Ⅰ 在塔式聚合反应器中,聚苯乙烯聚合装置中,预聚合的目的是什么是否可以省去这一步骤为什么
不可以省略,因为预聚合是促进聚合反应的利用效率
如果省略了,就会影响到生产的效率
Ⅱ 聚合酶链反应的反应体系
PCR基本原理示意图(如右图):
在一个典型的PCR反应体系中需加入:适宜的缓冲液、微量的模板DNA、4×dNTPs、耐热性多聚酶、Mg2 和两个合成的DNA引物。模板DNa 94℃变性1min,引物与模板40~60℃退火1min,72℃延伸2min。在首次循环前模板预变性3~5min;在末次循环后,样品仍需继续延伸3~5min以上,确保扩增的DNA为双链DNA。为便于了解PCR反应中各成份的组成,加入量和反应条件,使人们以此为基础,对不同的研究对象逐项改变来找到最佳反应条件,特列举Perkin Elmer Cetus公司Gene Amp DNA试剂盒提供的典型反应条件供参考。 用于PCR的标准缓冲液见PCR操作范例。于72℃时,反应体系的pH值将下降1个单位,接近于7.2。二价阳离子的存在至关重要,影响PCR的特异性和产量。实验表明,Mg2 优于Mn2 ,而Ca2 无任何作用。
1.Mg2 浓度Mg2 的最佳浓度为1.5mmol/L(当各种dNTP浓度为200mmol/L时),但并非对任何一种模板与引物的结合都是最佳的。首次使用靶序列和引物结合时,都要把Mg2 浓度调到最佳,其浓度变化范围为1~10mmol/L。Mg2 过量易生成非特异性扩增产物,Mg2 不足易使产量降低。
样品中存在的较高浓度的螯合剂如EDTA或高浓度带负电荷的离子基团如磷酸根,会与Mg2 结合而降低Mg2 有效浓度。因此,用作模板的DNA应溶于10mmol/l Tris-HCl(pH7.6)0.1mmol/L EDTA中。
dNTP含有磷酸根,其浓度变化将影响Mg2 的有效浓度。标准反应体系中4×dTNPs的总浓度为0.8mmol/L,低于1.5mmol/L的Mg2 浓度。因此,在高浓度DNA及dNTP条件时,必须相应调整Mg2 的浓度。
2.Tris -HCl缓冲液在PCR中使用10~50mmol/L的Tris –HCl缓冲液,很少使用其他类型的缓冲液。Tris缓冲液是一种双极化的离子缓冲液,pKa为8.3(20℃),△pKa为0.021/℃。因此,20mmol/l Tris pH8.3(20℃)时,在典型的热循环条件下,真正的pH值在7.8~6.8之间。
3.KCl浓度K 浓度在50mmol/L 时能促进引物退火。但研究表明,NaCl浓度在50mmol/L时,KCl浓度高于50mmol/L将会抑制Taq酶的活性,少加或不加KCl对PCR结果没有太大影响。
4.明胶明胶和BSA或非离子型去垢剂具有稳定酶的作用。一般用量为100μg/ml,但现在的研究表明,加或不加都能得到良好和PCR结果,影响不大。
5.二甲基亚砜(DMSO)在使用Klenow片段进行PCR时DMSO是有用的;加入10%DM-SO有利于减少DNA的二级结构,使(G C)%含量高的模板易于完全变性,在反应体系中加入DMSO使PCR产物直接测序更易进行,但超过10%时会抑制Taq DNA聚合酶的活性,因此,大多数并不使用DMSO。 在PCR反体系中dNTP终浓度高于50mmol/L会抑制Taq酶的活性,使用低浓度dNTP可以减少在非靶位置启动和延伸时核苷酸错误掺入,高浓度dNTPs易产生错误掺入,而浓度太低,势必降低反应物的产量。PCR常用的浓度为50~200μmol/L,不能低于10~15μmol/L。四种dNTP的浓度应相同,其中任何一种浓度偏高或偏低,都会诱导聚合酶的错误掺入,降低合成速度,过早终止反应。
