导航:首页 > 轴承铸造 > 压力铸造为什么要预热

压力铸造为什么要预热

发布时间:2022-07-08 04:12:36

『壹』 压力铸造 详细介绍,谢谢

压装机液压轴同步控制
液压压装机是检修或装配工作中的重要设备。多个液压缸之间的同步控制是该设备的一个主要环节。同步性能不好会导致实际下压曲线和设定下压曲线不一致,并因此产生设备使用过程中的安全隐患。
在压装机设计中,为保证油缸同步将部件压装到位,控制器选用了美国DELTA计算机公司生产的 DELTAMOTION RMC75S 运动控制器。DELTAMOTION用于液压轴的位置控制,可以实现位置同步、电子速比、多轴协调控制。还有位置控制和压力控制之间任意切换。DELTAMOTION控制器控制比例伺服阀,接受来自编码器或者磁致伸缩位移传感器的信号及压力传感器的信号,形成位置和压力闭环控制。
该装置使用后效果明显,运行速度快,定位准确,同步效果好。
凡是液压或气动压装机都可使用该控制器,从单轴控制到8轴,均可以实现位置和同步控制,多轴联动。

淄博智丰机电有限公司

『贰』 模具锻造之前为什么要先预热

因为模具凉的话跟高温的钢材相接触表面会发生尺寸膨胀,而心部温度低不膨胀,结果表面会被拉开,形成龟裂;另外,对所锻造的钢材也不好,因为跟凉模具相接触温度会迅速下降,导致钢材内外温度不均,变形不均以及锻造时间短。

锻造模具的主要技术发展方向是提高模具设计水平,采用新型模具材料,使用高效高精度加工手段,以期在模具高寿命的状态下实现锻件高精度。

随着我国制造业整体水平的提高,我国锻造模具技术将达到国际先进水平,部分有创新性与独特性的技术将达到国际领先水平。

(2)压力铸造为什么要预热扩展阅读:

在锻造模具设计中通常应考虑:

①锻件的批量。小批量生产的锻件,尽量采用简单结构的模具,模具寿命也可以设计的低一些;中大批量生产的锻件,模具结构应采用具有制坯、预锻和终锻等多工步模具,模具材料要合理配合,以保证整套模具具有高的寿命。

