A. 液力传动装置有哪些类型
=(1)机械传动
机械传动是通过齿轮、皮带、链条、钢丝绳、轴和轴承等机械零件传递能量的。它具有传动准确可靠、制造简单、设计及工艺都比较成熟、受负荷及温度变化的影响小等优点,但与其他传动形式比较,有结构复杂笨重、远距离操纵困难、安装位置自由度小等缺点。
(2)电力传动
电力传动在有交流电源的场合得到了广泛的应用,但交流电动机若实现无级调速需要有变频调速设备,而直流电动机需要直流电源,其无级调速需要有可控硅调速设备,因而应用范围受到限制。电力传动在大功率及低速大转矩的场合普及使用尚有一段距离。在工程机械的应用上,由于电源限制,结构笨重,无法进行频繁的启动、制动、换向等原因,很少单独采用电力传动。
(3)气体传动
气体传动是以压缩空气为工作介质的,通过调节供气量,很容易实现无级调速,而且结构简单、操作方便、高压空气流动过程中压力损失少,同时空气从大气中取得,无供应困难,排气及漏气全部回到大气中去,无污染环境的弊病,对环境的适应性强。气体传动的致命弱点是由于空气的可压缩性致使无法获得稳定的运动,因此,一般只用于那些对运动均匀性无关紧要的地方,如气锤、风镐等。此外为了减少空气的泄漏及安全原因,气体传动系统的工作压力一般不超过0.7~0.8MPa,因而气动元件结构尺寸大,不宜用于大功率传动。在工程机械上气动元件多用于操纵系统,如制动器、离合器的操纵等。
(4)液体传动
以液体为工作介质,传递能量和进行控制的叫液体传动,它包括液力传动、液黏传动和液压传动。
1)液力传动
它实际上是一组离心泵一涡轮机系统,发动机带动离心泵旋转,离心泵从液槽吸入液体并带动液体旋转,最后将液体以一定的速度排入导管。这样,离心泵便把发动机的机械能变成了液体的动能。从泵排出的高速液体经导管喷到涡轮机的叶片上,使涡轮转动,从而变成涡轮轴的机械能。这种只利用液体动能的传动叫液力传动。现代液力传动装置可以看成是由上述离心泵一涡轮机组演化而来。
液力传动多在工程机械中作为机械传动的一个环节,组成液力机械传动而被广泛应用着,它具有自动无级变速的特点,无论机械遇到怎样大的阻力都不会使发动机熄火,但由于液力机械传动的效率比较低,一般不作为一个独立完整的传动系统被应用。
2)液黏传动
它是以黏性液体为工作介质,依靠主、从动摩擦片间液体的黏性来传递动力并调节转速与力矩的一种传动方式。液黏传动分为两大类,一类是运行中油膜厚度不变的液黏传动,如硅油风扇离合器;另一类是运行中油膜厚度可变的液黏传动,如液黏调速离合器、液黏制动器、液黏测功器、液黏联轴器、液黏调速装置等。
3)液压传动
它是利用密闭工作容积内液体压力能的传动。液压千斤顶就是一个简单的液压传动的实例。
液压千斤顶的小油缸l、大油缸2、油箱6以及它们之间的连接通道构成一个密闭的容器,里面充满着液压油。在开关5关闭的情况下,当提起手柄时,小油缸1的柱塞上移使其工作容积增大形成部分真空,油箱6里的油便在大气压作用下通过滤网7和单向阀3进入小油缸;压下手柄时,小油缸的柱塞下移,挤压其下腔的油液,这部分压力油便顶开单向阀4进入大油缸2,推动大柱塞从而顶起重物。再提起手柄时,大油缸内的压力油将力图倒流入小油缸,此时单向阀4自动关闭,使油不致倒流,这就保证了重物不致自动落下;压下手柄时,单向阀3自动关闭,使液压油不致倒流入油箱,而只能进入大油缸顶起重物。这样,当手柄被反复提起和压下时,小油缸不断交替进行着吸油和排油过程,压力油不断进入大油缸,将重物一点点地顶起。当需放下重物时,打开开关5,大油缸的柱塞便在重物作用下下移,将大油缸中的油液挤回油箱6。可见,液压千斤顶工作需有两个条件:一是处于密闭容器内的液体由于大小油缸工作容积的变化而能够流动,二是这些液体具有压力。能流动并具有一定压力的液体具有压力能。液压千斤顶就是利用油液的压力能将手柄上的力和位移转变为顶起重物的力和位移。
B. 液压制动传动装置的布置形式