决定最低dNTP浓度的因素是靶序列DNA的长度和组成,例如,在100μl反应体系中,4×dNTPs浓度若用20μmol/L,基本满足合成2.6μg DNA或10pmol的400bp序列。50μmol/L的4×dNTPs可以合成6.6μgDNA,而200μmol/L足以合成25μg/DNA。
购自厂商的dNTP溶液一般均未调pH,应用1mol/l NaOH将dNTP贮存液pH调至7.0,以保证反应的pH值不低于7.1。市购的游离核苷酸冻干粉,溶解后要用NaOH中和,再用紫外分光光度计定量。 典型PCR反应混合物中,所用酶浓度为2.5U/μl,常用范围为1~4U/100μl。由于DNA模板的不同和引物不同,以及其它条件的差异,多聚酶的用量亦有差异,酶量过多会导致非特异产物的增加。
由于生产厂家所用兵配方、制造条件以及活性定义不同,不同厂商供应的TaqDNA聚合酶性能也有所不同。
Cetus公司酶定义是:1个酶单位是指在以下分析条件下,于74℃,30min内使10nmmol的dNTP掺入酸不溶性成分所需的酶。测定时间为10min,折算成30min掺入量。
分析条件为25nmol/L TAPS(三羟基-甲基-氨基丙烷磺酸钠pH9.3.25℃),50mmol/l KCl,2mmol/L MgCl2.1mmol/L β-ME(巯基乙醇),dATP、dTTP、dGTP各200mmol/L,dCTP为100mmol/L(由不标记及α-32P标记混合),12.μg变性鲱鱼精子DNA,最终体积50μl。 单、双链DNA或RNA都可以作为PCR的样品。若起始材料是RNA,须先通过逆转录得到第一条cDNA。虽然PCR可以仅用极微量的样品,甚至是来自单一细胞的DNA,但为了保证反应的特异性,还应用ng级的克隆DNA,μg水平的单拷贝染色体DNA或104拷贝的待扩增片段作为起始材料,模板可以是粗品,但不能混有任何蛋白酶、核酸酶、Taq DNA聚合酶抑制剂以及能结合DNA的蛋白。
DNA的大小并不是关键的因素,但当使用极高分子量的DNA(如基因组的DNA时),如用超声处理或用切点罕见的限制酶(如Sal1和Not1)先行消化,则扩增效果更好。闭环靶序列DNA的扩增效率略低于线状DNA,因此,用质粒作反应模板时最好先将其线状化。
模板靶序列的浓度因情况而异,往往非实验人员所控制,实验可按已知靶序列量逆减的方式(1ng,0.1ng,0.001ng等),设置一组对照反应,以检测扩增反应的灵敏度是否符合要求。 在实际工作中常采用琼脂糖凝胶电泳。一般情况下先在电泳缓冲液或凝胶中加1%溴化乙锭(EB)(每100ml加100μl),然后将已经制备好的1%~2%琼脂糖凝胶(用电泳缓冲液配制)放入电泳槽内,加入待测样品10μl,同时用分子量标准品作标记。琼脂糖浓度应按分离DNA片段的大小进行选择,一般用1.5%~2%,电泳电压75V,待样品进行凝胶内距胶末端1cm时,切断电源,取出凝胶在紫外灯下直接观察结果。
由于溴化乙锭可与双链DNA形成结合物,在紫外灯下能发射荧光,使EB的荧光强度增强80~100倍,所以,电泳后凝胶在紫外灯下可直接观察。一般肉眼观察DNA量可达10ng,其荧光强度与DNA含量成正比。
DNA分子在凝胶中泳动速度决定于电荷效应及分子效应。前者由所带净电荷量决定,而后者与分子大小及构型有关。按照DNA分子大小,其凝胶浓度可做不同的调整。有条件的实验室也可用聚丙烯酰胺凝胶电泳(PAGE)分析扩增的DNA片段。 PCR技术必须有人工合成的合理引物和提取的样品DNA,然后才进行自动热循环,最后进行产物鉴定与分析。引物设计与合成目前只能在少数技术力量较强的研究院、所进行,临床应用只需购买PCR检测试剂盒就可开展工作,PCR自动热循环中影响因素很多,对不同的DNA样品,PCR反应中各种成份加入量和温度循环参数均不一致。现将几种主要影响因素介绍如下。