②锻件的材质。根据材料的变形能力确定成形工步和变形率,确保终锻后的锻件质量。

③锻件的形状。形状复杂的锻件必须采用多模膛分散变形的方法,以减少模具载荷、降低压力机吨位、避免锻造缺陷产生。

④锻造设备。主要考虑是锻锤,还有各种压力机,模具的结构及模具材料均须有所差别。

『叁』 压力铸造的工艺流程

在压铸生产中,压铸机、压铸合金和压铸型是三大要素。压铸工艺则是将三大要素作有权的组合并加以运用的过程。使各种工艺参数满足压铸生产的需要。压射比压的选择,应根据不同合金和铸件结构特性确定。对充填速度的选择,一般对于厚壁或内部质量要求较高的铸件,应选择较低的充填速度和高的增压压力;对于薄壁或表面质量要求高的铸件以及复杂的铸件,应选择较高的比历和高的充填速度。
浇注温度
浇注温度是指从压定进入型腔时液态金属的平均温度,由于对压室内的液态金属温度测量不方便,一般用保温炉内的温度表示。
浇注温度过高,收缩大,使铸件容易产生裂纹、晶粒粒大、还能造成粘型;浇注温度过低,易产生冷隔、表面花纹和浇不足等缺陷。因此浇注温度应与压力、压铸型温度及充填速度同时考虑。
压铸型的温度
铸压型在使用前要预热到一定温度,一般多用煤气、喷灯、电器或感应加热。
在连续生产中,压铸型温度往往升高,尤其是压铸高熔点合金,升高很快。温度过高除使液态金属产生粘型外,铸件冷却缓慢,使晶粒粗大。因此在压铸型温度过高时,应采用冷却措施。通常用压缩空气、水或化学介质进行冷却。
充填持压
充填、持压和开型时间
1)充填时间
自液态金属开始进入型腔起到充满型腔止,所需的时间称为充填时间。充填时间长短取决于铸件的体积的大小和复杂程度。对大而简单的铸件,充填时间要相对长 些,对复杂和薄壁铸件充填时间要短些。充填时间与内浇口的截面积大小或内浇口的宽度和厚度有密切关系,必须正确确定。
2)持压和开型时间
从液态金属充填型腔到内浇口完全凝固时,继续在压射冲头作用下的持续时间,称为持压时间。持压时间的长短取决于铸件的材质和壁厚。
持压后应开型取出铸件。从压射终了到压铸打开的时间,称为开型时间,开型时间应控制准确。开型时间过短,由于合金强度尚低,可能在铸件顶出和自压铸型落下 时引起变形;但开型时间太长,则铸件温度过低,收缩大,对抽芯和顶出铸件的阻力亦大。一般开型时间按铸件壁厚1毫米需3秒钟计算,然后经试任调整。
压铸涂料
压铸过程中,为了避免铸件与压铸型焊合,减少铸件顶出的摩擦阻力和避免压铸型过分受热而采用涂料。对涂料的要求:
1) 在高温时,具有良好的润滑性;
2) 挥发点低,在100~150℃时,稀释剂能很快挥发;
3) 对压铸型及压铸件没有腐蚀作用;
4) 性能稳定在空气中稀释剂不应挥发过度而变稠;
5) 在高温时不会析出有害气体;
6) 不会在压铸型腔表面产生积垢。
铸件清理
铸件的清理是很繁重的工作,其工作量往往是压铸工作量的10~15倍。因此随压铸机生产率的提高,产量的增加,铸件清理工作实现机械化和自动化是非常重要的。
1)切除浇口及飞边
切除浇口和飞边所用的设备主要是冲床,液压机和摩擦压力机,在大量生产件下,可根据铸件结构和形状设计专用模具,在冲床上一次完成清理任务。
2)表面清理及抛光
表面清理多采用普通多角滚筒和震动埋入式清理装置。对批量不大的简单小件,可用多角清理滚筒,对表面要求高的装饰品,可用布制或皮革的抛光轮抛光。对大量生产的铸件可采用螺壳式震动清理机。
清理后的铸件按照使用要求,还可进行表面处理和浸渍,以增加光泽,防止腐蚀,提高气密性。

『肆』 压力铸造的工艺参数有哪些

压铸工艺参数

1、压力参数:①压射力 用压射压力和压射比压来表示,是获得组织致密、轮廓清晰的压 铸件的主要因素,在压铸机上其大小可以调节。 ②压射压力 压射时压射油缸内的油压,可以从压力表上直接读出,是一个 变量,当压铸机进入压射动作时产生压射压力,按照压射动作分段对应的 称为一级压射压力(慢压射压力) 、二级压射压力(快压射压力)等;增压 阶段后转变为增压压力,此时的压射压力达到极大值。 ③压射比压 压射时压室内金属液在单位面积上所受的压力,简称比压。 可通过改变压射力或更换不同直径的压室及冲头来进行调整。 计算公式为: 比压=压射力÷(冲头直径)?×4/π

2、速度参数: ①压射速度 压射时冲头移动的速度。按照压射过程的不同阶段,压射速
度分为慢压射速度(低速压射速度)和快压射速度(高速压射速度) 。一般 慢压射速度的选择根据“压室充满度” (即压室内金属液的多少,用百分比 表示)来决定,取值范围如下:压室冲满度(%) ≤30 30~60 >60 慢压射速度(m/s) 0.3~0.4 0.2~0.30.1~0.2 快压射速度,是在一定填充时间条件下确定的。根据铸件的结构特征确定 其填充时间后,可用以下公式进行计算:快压射速度=坯件重量/合金比重/压室内截面积/填充时间×[1+(N-1)+0.1] 式中“坯件重量”含浇冒系统; “N”为型腔穴数; “填充时间”可查表得到。 按此公式计算出来的快压射速度,是获得优质铸件的理论速度,实际生产 中选其 1.2 倍;对有较大镶嵌件的铸件时可选 1.5~2 倍。 ②内浇口速度 金属液在压力作用下通过内浇道导入型腔时的线速度,称
为内浇口速度。内浇口速度对铸件质量有着重要影响,主要是表面光洁度、 强度和塑性等方面。内浇口速度的大小可通过查表得到,调节的方法有: 调整压射速度、改变压室直径、调整比压、改变内浇口截面积。铸件平均壁厚、填充时间、内浇口速度对照表 铸件平均壁厚(㎜) 1 1.5 2 2.5 3 3.5 4 5 6 7 8 9 10 填充时间(S) 0.010~0.014 0.014~0.020 0.018~0.026 0.022~0.0320.028~0.040 0.034~0.050 0.040~0.060 0.048~0.072 0.056~0.084
0.066~0.100 0.076~0.116 0.088~0.138 0.100~0.160 内浇口速度(m/s) 46~55 44~53 42~5040~48 38~46 36~44 34~42 32~40 30~37 28~34 26~32 24~29 22~27

