❶ 汽轮机油箱油温不高过多少度
一般是汽轮机轴承回油温度要求是65度报警,75度停机的。油箱油温肯定要低于这个数吧。
❷ 请教三道有关汽轮机运行的问题~急!
大学生,很好!希望我的回答对你的学习有所帮助!
一.汽轮机低真空运行需要注意那些问题。
1.发现真空下降,应对照排汽温度,确认真空下降,应迅速查明原因,立即采取相应的对策进行处理。
2.真空下降应启动备用真空泵,如真空跌至减负荷值仍继续下降,则应按真空下降幅度减负荷直至减负荷到零。
3.经处理无效,机组负荷虽减到零真空仍无法恢复,应打闸停机。
4.真空下降时,应注意汽泵的运行情况,必要时切至电泵运行。
5.真空下降,应注意排汽温度的变化。
6.如真空下降较快,在处理过程中已降至停机值,保护动作机组跳闸,否则应手动打闸停机。
7.因真空低停机时,应及时切除并关闭高、低压旁路,关闭主、再热蒸汽管道至凝汽器疏水,禁止开启锅炉至凝汽器的二级旁路。
8.加强对机组各轴承温度和振动情况的监视。
二.滑压运行的特点和分类.
汽轮机的变压运行有以下几种方式:
(1) 纯变压运行。即在在整个负荷变化的范围内,调速汽门全开,负荷变化全由锅炉压力来控制的运行方式。
(2) 节流变压运行。为了弥补完全变压运行时负荷调整速度缓慢的缺点,在正常情况下调速汽门不全开,对主蒸汽压力保持一定的节流。当负荷突然增加时,原未开大的调速汽门迅速全开,以满足突然增加负荷的需要。此后,随锅炉蒸汽压力的升高,调门又重新关小,直到原滑压运行的调门开度。
(3) 复合变压运行。这是一种变压运行和定压运行相结合的运行方式,具体有以下三种方式。
1. 低负荷时变压运行,高负荷时定压运行。在低负荷时,最后一个或两个调门关闭,而其它调门全开,随着负荷逐渐增大,汽压到额定压力后,维持主汽压力不变,改用开大最后一个或两个调门,继续增加负荷。这种方式在低负荷时,机组显示出变压运行的特性,而在高负荷时,机组又有一定的容量参于调频,这是一种比较理想的运行方式。
2. 高负荷时变压运行,低负荷时定压运行。大容量机组采用变速给水泵,尽管其转速变化范围很宽,但也有最低转速的限制,另外,锅炉在低压力高温度时,吸热比例发生较大的变化,给维持主汽温度带来一定的困难,因而锅炉最低运行压力受到限制。这种方式满足了以上要求,并且在高负荷下具有变压运行的特性。
3. 高负荷和低负荷时定压运行,中间负荷区变压运行:在高负荷区用调门调节负荷,保持定压运行;在中间负荷区时,一个或两个调门关闭,处于滑压运行状态;在低负荷区时,又维持一个较低压力水平的定压运行。这筇中运行方式也称为定—滑—定运行方式,它综合了以上两种方式的优点。
三.汽轮发电机组振动的主要原因?如何消除?
(一)汽轮发电机组产生振动的主要原因。
汽轮机在运行中,机组振动的原因是复杂的,是多方面的,一般有如下8各方面。
1.启动时转子的弯曲值较大。
2.热态启动时,气缸变形或叶轮、隔板变形。
3.高、中压汽封动静摩擦。
4.机组中心不正。
5.运行中,叶片损坏或者断落。
6.润滑油含有杂质、油质乳化、油压下降、油温过高或过低。
7.气流激振。
8.励磁机工作失常。
(二)运行中汽轮机振动会造成什么危害?