一、温度循环参数
在PCR自动热循环中,最关键的因素是变性与退火的温度。如操作范例所示,其变性、退火、延伸的条件是:94℃60s, 37℃60s, 72℃120s,共25~30个循环,扩增片段500bp。在这里,每一步的时间应从反应混合液达到所要求的温度后开始计算。在自动热循环仪内由混合液原温度变至所要求温度的时间需要30~60s,这一迟滞时间的长短取决于几个因素,包括反应管类型、壁厚、反应混合液体积、热源(水浴或加热块)以及两步骤间的温度差,在设置热循环时应充分给以重视和考虑,对每一仪器均应进行实测。
关于热循环时间的另一个重要考虑是两条引物之间的距离;距离越远,合成靶序列全长所需的时间也越长,前文给出的反应时间是按最适于合成长度500bp的靶序列拟定的。下面就各种温度的选择作一介绍。
1.模板变性温度变性温度是决定PCR反应中双链DNA解链的温度,达不到变性温度就不会产生单链DNA模板,PCR也就不会启动。变性温度低则变性不完全,DNA双链会很快复性,因而减少产量。一般取90~95℃。样品一旦到达此温度宜迅速冷却到退火温度。DNA变性只需要几秒种,时间过久没有必要;反之,在高温时间应尽量缩短,以保持Taq DNA聚合酶的活力,加入Taq DNA聚合酶后最高变性温度不宜超过95℃。
2.引物退火温度退火温度决定PCR特异性与产量;温度高特异性强,但过高则引物不能与模板牢固结合,DNA扩增效率下降;温度低产量高,但过低可造成引物与模板错配,非特异性产物增加。一般先由37℃反应条件开始,设置一系列对照反应,以确定某一特定反应的最适退火温度。也可根据引物的(G C)%含量进行推测,把握试验的起始点,一般试验中退火温度比扩增引物的融解温度TTm低5℃,可按公式进行计算:
Ta = Tm -5℃= 4(G C) 2(A T)-5℃
其中A,T,G,C分别表示相应碱基的个数。例如,20个碱基的引物,如果(G C)%含量为50%时,则Ta的起点可设在55℃。在典型的引物浓度时(如0.2μmol/L),退火反应数秒即可完成,长时间退火没有必要。
3.引物延伸温度温度的选择取决于Taq DNA聚合酶的最适温度。一般取70~75℃,在72℃时酶催化核苷酸的标准速率可达35~100个核苷酸/秒。每分钟可延伸1kb的长度,其速度取决于缓冲溶液的组成、pH值、盐浓度与DNA模板的性质。扩增片段如短于150bp,则可省略延伸这一步,而成为双温循环,因Taq DNA聚合酶在退火温度下足以完成短序列的合成。对于100~300bp之间的短序列片段,采用快速、简便的双温循环是行之有效的。此时,引物延伸温度与退火温度相同。对于1kb以上的DNA片段,可根据片段长度将延伸时间控制在1~7min,与此同时,在PCR缓冲液中需加入明胶或BSA试剂,使Taq DNA聚合酶在长时间内保持良好的活性与稳定性;15%~20%的甘油有助于扩增2.5kb左右或较长DNA片段。
4.循环次数常规PCR一般为25~40个周期。一般的错误是循环次数过多,非特异性背景严重,复杂度增加。当然循环反应的次数太少,则产率偏低。所以,在保证产物得率前提下,应尽量减少循环次数。
扩增结束后,样品冷却并置4℃保存。
二、引物引物设计
要扩增模板DNA,首先要设计两条寡核苷酸引物,所谓引物,实际上就是两段与待扩增靶DNA序列互补的寡核苷酸片段,两引物间距离决定扩增片段的长度,两引物的5’端决定扩增产物的两个5’末端位置。由此可见,引物是决定PCR扩增片段长度、位置和结果的关键,引物设计也就更为重要。
引物设计的必要条件是与引物互补的靶DNA序列必须是已知的,两引物之间的序列未必清楚,这两段已知序列一般为15~20个碱基,可以用DNA合成仪合成与其对应互补的二条引物,除此之外,引物设计一般遵循的原则包括:
1.引物长度根据统计学计算,长约17个碱基的寡核苷酸序列在人的基因组中可能出现的机率的为1次。因此,引物长度一般最低不少于16个核苷酸,而最高不超过30个核苷酸,最佳长度为20~24个核苷酸。这样短的寡核苷酸在聚合反应温度(通过72℃)下不会形成稳定的杂合体。有时可在5’端添加不与模板互补的序列,如限制性酶切位点或启动因子等,以完成基因克隆和其他特殊需要;引物5’端生物素标记或荧光标记可用于微生物检测等各种目的。有时引物不起作用,理由不明,可移动位置来解决。
2.(G C)%含量引物的组成应均匀,尽量避免含有相同的碱基多聚体。两个引物中(G C)%含量应尽量相似,在已知扩增片段(G C)%含量时宜接近于待扩增片段,一般以40%~60%为佳。
3.引物内部应避免内部形成明显的次级结构,尤其是发夹结构(hairpinstructures)。例如:
4.引物之间两个引物之间不应发生互补,特别是在引物3’端,即使无法避免,其3’端互补碱基也不应大于2个碱基,否则易生成“引物二聚体”或“引物二倍体”(Primer dimer)。所谓引物二聚体实质上是在DNA聚合酶作用下,一条引物在另一条引物序列上进行延伸所形成的与二条引物长度相近的双链DNA片段,是PCR常见的副产品,有时甚至成为主要产物。
另外,两条引物之间避免有同源序列,尤为连续6个以上相同碱基的寡核苷酸片段,否则两条引物会相互竞争模板的同一位点;同样,引物与待扩增靶DNA或样品DNA的其它序列也不能存在6个以上碱基的同源序列。否则,引物就会与其它位点结合,使特异扩增减少,非特异扩增增加。
5.引物3’端配对DNA聚合酶是在引物3’端添加单核苷酸,所以,引物3’端5~6个碱基与靶DNA的配对要求必须精确和严格,这样才能保证PCR有效扩增。
引物设计是否合理可用PCRDESN软件和美国PRIMER软件进行计算机检索来核定。
人工合成的寡核苷酸引于最好经过色谱(层析)纯化或PAGE纯化,以除去未能合成至全长的短链等杂质。纯化引物在25%乙腈溶液中4℃保存可阻止微生物的生长;一般情况下,不用的引物应保存在-20℃冰箱中,在液体中引物能保存6个月,冻干后可保存1~2年。
三、DNA聚合酶
在1956年Kornberg等就从大肠杆菌提取液中发现了DNA聚合酶,并且得到了DNA聚合酶Ⅰ纯品。DNA聚合酶Ⅰ是由分子量为109000的一条多肽链构成,此酶可被枯草杆菌蛋白酶分解为两个片段,一个片段分子量为76000,有聚合酶活性,并有3’→5外切酶活力,即Klenow片段(Klenow fragment)。另一个片段分子量为34000,具有5’→’3’外切酶活力。因此,DNA聚合酶具有几种功能:一是聚合作用,以DNA为模板,将dNTP中的脱氧单核苷酸逐个加到3-OH末端。二是有’3’→5’外切酶活力,能识别和消除错配的引物末端,与复制过程中校正功能有关。三是5’→3’外切酶活力,它能从5’端水解核苷酸,还能经过几个核苷酸起作用,切除错配的核苷酸。1985年Mullis 等发明了PCR方法,以Klenow片段完成β-珠蛋白的PCR后,世界上许多实验室就考虑用耐热DNA聚合酶代替Klenow片段进行PCR,使耐热多聚酶的研究得以迅速发展。人们从生活于60℃(B.Stearothermophilus)到87℃(S.Solfatavicus)的许多菌中分离纯化出耐热DNA聚合酶,但有些酶不能耐受DNA变性所需温度,所以无法应用于PCR。
