① 流体力学并联问题
1管和复2管的水头损失还是相等制的。这是因为1管和2管有公共的起点和终点,1管起点的水头与2管起点的水头是一样的,1管终点的水头与2管终点的水头也是一样的,而管水头损失就等于管起点的水头与管终点的水头的差,所以两管的水头损失相等。
1管上加个阀门,增加了一个局部水头损失,似乎水头损失要比2管大。但你还应该考虑到正是加了阀门,增加的阀门的阻力使1管流速变小,而管道的水头损失的大小又与管道流速的平方成正比,所以1管的沿程水头损失变小,而维持两管的水头损失相等。
② 流体阻力实验报告
1. 流体流动阻力的测定
一、实验目的
1.掌握测定流体流经直管、管件和阀门时阻力损失的一般实验方法。
2.测定直管摩擦系数λ与雷诺准数Re的关系,验证在一般湍流区内λ与Re的关系曲线。
3.测定流体流经管件、阀门时的局部阻力系数x。
4.学会倒U形压差计和涡轮流量计的使用方法。
5.识辨组成管路的各种管件、阀门,并了解其作用。
二、基本原理
流体通过由直管、管件(如三通和弯头等)和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。流体流经直管时所造成机械能损失称为直管阻力损失。流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。
1.直管阻力摩擦系数λ的测定
流体在水平等径直管中稳定流动时,阻力损失为:
(1)
即, (2)
式中: λ —直管阻力摩擦系数,无因次;
d —直管内径,m;
—流体流经l米直管的压力降,Pa;
—单位质量流体流经l米直管的机械能损失,J/kg;
ρ —流体密度,kg/m3;
l —直管长度,m;
u —流体在管内流动的平均流速,m/s。
滞流(层流)时,
(3)
(4)
式中:Re —雷诺准数,无因次;
μ —流体粘度,kg/(m·s)。
湍流时λ是雷诺准数Re和相对粗糙度(ε/d)的函数,须由实验确定。
由式(2)可知,欲测定λ,需确定l、d,测定、u、ρ、μ等参数。 l、d为装置参数(装置参数表格中给出), ρ、μ通过测定流体温度,再查有关手册而得, u通过测定流体流量,再由管径计算得到。
例如本装置采用涡轮流量计测流量,V,m3/h。
(5)
可用U型管、倒置U型管、测压直管等液柱压差计测定,或采用差压变送器和二次仪表显示。
(1)当采用倒置U型管液柱压差计时
(6)
式中:R-水柱高度,m。
(2)当采用U型管液柱压差计时
(7)
式中:R-液柱高度,m;
-指示液密度,kg/m3。
根据实验装置结构参数l、d,指示液密度,流体温度t0(查流体物性ρ、μ),及实验时测定的流量V、液柱压差计的读数R,通过式(5)、(6)或(7)、(4)和式(2)求取Re和λ,再将Re和λ标绘在双对数坐标图上。
2.局部阻力系数x 的测定
局部阻力损失通常有两种表示方法,即当量长度法和阻力系数法。
(1) 当量长度法
流体流过某管件或阀门时造成的机械能损失看作与某一长度为的同直径的管道所产生的机械能损失相当,此折合的管道长度称为当量长度,用符号表示。这样,就可以用直管阻力的公式来计算局部阻力损失,而且在管路计算时可将管路中的直管长度与管件、阀门的当量长度合并在一起计算,则流体在管路中流动时的总机械能损失 为:
(8)
(2) 阻力系数法
流体通过某一管件或阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数,局部阻力的这种计算方法,称为阻力系数法。即:
(9)
故 (10)
式中:x —局部阻力系数,无因次;
