1. 圆锥滚子轴承的角度以及滚到的测量方法
圆柱滚子与滚道为线接触轴承。负荷能力大,主要承受径向负荷。滚动体与套圈挡边摩擦小,适于高速旋转。根据套圈有无挡边,可以分有NU、NJ、NUP、N、NF等单列轴承,及NNU、NN等双列轴承。该轴承是内圈、外圈可分离的结构。内圈或外圈无挡边的圆柱滚子轴承,其内圈和外圈可以向轴向作相对移动,所以可以作为自由端轴承使用。在内圈和外圈的某一侧有双挡边,另一侧的套圈有单个挡边的圆柱滚子轴承,可以承受一定程度的一个方向轴向负荷。一般使用钢板冲压保持架,或铜合金车制保持架。但也有一部分使用聚酰胺成形保持架。 圆柱滚子轴承的温度,一般有圆柱滚子轴承室外面的温度就可推测出来,如果利用油孔能直接测量圆柱滚子轴承外圈温度,则更位合适。通常,圆柱滚子轴承的温度随着圆柱滚子轴承运转开始慢慢上升,1-2小时后达到稳定状态。圆柱滚子轴承的正常温度因机器的热容量,散热量,转速及负载而不同。如果润滑、安装部合适,则圆柱滚子轴承温都会急骤上升,会出现异常高温,这时必须停止运转,采取必要的防范措施。使用热感器可以随时监测圆柱滚子轴承的工作温度,并实现温度超过规定值时自动报警或停止防止燃轴事故发生。用高温经常表示圆柱滚子轴承已处于异常情况。 高温也有害于圆柱滚子轴承的润滑剂。有时圆柱滚子轴承过热可归诸于圆柱滚子轴承的润滑剂。若圆柱滚子轴承在超过125℃的温度长期连转会降低圆柱滚子轴承寿命。引起高温圆柱滚子轴承的原因包括:润滑不足或过分润滑,润滑剂。内含有杂质,负载过大,圆柱滚子轴承损环,间隙不足,及油封产生的高磨擦等等。因此连续性的监测圆柱滚子轴承温度是有必要的,无论是量测圆柱滚子轴承本身或其它重要的零件。如果是在运转条件不变的情况下,任何的温度改变可表示已发生故障。 圆柱滚子轴承温度的定期量测可藉助于温度计,例如数字型温度计,可精确的测圆柱滚子轴承温度并依℃或华氏温度定单位显示。重要性的圆柱滚子轴承,意谓当其损坏时,会造成设备的停机,因此这类圆柱滚子轴承最好应加装温度探测器。正常情况下,圆柱滚子轴承在刚润滑或再润滑过后会有自然的温度上升并且持续一或二天。更详细的资料参考:www.tj-zrd.com
2. 滚动轴承内外圈和滚动体的振动信号如何测量
高速大数据量采集轴承振动信号,通过快速傅里叶变换(FFT),得到频谱。根据滚动轴承结构确定特征频率(内外圈、滚动体和保持架的通过频率),在频谱图上找到相应的振幅。
3. 怎么算滚动轴承的游隙
游隙=外圈滚道直径尺寸-内圈滚道直径尺寸-2滚动体直径尺寸
所谓滚动轴承的游隙,是将一个套圈固定,另一套圈沿径向或轴向的最
大活动量。沿径向的最大活动量叫径向游隙,沿轴向的最大活动量叫轴向游
隙。一般来说,径向游隙越大,轴向游隙也越大,反之亦然。按照轴承所处
的状态,游隙可分为下列三种:
原始游隙
:轴承安装前自由状态时的游隙。原始游隙是由制造厂加工、
装配所确定的。
安装游隙
:也叫配合游隙,是轴承与轴及轴承座安装完毕而尚未工作时
的游隙。由于过盈安装,或使内圈增大,或使外圈缩小,或二者兼而有之,
均使安装游隙比原始游隙小。
工作游隙
:轴承在工作状态时的游隙,工作时内圈温升最大,热膨胀最
大,使轴承游隙减小;同时,由于负荷的作用,滚动体与滚道接触处产生弹
性变形,使轴承游隙增大。轴承工作游隙比安装游隙大还是小,取决于这两
种因素的综合作用。
4. 滚动轴承 振动(速度)测量方法标准
