/2Bd)*S*(1-(Bd/Pd)*CosA)2
FTF=S/2*(1-(Bd/Pd)*CosA
Nb: the number of balls/轴承滚子数
S:speed/轴转速
Bd:ball diameter/滚子直径
Pd: Pitch diameter/滚子分布圆直径
A: the contact angle( degrees)/接触角(度)
5. 如何根据频谱判断滚动轴承不同元件的故障
滚动轴承在其使用过程中表现出很强的规律性,并且重复性强。正常优质轴承在开始使用时振动和噪声均比较小,但频谱有些散乱,幅值比较小。运动一段时间后,振动和噪声保持在一定水平,频谱比较单一,仅出现一,二倍频,极少出现三倍工频以上频谱,轴承状态非常平稳,进入稳定工作期。持续运行后进入使用后期,轴承振动和噪声开始增大,有时出现异音,但振动增大的变化比较缓慢,此时,轴承峭度值开始突然到达一定值。可以认为此时轴承出现了初期故障。这时就要对轴承进行严密监测,密切注意其变化。此后轴承峭度值又开始快速下降,并接近正常值,而振动和噪声开始显著增大,其增大幅度开始加快,其振动超过标准时(ISO2372),其轴承峭度值也开始快速增大,当轴承超过振动标准,峭度值也超过正常值时,可认为轴承已进入晚期故障,需要及时检修设备,更换滚动轴承。
6. 轴和轴承装配的问题图中红线圈起的部分代表什么零件轴承为什么外圈内圈凸起了
1、从图中红线圈起的部分,我们可以通过分析判断该零件是一个卡环,用于固定件6。
2、轴承为什么外圈内圈凸起了?这是圆锥滚子轴承的简单画法。
7. 滚动轴承故障发生的四个阶段,何时更换轴承最好
第一阶段,即轴承开始出现故障的萌芽阶段,这时温度正常,噪声正常,振动速度总量及频谱正常,但尖峰能量总量及频谱有所征兆,反映轴承故障的初始阶段。这时真正的轴承故障频率出现在超声段大约20-60khz范围。
第二阶段,温度正常,噪声略增大,振动速度总量略增大,振动频谱变化不明显,但尖峰能量有大的增加,频谱也更加突出。这时的轴承故障频率出现在大约500hz-2khz范围。
第三阶段,温度略升高,可耳听到噪声,振动速度总量有大的增加,且振动速度频谱上清晰可见轴承故障频率及其谐波和边带,另振动速度频谱上噪声地平明显升高,尖峰能量总量相比第二阶段变得更大、频谱也更加突出。这时的轴承故障频率出现在大约0-1khz范围。建议于第三阶段后期予以更换轴承,那么此时应该已经出现肉眼可以看到的磨损等滚动轴承故障特征。
第四阶段,温度明显升高,噪声强度明显改变,振动速度总量和振动位移总量明显增大,振动速度频谱上轴承故障频率开始消失,被更大的随机的宽带高频噪声地平取代;尖峰能量总量迅速增大,并可能出现一些不稳定的变化。绝不能让轴承在故障发展的第四阶段中运转,否则将可能发生灾难性破坏。
根据研究结果,一般的,如果滚动轴承的整个使用寿命是那么从轴承安装投入使用时计起,在它的前>80%寿命时间段内,轴承是一切正常的。而接下来对应滚动轴承故障发展,其剩余寿命在第一阶段为10% ~>20%L10,第二阶段为5%-10%L10,第三阶段为1%~5%L10,第四阶段约为1h或者1%L10。
因此,在实际工作中面临轴承问题时,考虑到轴承故障发展的第四阶段具有不可预见的突发危害性,建议于第三阶段后期予以更换轴承,这样既可以避免故障的扩大和更严重事故的发生,又能尽量保证滚动轴承的使用寿命,并且根据此时轴承上也已经出现肉眼可以看到的磨损、零部件损坏等滚动轴承故障特征,比较有说服力。至于轴承故障发展的第三阶段后期的识别,则需要依据上述理论特征再结合实际的温度、噪声、速度谱、尖峰能量谱、速度和尖峰能量的总量趋势及实际经验予以综合考虑。