1.Taq DNA聚合酶用Taq DNA聚合酶代替大肠杆菌DNA聚合酶Ⅰ的Klenow片段是使PCR普及应用的关键。Klenow片段不能耐受95℃的双链DNA变性温度,所以每次循环都要加入新酶;而Taq DNA聚合酶可以耐受93~95℃的高温,避免了不断补加多聚酶的繁琐操作,同时使退火和延伸温度得以提高,减少了非特异性产物和DNA二级结构对PCR的干扰,增进了PCR特异性、产量和敏感度,二者相比,其主要区别在于:①Klenow酶的最适温度为37℃,扩增的产物并非全是目的序列,需用探针检测。Taq酶则不仅产率高而特异性也高。它的最适温度为74~75℃。因而使退火温度可以提高,使退火严格性提高,减少错配引物的延伸。②循环后期酶量渐感不足而产生平坡。到达平玻的循环次数,Klenow酶为20个(均用1μg基因组DNA开始)而Taq酶为30个。③延伸片段长度Taq酶为10kb以内,而Klenow酶为400bp以内。
Taq酶由水栖高温菌(Thermusaquatics)YT1蓖株中分离而得。此菌于1969年由Brock分离自美国黄石公园温泉,作为栖热杆菌的标准菌株,其生长温度为70~75℃。最初从中分离到分子量60~68KDa,比活性为2000~8000U/mg的DNA聚合酶。后来Cetus公司的Kary Mullis等又分离到比活为20万U/mg的纯酶,分子量为93910。此种9.4KDa酶的最适温度为75~80℃,与单纯核苷酸的结合率(Kcat)可达150核苷酸(nt)/s酶分子。以M13模板,用富含G C的30bp引物延伸,70℃时Kact>60nt/s;55℃可达24nt/s;37℃时为1.5nt/s,而22℃时低至0.25nt/s。高于90℃时DNA合成活性甚差,这种高温条件下,引物与模板已不能牢固结合。
在PCR反应混合液中,Taq酶于92.5℃,95℃及97.5℃保持其50%活力的时间分别为130、40及5~6min,在50次循环的PCR中当管内最高温度为95℃。每循环为20s时尚可保持65%活力。Taq 酶在95℃的半寿期为40min,故在PCR循环中选用的变性温度,不宜高于95℃。
Taq酶现已可用基因重组的方法生产,商品名为Ampli Taq(Cetus公司)。Taq酶的完整基因长2499bp,在大肠杆菌中表达生产,含832个氨基酸。在氨基酸序列上与大肠杆菌DNA聚合酶Ⅰ有38%是一致的,包括对dNTP结合,引物与模板作用区均存在于Taq酶中。
Taq酶具有依赖DNA合成的5’→’3’外切酶活性,因此,模板上有一段退火的3’-磷酸化的“阻断物”,会被逐个切除而不会阻止来自上游引物链的延伸,而对于5’-32P标记的合成寡核苷酸引物,则无论是单链或是与模板复性,都未发现降解,所以该种活性不会影响PCR结果。Taq酶没有3’→’5’外切酶活性,如果发生dNTP错误掺入,这种酶没有校正能力,因此运用Taq酶进行PCR,产物中点突变较多,对克隆等不太有利。一般错掺率为1.25×10-4~1×10-5(4×dNTPs浓度分别为200μmol/L,Mg2 为1.5mmol/L,在55℃退火)。但不含3’→5’外切酶活性对测序有利。
2.影响酶活力的因素Taq酶的活力受Mg2 离子的影响。用鲱精DNA为模板,总dNTP浓度0.7~0.8mmol/L,Mg2 为2.0mmol/L时激活能力最高。浓度超过此值产生抑制。10mmol/l MgCl2抑制活力达40%~50%。dNTP能与Mg2 结合,故游离Mg2 只是结合后剩余的量。若总dNTP浓度高至4~6mmol/L时,Taq酶活力要降低20~30%,即底物抑制。
dNTP浓度低时PCR产率及特异性均增高,适合于用扩增掺入法标记生物素及放射性元素。当100μlPCR液中含dNTP各40μmol/L时就足以合成2.6μg的DNA(dNTP消耗一半)。
用鲱精DNA,70℃,10min内dNTP的掺入量计算,标准条件为100%。
纯9.4KDa Taq酶不含3’→5’核酸外切酶活力。误掺入率取决于dNTP浓度。但Taq酶具有DNA依赖的链移位5’→3’核酸外切酶活力。对5’→3’32P标记寡核苷酸单链,或与MB模板杂交时均只有极少的降解力。