轴承在旋转过程中,除轴承零件间的一些固有的、由功能所要求的运动以外的其他一切具有周期变化特性的运动均称为轴承振动。
本标准中所测量的轴承振动系指:轴承内圈端面紧靠心轴轴肩,并以某一恒定的转速旋转,外圈不转,承受一定的径向或轴向载荷时,其滚道中心的截面与外圈外圆柱面(最高点)相交处的轴承外圈的径向振动速度。
3.2轴承振动(速度)值
在一定转速和测试载荷下,选取轴承外圈外圆柱面圆周方向大致等距的三点进行测试,其低、中、高三个频带的振动速度的算术平均值即为该轴承在对应频带的振动(速度)值。如果轴承需要正反两面测试,则取各频带(三点平均值)较高值为轴承在该频带的振动(速度)值。
4 物理量和单位
被测轴承的振动物理量为轴承外圈的径向振动速度,单位为μm/s。
5 轴承振动(速度)的评价
5.1频率范围
在50~10000Hz频率范围内,轴承振动(速度)的三个测量频带按表l的规定。
5.2时间平均方法
每一测点振动速度信号的测量时间应不少于0.5s,待指针稳定后读数。如果信号有波动,则取波动范围的中间值。
6测试条件
6.1机械装置
6.1.1基础振动
启动驱动主轴(各频带量程开关置于最低档位),将传感器测头压下,使其处于与测试状态相同的条件下,此时各频带示值应符合表2的规定。
6.1.2转速
轴承在测试过程中,内圈的实际转速”应符合表3的规定。
6.1.3心轴
心轴与驱动主轴组合后,心轴与轴承内圈配合处的径向跳动不大于5μm,心轴轴肩端面圆跳动不大于10μm。
心轴硬度为61~64HRc。心轴与轴承内孔配合的公差应符合表4的规定。
6.1.4加载系统
对轴承外圈施加载荷的加载装置,除能传递恒定的载荷、限制外圈旋转和可能的弹性恢复力矩外,还作为轴承与机械装置之间的隔离系统,使轴承外圈基本处于自由振动状态。
6.1.4.1轴向加载
在测试过程中,深沟球轴承、角接触球轴承和圆锥滚子轴承应施加一定的合成轴向载荷,载荷的大小应符合表5的规定。
合成轴向载荷作用线与驱动主轴轴心线的同轴度不超过0.20mm,与驱动主轴轴心线的夹角不大于2°,如图1所示。
6.1.4.2径向加载
在测试过程中,圆柱滚子轴承外圈应施加一定的合成径向载荷。其大小应符合表5的规定。载荷垫与被测轴承外圈接触部位如图2所示
施加的合成径向载荷垂直向下,其作用线与驱动主轴中心的垂直线的夹角不大于2°,与驱动主轴中心线的距离应小于0.5mm。
6.1.5传感器座
传感器座能分别沿驱动主轴轴线方向和垂直方向移动,并保证传感器对被测轴承外圈接触载荷的作用线与驱动主轴轴心的垂直线间的夹角不大于2°,偏离轴心线的距离小于0.2mm。
6.2传感器
传感器所感应的是轴承外圈径向振动位移的变化率。
6.2.1 在50~10000Hz频率范围内,传感器与被测轴承外圈不应产生脱离现象,并保证传感器对被测
轴承外圈接触载荷小于0.7N。
6.2.2传感器系统的频率响应特性应在图3规定的极限范围内。
6.2.3在5~3000μm/s(r.m.s)范围内,传感器系统振幅的最大线性偏差应小于10%。
6.2.4传感器应定期检定,在检定周期内,传感器灵敏度的允许变化范围为±5%。
6.3电子测量装置
6.3.1电子测量装置应具有50~10000Hz的频率响应范围,并分成三个2.5倍频程滤波器,其滤波器
的带宽应符合表1的规定。
6.3.2电子测量装置的滤波特性应在图4规定的范围内,低于低截止频率(五)64%或高于高截止频