运行中汽轮机振动会造成下列危害:
1.低压端部分轴封磨损,密封作用破坏,空气漏入低压缸内,影响真空;高压端部分轴封磨损,从高压缸向外漏汽量增大,使转子局部受热而发生弯曲,蒸汽进入轴承油中使油质乳化。
2.隔板汽封磨损严重,将使级间漏汽量增大,除影响经济性外,还会使轴向推力增大,致使推力瓦钨金熔化。
3.滑销磨损严重时,影响机组的正常热膨胀,从而引起其它事故。
4.轴瓦钨金破裂,坚固螺钉松脱、断裂。
5.转动部分的耐疲劳强度降低,将引起叶片、轮盘等损坏。
6.发电机、励磁机部件松动、损坏。
7.调速系统不稳定。
(三)机组振动大的处理。
1.机组异常振动时,应检查下列各项:
(1).蒸汽参数、真空、胀差、轴向位移、气缸金属温度是否变化。
(2).润滑油压、油温、轴承温度是否正常。
2.汽轮机轴承振动超过正常0.03mm以上,应设法消除;当发现汽轮机内部故障象征或振动突然增加0.05mm,或缓慢增加至0.1mm时,应立即打闸停机。
3.汽轮机突然发生强烈振动或清楚听出机内有金属摩擦声时,应立即打闸停机。
❸ 汽轮机轴振标准
汽轮机轴振标准:
对于刚性转子,通常要求其一阶临界转速nc1比工作转速n0高20%~25%,即nc1>(1.2~1.25)n0,但不允许在2n0附近。
对于挠性转子,其工作转速在临界转速ncn、nc(n+1)之间,要求1.4ncn<n0<0.7nc(n+1)。
当叶片受到一周期性外力(称为激振力)作用时,它会按外力的频率振动,而与叶片的自振频率无关,即为强迫振动。在强迫振动时,若叶片的自振频率与激振力频率相等或成整数倍,叶片将发生共振,振幅和振动应力急剧增加,可能引起叶片的疲劳损坏。
若叶片断裂,其碎片可能将相邻叶片及后边级的叶片打坏,还会使转子失去平衡,引起机组强烈振动,造成严重后果。由此可知,叶片振动性能的好坏对汽轮机安全运行影响很大,因此必须对叶片振动问题进行研究。

叶片的振动有弯曲振动和扭转振动两种基本形式,
弯曲振动又分为切向振动和轴向振动。绕截面最小主惯性轴Ⅰ—Ⅰ的振动,振动方向接近叶轮圆周的切线方向,称为切向振动;绕截面最大主惯性轴的振动,方向接近于汽轮机的轴向,称为轴向振动;
沿叶高方向绕通过各截面形心连线的往复扭转,称为扭转振动。任何一种复杂的振型都可以看作是弯曲振动和扭转振动的组合。
叶片的扭转振动和轴向振动发生在汽流作用力较小而叶片刚度较大的方向,振动应力较小,所以不是主要问题。切向振动发生在叶片刚度最小的方向,且与汽流主要作用力方向一致,因此切向振动是最容易发生又最危险的振动。以下只讨论叶片的切向振动问题。
汽轮发电机组在运行中振动的大小,是机组安全和经济运行的重要指标,也是判断机组检修质量的重要指标。若振动过大,可能造成严重危害和后果,主要有以下几个方面:
1、使转动部件损坏。机组振动过大时,叶片、叶轮等转动部件上会产生很大的应力,导致疲劳损坏。
2、使连接部件松动。机组发生过大振动,将使与其相连的轴承座、主油泵、凝汽器等发生强烈振动,引起螺栓松动甚至断裂,从而造成重大事故。
3、使机组动、静部分摩擦。如轴端汽封及隔板汽封与轴的摩擦,轻则使汽封磨损,间隙增大,漏汽损失增加,汽轮机相对内效率降低,严重时会造成主轴弯曲。
❹ 汽轮机的开机步骤急用。谢谢!