液压制动传动装置有两种布置方式:单管路液压制动传动装置和双管路液压制动传动装置。单管路液压传动装置利用一个制动总泵,通过一组相互连接的管路来控制整车的车轮制动,如图17.1所示。该装置由制动踏板、推杆、制动总泵、储液室、制动轮缸、油管等组成。如果单管路液压制动传动装置的任何一个部位漏油,整个系统都会失效。因为可靠性差,现在很少用在汽车上。双管路液压传动装置采用两个独立的液压系统。当一个液压系统出现故障时,另一个液压系统仍然照常工作。双管路的布置应力求降低一套管路失效时的制动效率,最好保持前后轴橘棚制动力分配比不变,以提高附着利用率,保证车辆良好的操纵性和稳定性。常见的双管液压制动装置有两种:1.两套管路,如国产桑塔纳和部分进口丰田车,由串联双腔制动总泵控制。2.单腔制动总泵,配有安全缸或隔离器,控制两套管路,如国产NJ1041。双管路液压传动装置通常采用前后独立方式和交叉方式布置。1.双管道前后独立模式:双管路前后独立液压传动装置由轴控制,即两个轴各有一套控制管路,如图17所示。该装置由制动踏板、推杆、双腔制动主缸、储液室、制动轮缸、油管等组成。它主要用于后置发动机的后轮驱动车辆,这些车辆严重依赖后轮制动。制动时踩下制动踏板,双腔制动主缸推杆推动主缸前后活塞,使主缸前后腔油压升高,制动液分开流动。制动前后轮的轮缸,迫使轮缸的活塞在油压的作用下向外运动,推动制动蹄打开产生制动。当松开制动踏板时,制动蹄和轮缸活塞在回位弹簧的作用下回位,制动液回流到制动总泵,汽车解除制动。每个制动缸的管路分为控制轴上的车轮制动器和后轮轴。如果其中一个管路失效,另一个管路仍有一定的制动效率,但前后轴制动力分配比被破坏,导致附着利用率下降,制动效率低于50%。2.双管道穿越模式:双管路交叉液压制动传动装置是通过两套管路分别控制前、后轮轴制动器的一个制动轮缸,如图17所示。它主要用于对前轮制动力依赖性较大的前轮驱动车辆。汽车制动时,如果其中一个管路失效,剩余的总制动力仍能保持圆氏则正常值的50%。即使正常工作管道中的车轮制动器抱死打滑,故障管道也不会制动。动轮仍能传递侧向力,前后轮制动力分配达到3.36=1。汽车高速制动时,可以保证后轮不抱死核桐,或者前轮先于后轮抱死,避免制动时后轮失去侧向附着力,导致汽车失控,如图17所示。
C. 液压传动的工作原理、系统组成是什么
1液压传动的工作原理
机床工作台的液压传动系统如图4-17所示,它由油箱、滤油器、液压泵、溢流阀、开停阀、节流阀、换向阀、液压缸以及连接这些元件的油管、接头组成。其工作原理如下:液压泵由电动机驱动后,从油箱中吸油;油液经滤油器进入液压泵,油液在泵腔中从入口低压到泵出口高压,在图4-17(a)所示状态下,通过开停阀、节流阀、换向阀进入液压缸左腔,推动活塞使工作台向右移动;这时,液压缸右腔的油经换向阀和回油管6排回油箱。
图4-17机床工作台液压传动系统
1—工作台;2—液压缸;3—活塞;4—换向手柄;5—换向阀;6,8,16—回流管;7—节流阀;9—开停手柄;10—开停阀;11—压力管;12—压力支管;13—溢流阀;14—钢球;15—弹簧;17—液压泵;18—滤油器;19—油箱
如果将换向阀手柄转换成图4-17(b)所示状态,则压力管中的油将经过开停阀、节流阀和换向阀进入液压缸右腔,推动活塞使工作台向左移动,并使液压缸左腔的油经换向阀和回油管6排回油箱。
工作台的移动速度是通过节流阀来调节的。当节流阀开大时,进入液压缸的油量增多(在单位时间内),工作台的移动速度增大;反之,当节流阀关小时,单位时间内进入液压缸的油量减少,工作台的移动速度降低。为了克服移动工作台时所受到的各种阻力,液压缸必须产生一个足够大的推力,这个推力是由液压缸中的油液压力所产生的。要克服的阻力越大,对应液压缸中的油液压力就越高;反之阻力小,压力就低。这种现象正说明了液压传动的一个基本原理——压力取决于负载。
需要说明的是,液压传动利用液体的压力能工作,它与在非密闭状态下利用液体的动能或势能工作的液力传动有本质的区别。