-局部阻力压强降,Pa;(本装置中,所测得的压降应扣除两测压口间直管段的压降,直管段的压降由直管阻力实验结果求取。)
ρ —流体密度,kg/m3;
g —重力加速度,9.81m/s2;
u —流体在小截面管中的平均流速,m/s。
待测的管件和阀门由现场指定。本实验采用阻力系数法表示管件或阀门的局部阻力损失。
根据连接管件或阀门两端管径中小管的直径d,指示液密度,流体温度t0(查流体物性ρ、μ),及实验时测定的流量V、液柱压差计的读数R,通过式(5)、(6)或(7)、(10)求取管件或阀门的局部阻力系数x。
三、实验装置与流程
1. 实验装置
实验装置如图1所示:
1-水箱; 2-管道泵;3-涡轮流量计;4-进口阀;5-均压阀;6-闸阀;
7-引压阀;8-压力变送器;9-出口阀;10-排水阀;11-电气控制箱
图1 实验装置流程示意图
2.实验流程
实验对象部分是由贮水箱,离心泵,不同管径、材质的水管,各种阀门、管件,涡轮流量计和倒U型压差计等所组成的。管路部分有三段并联的长直管,分别为用于测定局部阻力系数,光滑管直管阻力系数和粗糙管直管阻力系数。测定局部阻力部分使用不锈钢管,其上装有待测管件(闸阀);光滑管直管阻力的测定同样使用内壁光滑的不锈钢管,而粗糙管直管阻力的测定对象为管道内壁较粗糙的镀锌管。
水的流量使用涡轮流量计测量,管路和管件的阻力采用差压变送器将差压信号传递给无纸记录仪。
3.装置参数
装置参数如表1所示。 由于管材的材质会有不同,因而管内径也会有差别,我们会给出相应的数据,以供实验分析用,表1的数据只是参考。
表1
装置1
名称
材质
管内径(mm)
测量段长度(cm)
管路号
管内径
局部阻力
闸阀
1A
20.0
95
光滑管
不锈钢管
1B
20.0
100
粗糙管
镀锌铁管
1C
21.0
100
四、实验步骤
1.开启电源、仪表开关。检查水箱是否装满水(水位以4/5满水位以下为宜)。
2.泵启动:水泵先开启到全速,水泵稳定后在出口阀开度最大情况下保持全流量流动5min。然后将水泵开启到自动。
3. 实验管路选择:选择实验管路,把对应的进口阀打开。
4.排气:出口阀关小,手动排气,先开启压力变送器旁边的两个引压阀,然后排放选择好的实验管路的引压阀,排完气后关闭差压变送器旁边的两个引压阀。
5.流量调节 开启管路出口阀,调节流量,让流量从1到4m3/h范围内变化,建议每次实验变化0.4m3/h左右。每次改变流量,待流动达到稳定后1-2分钟记下对应的压差值;自控状态,流量控制界面设定流量值或设定变频器输出值,待流量稳定记录相关数据即可,取8-10组数据。
6.计算:装置确定时,根据和u的实验测定值,可计算λ和ξ,在等温条件下,雷诺数Re=ρ/μ=Au,其中A为常数,因此只要调节管路流量,即可得到一系列λ~Re的实验点,从而绘出λ~Re曲线。
7、关闭相应管路的进口阀,换下一管路,打开相应阀门,重复步骤4、5。
8.实验结束:关闭出口阀,关闭水泵和仪表电源,清理装置。
五、实验数据处理
根据上述实验测得的数据填写到下表:
实验日期: 实验人员: 学号: 温度: 装置号:
直管基本参数: 光滑管径 粗糙管径 局部阻力管径
序号
流量(m3/h)
光滑管压差(KPa)
粗糙管压差(KPa)
局部阻力压差(KPa)
六、实验报告
1.根据粗糙管实验结果,在双对数坐标纸上标绘出λ~Re曲线,对照化工原理教材上有关曲线图,即可估算出该管的相对粗糙度和绝对粗糙度。
2.对实验结果进行分析讨论。
七、思考题
1.在对装置做排气工作时,是否一定要关闭流程尾部的出口阀?为什么?