3、时间参数: ①填充时间 金属液自开始进入型腔到充满铸型的过程所需要的时间。影
响填充时间的因素有:金属液的过热度、浇注温度、模具温度、涂料性能 与用量、排气效果等。一般来说,填充时间越短,铸件表面越光滑,内部 空隙率越高;反之,则表面粗糙而内部紧密。 ②持压时间 金属液充满型腔之后,在压力作用下使铸件完全凝固这段时间,称为持压时间。持压时间应根据铸件壁厚和金属液的结晶温度范围来 确定,通常按下表中的数据来选取: 生产中常用持压时间(单位:秒) 压铸合金 锌合金 铝合金 镁合金铜合金 铸件壁厚<2.5 ㎜ 1~2 1~2 1~2 2~3 2.5 ㎜<铸件壁厚>6 ㎜ 3~7 3~8 3~8 5~8 ③留模时间 从持压作用结束到开模顶出铸件的这段时间叫留模时间。留模时间不宜过长或过短,过长会使铸件顶出困难,甚至破坏;过短则会造 成顶出变形或热裂。留模时间是根据合金的性质、铸件的壁厚及结构特征 来取值的:常用留模时间(单位:秒)压铸合金 锌合金 铝合金 镁合金 铜合金 壁厚<3 ㎜ 5~10 7~12 7~12 8~15 3 ㎜≤壁厚≥4 ㎜ 7~12 10~15 10~15 15~20 壁厚>5 ㎜ 20~25 25~30 15~25 20~30

4、温度参数: ①浇注温度 指金属液浇入压室至填充型腔时的平均温度。过低的浇注温
度使合金的流动性降低,成型困难;但若浇注温度过高,则会造成产品组织晶体粗大,机械性能明显下降,同时还会加大金属液的吸气倾向,使铸 件产生气孔缺陷。通常取值范围如下:各种合金的浇注温度铸件结构特征合金种类锌合金铝硅合金铝合金镁铜合金 铝铜合金 铝镁合金普通黄铜 硅 黄 铜 铸件壁厚小于 3mm 结构简单 420~440 610~650 620~650 640~680 640~680 870~920 900~940 结构复杂 430~450 640~700 640~720 660~700 660~700 900~950 930~970 8 铸件壁厚大于 3mm 结构简单 410~430 590~630 600~640 620~660 620~660 850~900 880~920 结构复杂
420~440 610~650 620~650 640~680 640~680 870~920 900~940 ②模具温度
在生产前对模具进行加热,使之达到工艺要求的范围内的最 低温度水平,这个温度叫模具预热温度;在生产过程中,模具应保持一定 的温度,这个温度工艺上称为模具工作温度,也就是常说的模具温度。模 具温度的取值一般为浇注温度的三分之一,控制公差一般为±25℃。

5、其他参数: ①慢、 快压射行程 压铸生产时的压射过程由慢压射和快压射两部分组成, 与之对应的工艺参数叫慢压射行程和快压射行程;其中对产品质量起主要 作用的是慢压射行程和快压射行程转换点的位置, 以及快压射行程的大小, 我们除了控制其速度的大小外,还需要对其行程大小进行控制和调节转换 点的位置。 ②压室充满度 合金浇入量占压室有效容积的百分比。是控制产品气孔缺 陷的一个重要参数,合理的压室充满度为 40%~60%,特殊条件下放宽到 30%~70%。 ③余料厚度 也就是合金液浇入量的多少;余料厚度过小,料饼过早凝固, 压射时的最终压力无法传递到型腔内部,铸件不能被压实;余料厚度过大, 往往会使增压动作无法实现(受限位开关控制) ,同样压不好铸件。另外,若余料厚度变化无常,导致压室充满度失控,产品质量得不到保证。

『伍』 3.压力铸造的铸件能进行热处理吗如何解决这一问题

不能!因为铸件内部往往存在气孔等,一旦加热会导致变形\开裂等.