中等浓度KCl能刺激Taq酶合成活力达50%~60%,最佳KCl浓度为50mmol/L,浓度更高有抑制作用,>200mmol/L的KCl可使酶失活。
加入50mmol/L NH4Cl或NH4Ac或NaCl,可产生中度抑制或无作用。
低浓度尿素、DMSO、DMF或甲酰胺影响不大,吐温20/NP40可消除SDS(0.01%及0.1%)的抑制作用。
3.第二代耐热DNA聚合酶Stoffel片段:Cetus公司的Stoffel将TaqDNA聚合酶的5’→3’外切酶活性片段(N端289个氨基酸)去除,称为stoffel片段。其97.5℃的半衰期从Taq DNA聚合酶的5~6min提高到20min,同时该酶片段也对两个或更多模板位点的扩增反应即复合PCR(Multiplex PCR)更为有利。
VentTMDNA多聚酶:是美国New England Biolabs公司从潜水艇排气孔(Vent)中分离的超级嗜热菌-能生长于98℃中的Thermococcus litoralis中分离纯化得到的,故名Vent酶。它的一些酶学性质较Taq DNA聚合酶更为优越,它能耐100℃高温且2h以上仍有活力,并且具有3’→5’外切酶活性的校正能力,错误扩增的机率比Taq酶降低一倍。后来该公司又从深水潜艇(2010m)排气孔分离的能在104℃生长的Pyococcus菌GB-D株植入Deep Vent DNA聚合酶基因而表达的Deep Vent DNA聚合酶,在95℃的半寿期达23h(Vent酶为6.7h,Taq酶为1h)。
4.RTth逆转录酶(rTth Reverse Transcriptase)目前逆转录-PCR(RT-PCR)的发展很快,所以对耐热的依赖于RNA的DNA多聚酶的研究也有进展。有实验表明Taq DNA多聚酶有依赖于RNA的DNA聚合酶活性,但活性较弱。Cetus公司于1991年推出一种rTth Reverse Tran-scriptase,有很好的依赖于RNA的耐热DNA聚合酶活性和依赖于DNA的耐热DNA聚合酶活性,二种活性分别依赖于Mn2 Mg2 ,这样就可分别控制酶活性。利用该酶只需250ng的总RNA即可有效地进行RT-PCR,得到特异的DNA片段,从而非常有利于逆转录PCR的发展。
耐热DNA聚合酶的研究得到长足的发展,这在PCR发展中起到了重要的作用。相信随着进一步的研究,将使人们对耐热DNA聚合酶的认识和应用更进一步地发展。
我国的PCR研究发展很快,其关键试剂-耐热DNA聚合酶-也已有几个实验室能够分离纯化,如复旦大学遗传学研究所、华美公司、中国医学科学院基础医学研究所。后二者的菌株为Thermus aquaticus YT-1。前者则是从自己筛选的嗜热菌中分离纯化,复旦大学遗传所亦已成功地克隆了该聚合酶的基因并获得了耐热F4DNA聚合酶,其酶学性质非常接近于Taq DNA聚合酶,为中国PCR的开展提供了保证。
四、影响PCR特异性的因素
通过上述内容。可以看出有许多因素可以影响PCR的特异性,在此我们作一归纳,供大家参考:①退火步骤的严格性:提高退火温度可以减少不匹配的杂交,从而提高特异性。②减短退火时间及延伸时间可以减少错误引发及错误延伸。③引物二聚体是最常见的副产品,降低引物及酶的浓度也可以减少错误引发,尤其是引物的二聚化。④改变MgCl2(有时KCl)浓度可以改进特异性,这可能是提高反应严格性或者对Taq酶的直接作用。⑤模板中如果存在次级结构,例如待扩增的片段易自行形成发夹结构时,可在PCR混合物中的4×dNTPs中加入7-脱氮-2’-脱氧鸟苷-5’-三磷酸(7-deaza-2’-deoxyguanosine-5’-trihosphate)(de7GTP)。用de7GTP与dGTP比例为3:1的混合物(150μmol/l de7GTP 50μmol/L dGTP)代替200μmol/l dGTP,则可阻非特异性产物的生成。