1.5 冷态滑参数启机
1.5.1 循环水系统启动
1.5.1.1 检查循泵入口水位不低于4.00米,滤网前后水位差小于0.2米,泵及电动门已送电,信号试验正常,经向值长汇报后,断开联锁开关,合上循泵顺序启动开关,检查泵电机电流、出口压力、盘根泄漏、轴承振动、轴承温度等项目应正常,冷却塔下水均匀。
1.5.2 检查工业水压力在0.35-0.40 Mpa之间。
1.5.3 向凝汽器补水到水位计的800-1000mm处,启动一台凝结水泵,开启其凝结水再循环门,备用凝泵投联锁。投后缸喷水。
1.5.4 检查主油箱油位正常后,启动交流润滑油泵,正常后投直流润滑油泵联锁。润滑油压在0.10-0.14 MPa,润滑油温>350C,检查润滑油系统各部位无泄漏,记录主油箱油位。
1.5.5 启动排烟风机,运行风机联锁置“自动”位,备用风机联锁置“联锁”位。
1.5.6 投入盘车装置
1.5.6.1 开启盘车油门,检查顶轴油泵进、出口门在开启状态,启动一台顶轴油泵,记录大轴顶起高度及顶轴油压,备用顶轴油泵投联锁位置。
1.5.6.2 就地启动盘车装置运行,记录盘车电机电流,检查机组内部有无摩擦声,转子挠度<0.05mm,润滑油低油压试验良好;投入润滑油压力低保护。
1.5.7 自动主汽门、调节汽门、抽汽逆止门、高排逆止门、旁路试验正常。
1.5.8 调节保安系统试验正常。
1.5.9 投入厂用辅汽系统并进行疏水。
1.5.10 启动凝结水泵向除氧器补水至1000 mm,冲洗合格后,关闭放水门和化学补水门,开启凝结水上水门,维持除氧器水位在2000-2200 mm。
1.5.11 除氧器补水到1600mm 时,稍开再沸腾门,给水加热至锅炉所需温度后,开启加热进汽门(辅助蒸汽至除氧器进汽),关闭再沸腾门,开启除氧器加热进汽门进行加热。
1.5.12 开启除氧器下水门,给前置泵和给水泵充水赶空气,赶完空气后关闭放空气门,调整给水泵和前置泵密封水压,密封水压差约为0.045-0.060 Mpa左右。
1.5.13 启动给泵电动辅助油泵运行,润滑油压在0.20-0.30MPa正常后投联锁开关。
1.5.14 联系电气向给水泵送操作电源和动力电源,根据锅炉要求,顺启给水泵向锅炉上水,给水走高加(也可用除氧器静压法向锅炉供水)。
1.5.15 锅炉点火前的准备工作
1.5.15.1 凝汽器已通循环水,且循环水系统运行正常。
1.5.15.2 关闭真空破坏门和再热器放空气门以及锅炉侧再热蒸汽管道疏水门,启动一台真空泵,开启其抽空气门抽真空。
1.5.15.3 开启辅助蒸汽向轴封调整门管路充汽并开启相应轴封管道疏水,注意汽缸前、后汽封不应向外大量冒汽。
1.6 锅炉点火后的工作
1.6.1 锅炉点火正常,主蒸汽压力微正压后,汽机抽真空到-60Kpa投入旁路系统。盘上手动将三级减温水及进汽调整门调整门全开,开启低旁减温水调整门及来汽调整门,其开度比高压旁路门相应大20%,开启高压旁路来汽电动门和调整门,减温水暂且不投,以满足再热器要求来调整高旁来汽门开度及减温水调整门开度(上限设计在30%N0,下限设计在0%N0)。通常应将高旁出口蒸汽温度控制在3500C以下,低旁出口蒸汽温度控制在1300C以下。
1.6.2 投旁路注意事项:必须保证遵循先投三级,再投低旁,最后投高压旁路的原则,减温水调整门开度要与减压门开度、旁路出口温度相匹配。关闭旁路时,顺序与投入相反。旁路系统如处于备用状态,其疏水门应适当开启。
1.6.3 当主汽压达到0.08 MPa,主汽温达到1000C时,凝汽器真空抽至-36Kpa时,启动一台轴加风机运行,另一台轴加风机投联锁备用。向前后汽封供汽(供汽前应对前后轴封供汽管路进行充分疏水),调整轴封压力在0.05-0.10MPa左右,后轴封供汽温度维持在120-1600C。