『陆』 什么是压力铸造有什么优点和缺点

压力铸造的实质是在高压作用下,使液态或半液态金属以较高的速度充填压铸型(压铸模具)型腔,并在压力下成型和凝固而获得铸件的方法。

与其它铸造方法相比,压铸有以下三方面优点:
产品质量好
铸件尺寸精度高,一般相当于6~7级,甚至可达4级;表面光洁度好,一般相当于5~8级;强度和硬度较高,强度一般比砂型铸造提高25~30%,但延伸率 降低约70%;尺寸稳定,互换性好;可压铸薄壁复杂的铸件。例如,当前锌合金压铸件最小壁厚可达0.3mm;铝合金铸件可达0.5mm;最小铸出孔径为 0.7mm;最小螺距为0.75mm。
生产效率高
机器生产率高,例如国产JⅢ3型卧式冷空压铸机平均八小时可压铸600~700次,小型热室压铸机平均每八小时可压铸3000~7000次;压铸型寿命长,一付压铸型,压铸钟合金,寿命可达几十万次,甚至上百万次;易实现机械化和自动化。
经济效果优良
由于压铸件尺寸精确,表泛光洁等优点。一般不再进行机械加工而直接使用,或加工量很小,所以既提高了金属利用率,又减少了大量的加工设备和工时;铸件价格便易;可以采用组合压铸以其他金属或非金属材料。既节省装配工时又节省金属。

压铸缺点
压铸虽然有许多优点,但也有一些缺点,尚待解决。如:
1). 压铸时由于液态金属充填型腔速度高,流态不稳定,故采用一般压铸法,铸件易产生气孔,不能进行热处理;
2). 对内凹复杂的铸件,压铸较为困难;
3).高熔点合金(如铜,黑色金属),压铸型寿命较低;
4).不宜小批量生产,其主要原因是压铸型制造成本高,压铸机生产效率高,小批量生产不经济。

『柒』 压力容器焊接预热为了什么,说的详细一些,我知道为了避免出现裂纹等缺陷,能说说为什么加热就能避免吗

焊前预热的作用是:
重要构件的焊接、合金钢的焊接及厚部件的焊接,都要求在焊前必须预热。焊前预热的主要作用如下:
(1)预热能减缓焊后的冷却速度,有利于焊缝金属中扩散氢的逸出,避免产生氢致裂纹。同时也减少焊缝及热影响区的淬硬程度,提高了焊接接头的抗裂性。
(2)预热可降低焊接应力。均匀地局部预热或整体预热,可以减少焊接区域被焊工件之间的温度差(也称为温度梯度)。这样,一方面降低了焊接应力,另一方面,降低了焊接应变速率,有利于避免产生焊接裂纹。
(3)预热可以降低焊接结构的拘束度,对降低角接接头的拘束度尤为明显,随着预热温度的提高,裂纹发生率下降。
预热温度和层间温度的选择不仅与钢材和焊条的化 学成分有关,还与焊接结构的刚性、焊接方法、环境温度等有关,应综合考虑这些因素后确定。另外,预热温度在钢材板厚方向的均匀性和在焊缝区域的均匀性,对降低焊接应力有着重要的影响。局部预热的宽度,应根据被焊工件的拘束度情况而定,一般应为焊缝区周围各三倍壁厚,且不得少于150-200毫米。如果预热不均匀,不但不减少焊接应力,反而会出现增大焊接应力的情况。