溢流阀的作用是调节与稳定系统的最大工作压力并溢出多余的油液。当工作台工作进给时,液压缸活塞(工作台)需要克服大的负载和慢速运动。进入液压缸的压力油必须有足够的稳定压力才能推动活塞带动工作台运动。调节溢流阀的弹簧力,使之与液压缸最大负载力相平衡,当系统压力升高到稍大于溢流阀的弹簧力时,溢流阀便打开,将定量泵输出的部分油液经回流管16溢回油箱。这时系统压力不再升高,工作台保持稳定的低速运动(工作进给)。当工作台快速退回时,因负载小所以油的压力低,溢流阀打不开,泵的流量全部进入液压缸,工作台则实现了快速运动。
从上面这个例子可以看到:液压泵将电动机(或其他原动机)的机械能转换为液体的压力能,然后通过液压缸(或液压马达)将液体的压力能再转换为机械能以推动负载运动。液压传动的过程就是机械能—液压能—机械能的能量转换过程。
2液压传动系统的组成
由上述例子可以看出液压传动系统的基本组成为:
(1)能源装置——液压泵。它将动力部分(电动机或其他原动机)所输出的机械能转换成液压能,给系统提供压力油液。
(2)执行装置——液压机(液压缸、液压马达)。通过它将液压能转换成机械能,推动负载做功。
(3)控制装置——液压阀(分为流量、压力、方向三类控制阀)。通过它们的控制或调节,使液流的压力、流量和方向得以改变,从而改变执行元件的力(或力矩)、速度和方向。
(4)辅助装置——油箱、管路、蓄能器、滤油器、管接头、压力表开关等。通过这些元件把系统连接起来,以实现各种工作循环。
(5)工作介质——液压油。绝大多数液压油采用矿物油,系统用它来传递能量或信息。
D. 液压式制动传动装置
液压制动传动装置类似于离合器液压控制装置。它以专用油为介质,将驾驶员施加在制动踏板上的踏板力放大后传递给车轮制动器,再将液压转化为制动蹄片开口的机械推力,使车轮制动器产生制动效果。它具有结构简单、制动滞后时间短、无摩擦部件、制动稳定性好、对各种车轮制动器适应性强等优点,因此被广泛应用于中小型汽车。
液压传动装置的主要部件如下
1.制动主缸
主缸可以将制动踏板输入的机械力转化为液压。大部分制动缸由铸铁或合金制成,其中一些与储油室成一体,形成一个整体的主缸,另一些相互分离,然后通过油管连接,这是一个分离的主缸。分体式总泵的储油室多采用透明塑料成型,部分配有防溅浮子或低液位报警灯开关。根据工作室的数量,主缸可以分为单室和双腔。单线液压制动传动装置采用单室主缸,现已淘汰。双腔制动总泵应用广泛。下面简单介绍一下双腔制动总泵。
1)结构组成
双腔制动总泵一般是串联的,如图17.5所示。主要由主缸、前活塞及回位弹簧、前活塞弹簧座、前活塞杯、限位螺栓、后活塞及杯等组成。主缸体中的工作面精度高、光滑。缸体上有进油孔和补偿孔,有两个活塞。后活塞9为主活塞,右端凹槽与推杆之间有一定间隙。前活塞6位于气缸中部,将主缸内腔分为前腔B和后腔A两个工作腔,两个工作腔分别与前后液压管路连接,前腔B产生的液压通过出油口11和管路与后轮制动器连接,后腔A产生的液压通过出油口10和管路与前轮制动器连接。
2)工作条件
当踩下制动踏板时,推杆推动主活塞9向左移动,直到杯8盖住补偿孔,后腔A内的液压上升,建立起一定的液压。一方面,机油通过后机油出口流入前制动管路,另一方面,机油推动前活塞6向左移动。在后腔A中的液压和弹簧的作用下,前活塞向左移动,前腔B中的压力也随之增加。油通过空腔内的出油口进入后制动管路,这样两条制动管路制动汽车车轮制动器。
当持续踩下制动踏板时,前腔B和后腔A中的液压会继续增大,从而加强前后轮制动器的制动。
当制动器松开时,活塞在弹簧的作用下复位,高压油从制动管路流回制动总泵。如果活塞复位过快,工作室的容积会迅速增加,油压会迅速下降。由于管路阻力的影响,制动管路中的油将无法充分回流到工作腔,从而在工作腔内形成一定的真空度,这样储液腔内的油将通过进油口和活塞上的轴向孔将垫片和杯体推入工作腔内。当活塞完全复位时,补偿孔打开,制动管路中回流到工作室的多余油通过I补偿孔流回储液室。