1.6.4 启动高压辅助油泵运行并投入其联锁开关。
1.6.5 检查汽机本体疏水门应在开启位置。
1.6.6 检查主汽门、调节汽门、高压排汽逆止门的严密情况,保证无蒸汽漏入汽缸。
1.6.7 联系热工,投入除低真空、机电炉大连锁、主汽门关闭停机以外的主保护
1.7 低真空保护待机组定速并网后真空大于-0.085MPa再投入。
1.8 冷态启动应具备的条件(当高压内缸上壁温度低于150°C时,按冷态启机):
1.8.1 主汽压力:0.98-1.2 MPa,主汽温度:230-2600C,主汽具有50-800C的过热度,且比高压内缸上壁温度高500C以上。再热汽温比中压内缸上壁温度高500C以上。主蒸汽与再热蒸汽温差<500C。
1.8.2 润滑油温:35-400C,
润滑油压:0.1-0.14 MPa,
高压辅助油泵出口油压:1.96±0.1 MPa。
1.8.3 凝汽器真空:-60— -66Kpa。
1.8.4 盘车运行正常,连续盘车时间不少于2小时。
1.8.5 大轴晃动度与原始值相比:不超过0.02mm。
1.8.6 主油箱油位正常。
1.8.7 汽缸夹层加热联箱处于热备用状态(禁止在转子静止或盘车的情况下投入夹层加热)。
1.8.8 具备其他启动条件。
1.9 冲转、升速
1.9.1 汇报值长,已具备启动条件,得到冲转命令后准备冲转。
1.9.2 打开四至六抽电动门(三抽除外),低加随机启动,高加在带一定负荷时再投(也可以随机启动,但要保证疏水畅通)。全开自动主汽门,用高压调节汽门冲转,操作事项如下:
1.9.2.1 检查OPC开关置“OPC正常”位置。
1.9.2.2全开自动主汽门,“脱扣”灯灭,“挂闸”按钮灯亮,复归抽汽和高排逆止阀控制水电磁阀,打开高排逆止门和各抽汽逆止门。DEH上选择“操作员自动”方式,选择“调节汽门”冲转。
1.9.2.3 选择“目标转速”,输入“500”,敲回车键确认。
1.9.2.4 选择“升速率”,输入“100”,敲回车键确认。
1.9.2.5 点击“进行”按钮,注意机组转速上升后盘车应自动脱开,否则立即停机。当机组转速升至800 r/min时,停止顶轴油泵运行。
1.9.2.6 按上述方法冲转,将机组转速升到800及3000 r/min。
1.9.2.7 冲转过程中,视胀差情况(或者在500 r/min)投入汽缸夹层加热系统,控制机组高压缸正差胀小于3.5mm,夹层加热联箱压力不大于4.0Mpa,当机组带负荷后若高压缸胀差趋于稳定, 高压缸正差胀小于1.5mm可及时停止夹层加热系统。
1.9.3 具体升速暖机时间规定如下:
序号 名称 转速(r/min) 时间(min) 升速率
1 升速 0-500 5 100
2 暖机 500 5
3 升速 500-800 3 100
4 暖机 800 20
5 升速 800-3000 22 100
6 检查 3000 5
注意事项 过临界时,DEH自动将升速率修改为300-400 r/min,轴承过临界时振动小于0.15mm,否则应打闸停机,高、中压转子临界转速为1669 r/min,低压转子临界转速为1836 r/min,发电机转子临界转速为1381 r/min。
1.9.4 机组冲转过程中振动规定:
1.9.4.1转速在1500 r/min以下,各轴承振动小于0.03 mm。
1.9.4.2转速在1500-3000 r/min之间,各轴承振动小于0.04 mm。
1.9.4.3过临界时,轴承振动小于0.15mm。
1.9.4.4正常带负荷时,轴承振动小于0.03 mm。
1.9.4.5启动及运行过程中,转子振幅大于120µm时报警,大于250µm时停机。
1.9.5 机组冲转过程中,应做到:
(1)倾听机组内部声音,应无异音。
(2)检查机组各轴承温度、回油温度应在控制范围内。