率(fH)160%的所有频率的衰减不小于40dB。
6.3.3电子测量装置应定期检定,在检定周期内校准值的允许变化范围为±4%。
6.4 测试环境
6.4.1 轴承振动测试在室温下进行,测试环境应清洁,不得有尘屑、杂质等进入被测轴承,以免影响其振动测值。
6.4.2测试场所不得有影响轴承振动测值的强振源。
6.4.3测试场所不得有影响传感器性能与轴承振动测值的强电磁场。
6.5 被测轴承的清洗与润滑
注脂轴承应在注脂状态下测试。
轴承必须清洗干净,待清洗剂完全蒸发干后,加入清洁的N15机械油【运动粘度(40℃时)为13.5~16.5mm2/s】,使轴承所有零件工作表面均充分润滑。当对测试结果有疑议时,应先用NY—120溶剂汽油或其他不会对轴承及其振动测试造成任何不利影响的溶剂进行清洗,除去轴承中的油污等一切杂质。
7 测试方法和程序
将被测轴承安装到心轴上,使其内圈端面紧靠轴肩,若是圆柱滚子轴承,则应使内、外圈的两端面保持在同一平面内。
对于深沟球轴承,应分别进行正反两面测试。
对于角接触球轴承和圆锥滚子轴承,按其承受轴向载荷的方向安装测试。
对于NJ型圆柱滚子轴承,将内圈挡边端面紧靠轴肩安装测试。
对于NF型圆柱滚子轴承,将外圈挡边端面朝外安装测试。
对于N型和Nu型圆柱滚子轴承,将基准面朝心轴轴肩方向安装测试,在测试过程中应保证套圈不产生轴向位移。
在轴承外圈上施加一定的轴向或径向载荷,其载荷大小按表5的规定。
启动主轴,按5-2要求读取稳态振动值。
5. 滚动轴承有哪些振动测量方法
滚动轴承振动噪声测量方法主要有两种:1、噪声测量和振动测量;2、从振动测量中鉴别轴承的噪声
翻滚轴承,噪声是指除了正常动静以外导致大家不舒服、发生烦躁感的动静,轴承在运转过程中,因为滚道和翻滚体之间彼此触摸、磕碰而发生振荡,当翻滚轴承的振荡传达到辐射外表,振荡能量转换成压力波,即为翻滚轴承噪声,由振荡发生。樽祥
动静是指弹性物质中传达的压力、引力、质点位移及速度等的改变所导致的物理扰动,即动静可以界说为在空气、水和别的媒质中人耳所能听到的任何压力的改变。噪声是指除了正常动静以外导致大家不舒服、发生烦躁感的动静,它是为大家所不希望、不喜欢,但常常又难以避免的一种动静。
轴承在运转过程中,因为滚道和翻滚体之间彼此触摸、磕碰而发生振荡,当翻滚轴承的振荡传达到辐射外表,振荡能量转换成压力波,经空气介质再传达出去即为声辐射。其中20—20kHz有些为人耳可接收到的声辐射,即为翻滚轴承噪声。
由振荡发生的机械波向空间辐射,导致空气的振荡,然后发生动静,这种动静习惯上就被称为轴承的噪声或噪音。
所以轴承振荡是发生噪音的本源。即便轴承零部件翻滚外表加工十分抱负,清洁度和润滑油或油脂也无可挑剔,但轴承在运转时,因为滚道和翻滚体间弹性触摸构成的振荡,仍会发生一种接连轻柔的动静,这种动静就称为轴承的根底噪声。根底噪声是轴承固有的,不能消除。叠加在根底噪声内的别的噪音就称为异音或反常声。
1噪声测量和振动测量-樽祥
2从振动测量中鉴别轴承的噪声-樽祥
2.1异常声形成原因及目前主要鉴别方法
滚动轴承运转过程中出现的异常声,种类繁多,形成机理比较复杂,产生的因素是多方面的,而且各种异常声常常叠加在一起,难于分辨,其主要原因有如下几种:
(1)轴承内、外滚道存在磕碰伤,划伤或严重缺陷引起的周期性振动脉冲。
(2)滚动体表面磕碰伤,划伤等缺陷引起的非周期性振动脉冲。
(3)由于剩磁吸附铁粉末存在于滚道或滚动体上而引起的周期性或非周期性的振动脉冲。