2.如何检测管路中的空气已经被排除干净?
3.如果测压口、孔边缘有毛刺或安装不垂直,对静压的测量有何影响?
③ 流体力学:画出两台水泵串联和并联工作的系统简图,并简述其工作特点
串联:扬程抄为两台水泵扬程之和,流量相同,主要起增压作用。
并联:扬程相同,流量为两台流量之和,并联后的水泵性能曲线为同扬程下单泵流量相加,工况点即是并联水泵性能曲线与管路性能曲线的交点。并联总流量比两台泵单独运行时流量之和要小。
(3)流体阻力实验装置简图并联扩展阅读:
在实验室内,流动现象可以在短得多的时间内和小得多的空间中多次重复出现,可以对多种参量进行隔离并系统地改变实验参量。在实验室内,人们也可以造成自然界很少遇到的特殊情况(如高温、高压),可以使原来无法看到的现象显示出来。
现场观测常常是对已有事物、已有工程的观测,而实验室模拟却可以对还没有出现的事物、没有发生的现象(如待设计的工程、机械等)进行观察,使之得到改进。
④ (流体流动阻力测得实验)在对装置做排气工作时,是否一定要关闭流程尾部的出口阀为什么
流量计校核实验过程一、文丘里流量计(一)实验目的 1、找出文丘里流量计的流量和压差之间的关系曲线。 2、测定文丘里流量计的流量系数。(二)基本原理 根据柏努利原理,流量与文氏流量计前后的压差有如下关系: (4-14)式中: —体积流量m3/s; —文氏管喉颈截面积,m2; Cv —文丘里流量计流量系数,无因次; R —U形压差计的读数,m; —压差计内指示液密度,kg/m3。—流体密度。kg/m3。但是,流量系数的数值,往往要受到文氏计的结构和加工精度,以及流体性质、温度、压力的影响。因此,在现场使用这类数量计之前往往需要对流量计进行校正,即测定不同流量下的压差计读数,直接绘成曲线,或求得CV与Re之间关系曲线(流量系数CV在喉径与管径之比一定时随Re数而变,其值由实验测得),以备使用时查校。(三)实验装置实验装置及流程如图4-12所示,文氏流量计装在φ34×3mm不锈钢管上,为了保证正常测量条件,流量计前、后必须有足够长的直管段,其长度应使流体流过管件产生的涡流全部消失(具体安装尺寸应查规定)。文氏计的压差用U形压差计测量,压差计上部装有放气夹和平衡夹,放气夹用以排出测压管中积存的空气,平衡夹用以平衡压差计两臂的压力,防止冲走水银,实验用水,由泵从水箱输入管路,由计量槽计量流量,然后放回水箱,循环使用,水温由温度计测量。图4-12 流量计实验装置流程图1、入口阀;2、文氏计;3、排水管;4、计量槽;5、液面计;6、排水阀;7、U形水银压差计;8、平衡夹;9、放气夹。(四)实验方法 1、熟悉实验装置及流程,观察压差计测压导管与文氏计测压接头的连接,打开平衡夹和放气夹。 2、打开管道进口阀,排除管道中的气体,逐渐关小出口阀,使管道处于正压,让水经测压导管由放气管流出,以排出测压系统中的空气,待空气排净后,先关闭U形压差计上部的放气夹,然后关闭平衡夹。 3、关闭出口阀门,检查压差计左右两臂读数是否相等,否则,表明测压系统中有空气积存,需要重新排气。 4、在进口阀全开的条件下,用出口阀调节流量进行实验,由小流量到大流量或反之,记取8~10组数据,水的体积流量可根据计量槽中水量的增长和相应时间确定。 5、做完实验后,将出口阀关闭,检查压差计读数是否为零,若不为零应分析原因,并考虑是否要重做。 6、最后,将进口阀门关闭。松开压差计上部平衡夹和放气夹。