如果连接到前室B的制动管路损坏漏油,踩下制动踏板时,只有后室A能积聚一定的液压,但前室B中没有液压,此时,在液压压差的作用下,前活塞6迅速被推向底部,直到接触到油缸的顶部。前活塞被推到底部后,后室A的液压可能会上升到制动所需的值。
如果连接到后室A的制动管路损坏漏油,当踩下制动踏板时,起初只有主活塞9向前移动,但前活塞6不能被推动,因此后室A中的液压无法建立。然而,当主活塞的顶部接触前活塞6时,推杆的力可以推动前活塞,从而可以在前室中建立液压。
可以看出,在双管路液压系统中,当任何一条管路损坏漏油时,另一条仍能工作,只是增加了所需的管路。
上海 桑塔纳 ( 查成交价 | 车型详解 )使用的制动总泵也是串联双腔制动总泵。主缸用两个螺母连接在真空助力器前面,主缸上有两个橡胶头与储液罐连接。制动液通过进油孔供应至前后工作室。主缸前后有两个对称的M10 X1 出油螺孔,相互成100度角,通过制动管路与四轮制动器的轮缸交叉布置连接。
当踏板松开时,活塞和推杆分别在回位弹簧的作用下回到初始位置。由于回程速度快,在制动管路中很容易生成 tru e空。因此,前活塞和后活塞的头部有三个l.4毫米的小孔,相互间隔120度,制动液可以通过小孔流回两个工作室,从而减少负压。
为了保证主缸活塞完全回位,推杆与制动主缸活塞之间有一定的间隙,这种间隙体现在制动踏板的行程上,称为制动踏板自由行程。
制动踏板的自由行程对制动效果和行车安全有很大影响。如果自由行程过大,制动踏板有效行程减小,制动过晚,导致制动不良或失效。如果自由行程过小或过小,刹车不能及时完全释放,造成刹车拖滞,加速刹车磨损,影响动力传递效率,增加汽车油耗。
制动踏板的自由行程可以通过推杆的长度来调节。
2.制动轮缸
制动轮缸将来自主缸的液压转换成机械推力,以打开制动蹄。由于车轮制动器的结构不同,轮缸的数量和结构也不同,通常分为双活塞制动轮缸和单活塞制动轮缸。
1)双活塞制动轮缸
双活塞制动轮缸的结构如图17所示。6.缸体用螺栓固定在制动底板上。气缸里有两个塞子。具有相对切削刃的密封杯分别被弹簧压靠在两个活塞上,以保持杯之间的进油孔畅通。防护罩用于防止灰尘和湿气进入气缸。2)单活塞制动轮缸
单活塞制动轮缸的结构如图17所示。7.顶块压在单活塞制动轮缸活塞外端凸台孔内的制动蹄上端。排气阀安装在缸体上方,用于排出气体。为了减小轴向尺寸,安装在活塞导向面上的橡胶圈用于密封液腔,进油间隙由活塞端面的凸台保持。
单活塞制动轮缸多用于单向助力平衡轮制动器,目前趋于淘汰。
单活塞制动轮缸的活塞直径大于主缸的直径,并且与前后轴上的实际负载分布成比例。这样,作用在前制动器和后轮轴制动器上的制动力应该是踏板力和制动踏板杠杆与活塞直径之比。3.制动管路
制动管路用于输送和承受一定压力的制动液。制动管路有两种:金属管和橡胶管。由于主缸和轮缸的相对位置经常变化,除了金属管外,有些制动管有相对运动的截面,用高强度橡胶管连接。
4.制动液
要求制动液具有冰点低、高温老化低、流动性好的特点。制动液对普通金属和橡胶有腐蚀性,制动系统中所有与制动液接触的零件都由耐腐蚀材料制成。因此,为了保证可靠的制动性能,在修理和更换相关零件时,必须使用原装零件或认证零件。桑塔纳用的制动液是D0T4。 @2019
E. 液压制动传动装置的布置形式有
液压制动执行器有两种布置方式:单线液压制动执行器和双线液压制动执行器。单线液压传动装置单线液压传动装置利用一个制动总泵,通过一组相互连接的管路来控制整车的车轮制动器,如图17.1所示。该装置由制动踏板、推杆、制动总泵、储液室、制动轮缸、油管等组成。如果单线液压制动传动装置的任何部分漏油,整个系统都会失效。由于可靠性差,很少用于汽车。
双管路液压传动装置双管路液压传动装置是利用两个彼此独立的液压系统,当一个液压系统发生故障时,另一个液压系统仍然照常工作。双管路的布置型式应力求当一套管路发生故障时,只能引起制动效能的降低,其前后桥制动力分配比例值最好不变,以提高附着力的利用率,保证汽车良好的操纵性和稳定性。