(4)杂质或尘埃进入轴承滚道运行区域引起的非周期性振动的脉冲。
(5)滚动体与保持架兜孔之间的剧烈碰撞引起的非周期性振动脉冲。
(6)润滑剂性能不良,滚动体与保持架兜孔之间的滑动摩擦以及滚动体运转时碾压润滑剂产生的振动脉冲。
6. 轴承游隙怎样测量
径向游隙的检查方法如下:
感觉法
1、有手转动轴承,轴承应平稳灵活无卡涩现象。
2、用手晃动轴承外圈,即使径向游隙只有0.01mm,轴承最上面一点的轴向移动量,也有0.10~0.15 mm。这种方法专用于单列向心球轴承。
测量法
1、用塞尺检查,确认滚动轴承最大负荷部位,在与其成180°的滚动体与外(内)圈之间塞入塞尺,松紧相宜的塞尺厚度即为轴承径向游隙。这种方法广泛应用于调心轴承和圆柱滚子轴承。
2、用千分表检查,先把千分表调零,然后顶起滚动轴承外圈,千分表的读数就是轴承的径向游隙。
轴向游隙的检查方法如下:
1、感觉法
用手指检查滚动轴承的轴向游隙,这种方法应用于轴端外露的场合。当轴端封闭或因其他原因而不能用手指检查时,可检查轴是否转动灵活。
2、测量法
(1)用塞尺检查,操作方法与用塞检查径向游隙的方法相同,但轴向游隙应为
c=λ/(2sinβ)
式中c——轴向游隙,mm;
λ——塞尺厚度,mm;
β——轴承锥角,(°)。
(2)用千分表检查,用撬杠窜动轴使轴在两个极端位置时,千分表读数的差值即为轴承的轴向游隙。但加于撬杠的力不能过大,否则壳体发生弹性变形,即使变形很小,也影响所测轴向游隙的准确性。
7. 轴承的游隙值怎么测量
径向游隙的检查方法如下:
感觉法
1、用手转动轴承,轴承应平稳灵活无卡涩现象。
2、用手晃动轴承外圈,即使径向游隙只有0.01mm,轴承最上面一点的轴向移动量,也有0.10~0.15 mm。这种方法专用于单列向心球轴承。
测量法
1、用塞尺检查,确认滚动轴承最大负荷部位,在与其成180°的滚动体与外(内)圈之间塞入塞尺,松紧相宜的塞尺厚度即为轴承径向游隙。这种方法广泛应用于调心轴承和圆柱滚子轴承。
2、用千分表检查,先把千分表调零,然后顶起滚动轴承外圈,千分表的读数就是轴承的径向游隙。
轴向游隙的检查方法如下:
1、感觉法
用手指检查滚动轴承的轴向游隙,这种方法应用于轴端外露的场合。当轴端封闭或因其他原因而不能用手指检查时,可检查轴是否转动灵活。
2、测量法
(1)用塞尺检查,操作方法与用塞检查径向游隙的方法相同,但轴向游隙应为
c=λ/(2sinβ)
式中c——轴向游隙,mm;
λ——塞尺厚度,mm;
β——轴承锥角,(°)。
(2)用千分表检查,用撬杠窜动轴使轴在两个极端位置时,千分表读数的差值即为轴承的轴向游隙。但加于撬杠的力不能过大,否则壳体发生弹性变形,即使变形很小,也影响所测轴向游隙的准确性。
8. 轴承怎样量才知道型号
知道轴承尺寸(内径、外径、高度),可以直接出来轴承型号的。
只知道内径是算不出来型号的。
只能算出轴承的内径,一般为最后的2位数值乘以5,如:209的内径为φ45,306的内径为φ30,6319的内径为φ135.前面的2,3或者63为轴承的宽/窄系列号.不能直接算出该尺寸的,只能查表。
轴承:轴承bearing,用于确定旋转轴与其他零件相对运动位置,起支承或导向作用的零部件。它的主要功能是支撑机械旋转体,用以降低设备在传动过程中的机械载荷摩擦系数。按运动元件摩擦性质的不同,轴承可分为滚动轴承和滑动轴承两类。