(五)数据处理 1、在双对数坐标纸上,用流量 对压差计数R作图,确定流量与压差之关系。 2、根据实验数据,计算流量系数Cv和对应点的Re数,在双对数坐标纸上标绘CV-Re数之间的关系。(六)讨论 1、试分析流量系数与哪些因素有关? 2、在你所绘制的 ~R图中,所得直线斜率是多少?理论上斜率应是多少? 二、孔板流量计(一)实验目的 1、找出孔板流量计的流量和压差计读数之间的关系曲线。 2、测定孔板测量计的孔流系数,并给出C0~Re的关系曲线。(二)基本原理 根据柏努利原理,流量与孔板流量计前后的压差有如下关系: (4-15)式中 —体积流量,m3/s; —孔板流量计的孔流系数,无因次; —孔口面积,m2; R —U形压关计的读数,m; —压差计内指标液密度,kg/m3; — 被测流体密度,kg/m3; 孔流系数的数值,往往要受到流量计本身的结构和加式精度,以及流体性质、温度、压力等因素的影响,因此在现场使用这类流量计往往需对流量计进行校核,即测定不同流量下的压差计读数,直接绘成曲线,或求得Co与Re之间的关系曲线,以备使用时查校。(三)实验装置实验装置及流程如图4-13所示,水从水箱经离心泵,经出口阀(调节流量用),再经过孔板流量计,最后由活动摆头控制,流入计量槽,流量计量结束后,放回水箱,孔板流量计的孔径为24.33mm,管道采用1 聚丙烯塑料管(内径36.26mm),水温由温度计测量。图4-13 流量计校核及流体阻力实验流程图1.离心泵 2.出口阀 3.孔板流量计 4.U形压差计5.倒U形压差计 6.计量槽 7.水箱 8.活动摆头
⑤ 管道流体阻力实验,当Re=4000到6000时,Re与管道阻力之间的双对数图是直线还是曲线
富通银行
⑥ 在流体阻力试验中,怎样在双对数坐标纸上画摩擦系数与雷诺数的曲线
双对数坐标就是x和y轴都是对数式,即logRE和logf,主要是使图更加紧凑(RE范围比较大),也使得曲线近似线性;可以用matlab画啊,如果手画的话也得事先把对数值算出来,再打点
⑦ 化工原理流体阻力实验
层流区 λ与Re为直线关系,与相对粗糙度无关
阻力平方区 λ取决于相对粗糙度有关,与Re无关
⑧ 流体阻力实验思考题及解答
1、在测量前为什么要将设备中的空气排尽?怎样才能迅速地排尽?
2、在不同版设备上(包括不同管权径),不同温度下测定的λ~Re 数据是否能关联在一条曲线上?
3、以水做介质所测得的λ~Re关系能否适用于它种流体?
4、测出的直管摩擦阻力与设备的放置状态有关吗?为什么?
1. 因为空气可压缩性远大于水的,可引起压力测量的波动
4. 管路的水平状态对结果有一定影响吧:水平度影响压差测量的准确度
1、且不谈空气怎么影响,因为我们研究的是单相流就得排干净空气。
2、如果在一条线上就不用这么麻烦的关联并且想方设法的找关联式了,但如果趋势都不一致,这个方法就有问题了。
3、书上讲了的。
4、(紧接楼上)除了这个,几乎没什么影响,也不应该有什么影响。
1、排净空气是为了排出空气对压力的影响
2、不同摩擦系数下关联式是不一样的。不建议关联到一起
3、不行,粘度是不一样的。
4、无关,只取决于管路本身特性。
⑨ 流体流动阻力实验,以水为介质测得的莫迪图是否能用于其它流体
可以用于牛顿流体的类比,牛顿流体的本构关系一致。应该是类似平行的曲线,但雷诺数本身并不是十分准确,建议取中间段曲线,不要用两边端数据。雷诺数本身只与速度,粘度和管径一次相关,不同流体的粘度可以查表。