五、扩增平坡
扩增反应并不是可以无穷地进行下去的,经过一定的循环周期后需扩增的片段不再按指数增多而逐渐进入平坡;进入平坡的循环次数,取决于起始时存在的模板拷贝数以及合成的DNA总量。所谓平坡就是批PCR循环的后期,合成产物达0.3~1pmol时,由于产物的堆积,使原来以指数增加的速率变成平坦的曲线。造成PCR进入平坡的原因有:引物和dNTP等消耗完毕、Taq酶失活,这几中因素在标准反应中均不会出现。此外,还有几种可能:
1.底物过剩因DNA合成量多于反应液中存在的Taq酶,在100μl反应液中含2.5Utaq酶而DNA合成量达1μg(3nmol脱氧核苷酸)时,开始变为底物过剩。延长延伸时间或添加Taq酶,可以克服之。但不实用,因每进行下一循环就要延长延伸时间一倍及多加一倍Taq酶,才能继续保持指数增长。
2.非特异性扩增产物的竞争与上述情况密切相关,此时不需要的DNA片段与需要的片段同时竞争聚合酶,要克服这一情况是要提高反应特异性,使不需要片段不能大量积聚。
3.退火时产物的单链自己缔合两条单链的DNA片段在退火时除了与引物缔合外,也可以自行缔合,这也会阻止产品增多。当产物浓度到达10pmol/100μl时即可发生此现象,除稀释外无法克服。
4.变性在高浓度产物条件下,产物解链不完全,以及最终产物的阻化作用(焦磷酸化,双链DNA)。
总而言之,PCR的条件是随系统的而异的,并无统一的最佳条件,先选用通用的条件扩增,然后稍稍改变各参数,可以达到优化,以取得优良的特异性和产率。
Ⅲ 标准的聚合酶链式反应过程分为哪三步
(1)DNA变性(90~96℃):DNA双螺旋结构的生物功能在于复制与转录,加热或在碱性条件下可以使DNA双螺旋的氢键断裂,形成单链DNA,称之为DNA变性。解除条件后,变形的单链DNA可以重新结合起来,再形成双链,称之为DNA复性,又叫退火。DNA双链离解一半时温度称为解链温度(Tm)。不同DNA的解链温度不同,取决于DNA中G—C与A—T的含量的区别。G—C间有3个氢键,A—T间有2个氢键,因此G—C比例大的DNA片段解链温度高,一般,G—C含量每增加1%,PCR变性温度增加0.4℃。Tm范围通常一般在85—95℃之间,PCR变性温度选择90~94℃,变性时间为30秒到2分钟;
(2)退火(25~65℃):系统温度降低,引物与DNA模板结合,形成局部双链;
(3)延伸(70~75℃):在Taq酶(在72℃左右最佳的活性)的作用下,以dNTP为原料,从引物的5′端一3′端延伸,合成与模板互补的DNA链。每一循环经过变性、退火和延伸,DNA含量既增加一倍。
DNA聚合酶链式反应(PCR)现在有些PCR因为扩增区很短,即使Taq酶活性不是最佳也能在很短的时间内复制完成,因此可以改为两步法,即退火和延伸同时在60~65℃间进行,以减少一次升降温过程,提高了反应速度。PCR反应扩增出了高的拷贝数后,就要对扩增结果进行检测。荧光素(溴化乙锭,EB)染色凝胶电泳是最常用的检测手段。电泳法检测特异性是不太高的,因此引物两聚体等非特异性的杂交体很容易引起误判。但因为其简捷易行,成为了主流检测方法。近年来以荧光探针为代表的检测方法,有逐渐取代电泳法的趋势。
PCR反应特异性强、灵敏度高、简便、快速,对标本的纯度要求低,不需要分离病毒或细菌及培养细胞,DNA粗制品及RNA均可作为扩增模板。可直接用于临床标本如血液、体腔液、洗漱液、毛发、细胞、活组织等DNA扩增检测。