1.9.6 发电机进风温达到300C,投入空冷器。
1.9.7 检查机组汽缸膨胀及胀差应正常,否则应进行相应调整。
1.9.8 定速3000r/min时,投入高压辅助油泵联锁停止其运行,注意主油泵出口油压应稳定。
1.9.9 定速3000r/min时,真空应不得低于-85 Kpa。全面检查正常后,按规定做有关试验。
1.10 并网带负荷
1.10.1 全面检查正常,按规定做有关试验后,根据电气运行人员要求投入“自动准同期”。机组具备并网条件,报告值长。
1.10.2 电气人员并网成功后,发来“已并列”信号。机组自动带上5%的初始负荷(6-7MW),在此负荷下暖机30min。在缸温允许的情况下,尽量把负荷带得高些。负荷在20MW以下时,鉴于“功率回路”无法投入,必须将负荷的目标值设置大于给定值。
1.10.3锅炉滑参数启动曲线升温升压,汽机侧加负荷过程如下:
序 号 项 目 安 排 时 间
1 0-10MW 加负荷 20 min
2 10 MW 暖机 40 min
3 10-40 MW 加负荷 80min
4 40 MW 暖机 60min
5 40 -135 MW 加负荷 130min
6 合计 330 min
1.10.4 汽机加负荷操作方法如下:
1.10.4.1 打开DEH操作面板,选择“目标负荷”,输入相应的负荷值,敲回车键确认。
1.10.4.2 选择“加负荷率”,输入1 MW/ min的速率,敲回车键确认。
1.10.4.3 点击“进行”按钮,注意机组负荷应上升。
1.10.5 机组升速、加负荷过程中控制的指标:
(1) 主汽温升率:2.50C/ min。
(2) 再热汽温升率:3.50C/ min。
(3) 主汽、再热汽管道温升率:70C/ min。
(4) 汽缸、法兰温升率:2.50C/ min。
(5) 内缸外壁与外缸内壁温差:<400C
(6) 主汽门、调节汽门阀体温升率:50C/ min。
(7) 高压缸内壁上、下温差:<300C。
(8) 法兰左、右温差:<150C。
(9) 法兰上、下温差:<200C。
(10) 汽缸及法兰内外壁温差:<800C。
(11) 汽缸与法兰温差:<800C。
(12) 外缸法兰中壁与螺栓温差:<500C。
(13) 高压缸相对膨胀:+4.0— -2.0mm。
(14) 低压缸相对膨胀:+4.5— -2.5mm。
1.10.6 初始负荷期间的操作:
1.10.6.1 低加随机启动时,低加疏水逐级串联至#2低加,启动一台低加疏水泵运行,保证低压加热器水位正常。
1.10.6.2 检查所有辅机运行正常,负荷带至10%额定负荷时,主汽管道、高压各疏水阀门应自动关闭。
1.10.6.3 带15%以上负荷时,手动关闭后缸喷水旁路门。 带20%以上负荷时,投入“转速控制回路”、“功率控制回路”。根据需要,可选择投入“TPC”保护或“负荷高低限制”。再热蒸汽管道、中压管道疏水门应自动关闭。根据差胀情况决定是否停止夹层加热系统。
1.10.6.4 负荷达30%以上时,三抽压力达到0.25MPa以上,打开本机三抽至除氧器电动门,关闭辅助蒸汽去除氧器门(或三抽母管至除氧器门)。除氧器开始滑压运行。
1.10.6.5 将轴封供汽切换为除氧器供应,关闭辅助蒸汽到除氧器的阀门。切换轴封汽源时注意疏水。高加疏水切换至除氧器,关闭其去#4低加门,开启高加空气去除氧器门。
1.10.6.6 检查机组振动、差胀、缸温、轴向位移、各轴承温度、回油温度、润滑油压、油温等参数在合格范围内。
1.10.6.7 负荷达30%以上时,根据#1高加抽汽压力和除氧器压力差决定是否大于0.3MPa来决定投高加。
1.10.6.8 注意机组真空、排汽温度应正常。
❺ 关于汽轮机轴振大问题
我国现行的汽轮机振动标准是如何规定,