常见的双线液压制动装置有两种:
①两套管路,如国产 桑塔纳 ( 查成交价 | 车型详解 )和部分进口 丰田 汽车,采用串联双腔制动总泵控制。
②采用单腔制动总泵,配安全缸或隔离器,控制两套管路,如国产NJ1 041等。
双管路液压传动装置通常以前后独立方式和交叉方式布置。
1.双管前后独立模式
前后管路独立的液压传动装置由车轴控制,即两轴各有一套控制管路,如图17所示。2.该装置由制动踏板、推杆、双腔制动总泵、储液室、制动轮缸、油管等组成。主要用于后置发动机对后轮制动依赖性较大的后轮驱动车辆。制动时,踩下制动踏板,双腔制动总泵的推杆推动总泵的前后活塞,增加总泵前后腔内的油压,制动液分别流向前后轮制动缸,在油压的作用下,迫使轮缸的活塞向外移动,推动制动蹄片打开,产生制动。当松开制动踏板时,制动蹄和轮缸活塞在回位弹簧的作用下回到原位,使制动液返回制动总泵,汽车脱离制动。每个制动缸的管路分为控制轴上的车轮制动器和后轮轴。如果其中一条管路发生故障,另一条管路仍有一定的制动效率,但前后轴制动力分配比被破坏,导致附着利用率下降,制动效率低于5 0%。
2.双管道穿越模式
双管路交叉液压制动传动装置分别通过两套管路控制前、后轮轴制动器的一个制动轮缸,如图17所示。3、主要用于发动机高度依赖前轮制动力的前轮驱动车辆,上海桑塔纳汽车采用双管路穿越方式。制动时,如果其中一条管路发生故障,剩余的总制动力仍能保持正常值的5±0%,即使正常工作管路中的车轮制动器锁死打滑,故障管路也不制动。
动轮仍能传递侧向力,前后轮制动力分配达到3.36 = 1。汽车高速刹车时,可以保证后轮不抱死,或者前轮先于后轮抱死,避免刹车时后轮失去横向附着力,导致汽车失控,如图17所示。4. @2019
F. 一般的液压传动系统由哪几部分组成,基本工作原理是什么
液压传动系统由液压动力元件(液压油泵)、液压控制元件(各种液压阀)、液压执行元件(液压缸和液压马达等)、液压辅件(管道和蓄能器等)和液压油组成。
基本工作原理:
电动机带动液压泵从油箱吸油,液压泵把电动机的机械能转换为液体的压力能。液压介质通过管道经节流阀和换向和阀进入液压缸左腔,推动活塞带动工作台右移,液压缸右腔排出的液压介质经换向阀流回油箱。换向阀换向之后液压介质进入液压缸右腔,使活塞左移,推动工作台反向移动。
1、液压泵是将原动机的机械能转换为液体的压力动能(表现为压力、流量),为液压系统提供压力油,是系统的动力来源。
2、液压缸或液压马达将液压能转换为机械能而对外做功,液压缸可驱动工作机构实现往复直线运动(或摆动),液压马达可实现回转运动。
3、各种液压阀可以控制和调节液压系统中液体的压力、流量和方向等,保证执行元件能按照要求进行工作。
4、液压辅件提供必要的条件使系统正常工作并便于监测控制。
5、液压油,液压系统就是通过液压油实现运动和动力传递的,液压油还可以对液压元件中相互运动的零件起润滑作用。
(6)平凉液压传动装置扩展阅读:
液压传动系统的优点
1、液压传动可以输出大的推力或大转矩,可实现低速大吨位运动。
2、液压传动能很方便地实现无级调速,调速范围大,且可在系统运行过程中调速。
3、在相同功率条件下,液压传动装置体积小、重量轻、结构紧凑。液压元件之间可采用管道连接、或采用集成式连接,其布局、安装有很大的灵活性,可以构成用其它传动方式难以组成的复杂系统。
4、液压传动能使执行元件的运动十分均匀稳定,可使运动部件换向时无换向冲击。而且由于其反应速度快,故可实现频繁换向。
5、操作简单,调整控制方便,易于实现自动化。特别是和机、电联合使用时,能方便地实现复杂的自动工作循环。
6、液压系统便于实现过载保护,使用安全、可靠。由于各液压元件中的运动件均在油液中工作,能自行润滑,故元件的使用寿命长。
7、液压元件易于实现系列化、标准化和通用化,便于设计、制造、维修和推广使用。