焊后热处理的作用是什么?
焊后消氢处理,是指在焊接完成以后,焊缝尚未冷却至100℃以下时,进行的低温热处理。一般规范为加热到200~350℃,保温2-6小时。焊后消氢处理的主要作用是加快焊缝及热影响区中氢的逸出,对于防止低合金钢焊接时产生焊接裂纹的效果极为显著。
在焊接过程中,由于加热和冷却的不均匀性,以及构件本身产生拘束或外加拘束,在焊接工作结束后,在构件中总会产生焊接应力。焊接应力在构件中的存在,会降低焊接接头区的实际承载能力,产生塑性变形,严重时,还会导致构件的破坏。
消应力热处理是使焊好的工件在高温状态下,其屈服强度下降,来达到松弛焊接应力的目的。常用的方法有两种:一是整体高温回火,即把焊件整体放入加热炉内,缓慢加热到一定温度,然后保温一段时间,最后在空气中或炉内冷却。用这种方法可以消除80%-90%的焊接应力。另一种方法是局部高温回火,即只对焊缝及其附近区域进行加热,然后缓慢冷却,降低焊接应力的峰值,使应力分布比较平缓,起到部分消除焊接应力的目的。
有些合金钢材料在焊接以后,其焊接接头会出现淬硬组织,使材料的机械性能变坏。此外,这种淬硬组织在焊接应力及氢的作用下,可能导致接头的破坏。如果经过热处理以后,接头的金相组织得到改善,提高了焊接接头的塑性、韧性,从而改善了焊接接头的综合机械性能。

『捌』 如何提高铸造合金的流动性

流动性是指熔融合金的流动能力,它是影响充型能力的主要因素。合金的流动性好,充型能力强,易于获得尺寸准确、外形完整和轮廓清晰的铸件,不易产生浇不足、冷隔等缺陷;金属液中的非金属夹渣和气泡易于上浮排出,不易产生夹渣和气孔;流动性好的合金能很好地补充铸件凝固产生的收缩,不易产生缩孔和缩松。

合金的流动性通常用螺旋试样来测定,如图1-4-1所示。流动性的大小用铸出的螺旋试样的长度来评定。表1-4-1为常用铸造合金的流动性。

影响合金流动性的因素如下:

(1)合金的成分

成分不同的合金结晶特点不同,流动性也有很大差别。纯金属共晶合金是在恒温下结晶的,结晶时从表面向中心逐层凝固,已凝固金属的表面比较光滑,对未凝固金属的流动阻碍小,流动性好。

特别是共晶合金,熔点最低,因而流动性最好。如ZL102是共晶合金,流动性好。

其他成分的合金结晶时形成树枝状枝晶,阻碍液体金属流动,所以流动性差。结晶温度间隔越大,合金的流动性越差。如铸钢的结晶间隔大,流动性差。

(2)浇注条件

浇注时的温度和浇注压力等对合金流动性有很大影响。适当提高浇注温度,可以延缓合金凝固,提高流动性,如表1-4-1中的铸钢,当温度由1600℃提高到1640℃时,螺旋试样长度从100mm提高到200mm。但温度过高会导致严重氧化,收缩加大,产生缩孔、缩松以及粘砂、粗晶等缺陷。

浇注压力加大,流动性提高。重力浇注时,增加直浇道高度可增加流动性。在低压铸造、离心铸造时流动性有很大提高。压力铸造的高压甚至可以将半凝固的金属压入铸型成形。

铸型散热能力对流动性也有很大影响。铸型散热越快,流动性越差。金属型导热较快,金属型铸造比砂型铸造容易产生浇不足等缺陷。预热铸型可以提高流动性,提高充型能力。

铸型应有良好的透气性,或开设足够的排气道,使铸型中的气体易于排出。否则,气体产生的反压也会阻碍金属液流动。另外,铸件的结构,如铸件大小、壁厚和复杂程度等对充型能力也有较大影响。

阅读全文

与压力铸造为什么要预热相关的资料

热点内容
机械公司有什么部门和职位 浏览:222
活水直饮设备哪个牌子好 浏览:271
人防设备生产厂家有哪些 浏览:816
永城餐饮设备市场在哪里 浏览:489
机械硬盘要分区有多少 浏览:779
自动外径测量装置 浏览:259
天然气阀门开关改位置 浏览:669
英文开阀门怎么写 浏览:78
有什么起重的机械 浏览:595
特种设备考试成绩有效期是怎么算的 浏览:523
惠州市捷顺达五金制品有限公司 浏览:730
液压机械有什么 浏览:446
氨区避雷装置设计规范 浏览:848
雅迪e6仪表怎么拆开 浏览:595
热熔ppr水管阀门怎么换 浏览:657
变温物理实验装置 浏览:29
急救仪器缺陷常见有哪些 浏览:449
机床万向冷却管脱节怎么接 浏览:709
厨房液化气阀门开关 浏览:516
朗逸仪表盘上指示灯怎么看 浏览:384