1)汽轮机转速在1500r/min时,振动双振幅50um以下为良好,70um以下为合格;汽轮机转速在3000r/min时,振动双振幅25um以下为良好,50um以下为合格。
2)标准还规定新装机组的轴承振动不宜大于30um。
3)标准规定的数值,适用于额定转速和任何负荷稳定工况。
4)标准对轴承的垂直、水平、轴向三个方向的振动测量进行了规定。在进行振动测量时,每次测量的位置都应保持一致,否则将会带来很大的测量误差。
5)在三个方向的任何一个方向的振动幅值超过了规定的数值,则认为该机组的振动状况是不合格的,应当采取措施来消除振动。
6)紧停措施还规定汽轮机运行中振动突然增加50um应立即打闸停机。同时还规定临界转速的振动最大不超过100um。
❻ 电厂为什么规定当主汽温度10分钟内下降50度汽轮机要打闸~~~
因为汽轮机存在过热度要求,一般蒸汽要求达到50度。
10分钟内下降50度后,一种是蒸汽可能不饱和带水,另外当蒸汽下降后,气缸会被蒸汽冷却下降速度过快,也会造成汽轮机热形变不均。
还有以10分钟内下降50度的下降速率看,基本可以判断为主蒸汽必然带水引起,会造成汽轮机水冲击。
主汽压力和再热压力的限制,如果再热力压已经不太高了,这个时候把再热温度做的很高,有可能排汽焓也比较高,能量利用不充分,浪费。

(6)汽轮机轴承多少度应打闸扩展阅读
主蒸汽温度的控制多年来一直是电厂过程控制中的一个难点,主要是因为以下几点原因:
1、主蒸汽温度是一个迟延现象比较严重的对象,机组容量越大,迟延现象就越严重。当有些机组的主蒸汽温度的迟延太大时,反馈控制根本来不及控制。而PID控制就是属于反馈控制。
2、主蒸汽温度容易受到多种因素的影响,如烟气温度和压力的波动、负荷的变化、主蒸汽压力的变化、燃料量的变化、给水温度和流量的波动及减温水流量的抖动、吹灰器投入、磨煤机的切换等都会引起主蒸汽温度的变化。
3、主蒸汽温度被控对象工艺流程复杂,不同的机组主蒸汽温度特性完全不同,很难得到对象与干扰之间准确的数学模型。即使通过现场试验的办法得到当时对象的数学模型,但随着时间的推移和机组工况的变化,对象的模型会发生变化。
❼ 为什么汽轮机低压缸轴封温度规定在121-177度之间,而排汽温度超过121度要打闸停机,两者有必然联系吗
这二者不存在必然的联系,低压轴封的温度之所以规定在121-177度之间,主要是防止温度过高造成临近的轴承温度过高,因为低压轴封的附近肯定有轴承,轴封温度过高,势必将热量传递至轴承,造成轴承温度上升,破坏轴承油膜和损坏轴承的合金。
低压缸排汽温度之所以限制在121度以下,主要是防止低压缸高温膨胀,汽缸向上膨胀,带动转子中心上移,会诱发机组轴系振动。同时由于低压缸温度过高,还会造成凝汽器铜管的胀口和循环水温差过大,胀口处产生泄漏,使得循环水进入凝汽器中,破坏凝结水质。
和金属脆性转变温度无关,因为机组正常运行时,低压缸排汽口的那部分转子的温度肯定是低于80度以下的。
❽ 1.汽轮机启动过程中,振动增大有哪些规定 2.汽轮机在启、停过程中,通过临界转速有哪些要求
各轴承振动在1500r/min前不超过0.03mm,过临界转速时各瓦振动不超过0.07mm,瓦盖振动不超过0.05mm,3000r/min时各瓦振动不超过0.03mm,瓦盖振动不超过0.03mm。 机组启动过程中严密监视汽轮机组各轴承振动及金属温度的变化,如超标应立即打闸停机。严禁采用降速暖机和硬闯临界转速等方法来消除振动。
一般应快速平稳的越过临界转速,但亦不能采取飞速冲过临界转速的做法,以防止造成不良后果。现规定过临界转速时的生速率为600r/min左右。 在过临界转速过程中,应注意对照振动与转速情况,确定振动类型,防止误判断。振动声音应无异常,如振动超限或有碰击摩擦异音等,应立即打闸停机,查明原因并确证无异常后方可重新启动。 过临界转速后应控制转速上升速度。