沙漠地区温差大,平均年温差可达30~50℃,日温差更大,夏天午间地面温度可达60℃以上,若在沙滩里埋一个鸡蛋,不久便烫熟了。夜间的温度又降到10℃以下。由于昼夜温差大,达到60℃,因此,有利于植物贮存糖分,所以沙漠绿洲中的瓜果都特别甜。这还只是指空气温度而言,变化更为剧烈的是沙子表面的温度。在炎热的夏天,干燥的沙子在中午强烈的日光照射之下,其温度可以达到70℃。当夜色降临的时候,沙漠表面沙子的温度便开始下降,甚至可以降到10℃以下,仅一天之内的温度变化,就已经超过70℃了。
沙漠中,虽然气温和地表温度变化剧烈,但地下的温度却比较稳定。比如,同样是在夏天,当表面的沙子一天之内温差的变化达70℃时,在地下40cm深处的温度变化只有5℃左右,而平均只是在25℃左右。在寒冷的冬天,地下的温度也比气温和地表温度高得多。有人曾经测量过,当沙子温度高达66℃时,地面以下46cm的洞内,温度仅为16℃。动物如果能够躲进这个洞穴之中,那将是多么凉爽啊!而且在洞穴内,湿度也比较高,这有助于动物减少体内水分的消耗和散失。
Ⅳ 聚合反应用到醋酸反应釜设备用什么材质的
由于生产工艺、操作条件不尽相同,反应釜分为电加热、蒸汽加热、导热油循环加热,轴封装置分为填料密封、机械密封、磁力密封。搅拌型式有锚式、浆式、涡轮式、推进式、自吸式、框式。 高压釜的常规选材有:06Cr18Ni10(304)、06Cr18Ni11Ti(321)
Ⅳ 制聚合乙烯地反应条件和催化剂
乙醇制乙烯的反应中存在严重炭化现象!!
1
实验中存在的问题
实验室制乙烯常采用乙醇和浓硫酸于170℃时的脱水反应。该实验存在的主要问题是炭化比较严重,给实验造成一些不利影响,主要有以下几点:(1)由于大量乙醇被炭化使乙烯的产气量减少。(2)伴随乙醇炭化产生的大量s02不仅污染教学环境,对乙烯的性质实验也有明显干扰。(3)伴随乙醇炭化还能发生一些更复杂的副反应,有资料称该实验还可能生成h2、ch4、co等气体,致使点燃乙烯气体时火焰颜色明显发生变化,呈现出h2、co等气体燃烧时特有的蓝色,这也影响对乙烯性质的认识。总之,炭化是影响该实验质量和效果的主要问题。
2
消除炭化的思路
从上面分析不难看出,在实验室制乙烯的实验中主要存在两个并行反应,一个是乙醇脱水生成乙烯,一个是乙醇炭化,这两个反应都需,要硫酸的存在。乙醇脱水生成乙烯是非氧化一还原反应,硫酸只起催化剂的作用。乙醇炭化是氧化一还原反应,硫酸主要是氧化剂。前者对硫酸浓度要求不是很严格,后者对硫酸浓度的要求却是很严格的,因为只有达到一定浓度时硫酸才具有氧化性。如果适当控制硫酸的浓度,就有可能做到在保证正常生成乙烯的前提下抑制乙醇炭化反应的发生。
3
消除炭化的方法
从上面分析可以看出,控制硫酸浓度是消除炭化的关键。控制硫酸浓度可以从下面两个方面采取措施。
3.1调整乙醇和醋酸的量比
在实验室制乙烯的反应中乙醇和硫酸的量比为体积比1:3,用这样的混和液进行反应炭化很严重,经常是反应温度未达176℃时就已经开始炭化了,最后混和液中出现许多炭的颗粒。若将乙醇和硫酸的量比改为体积比1:2,硫酸被乙醇稀释使浓度降低更多一些,炭化现象就有可能消除或减轻。实际情况也确实如此,当用这样的混和液进行反应时开始并不炭化,只是反应在进行了一个短时间后才出现炭化现象,比原实验减轻了许多。
3.2用化学反应控制硫酸的浓度
用改变乙醇和硫酸量比的方法并不能彻底消除炭化现象,这是因为在反应过程中乙醇不断被消耗,反应生成的水也在加热条件下不断被蒸发,琉酸的浓度不断增大,当硫酸的浓度增大到一定程度的时候,硫酸又具备了使乙醇发生炭化的条件,炭化现象就又发生了。由此可见硫酸浓度的增大是一个进行性过程,单纯依靠在反应开始时改变乙醇和硫酸量比的方法是不能从始至终消除炭化的,必须增加一个消耗硫酸的反应,使硫酸和乙醇同步减少,这样才有可能彻底消除炭化。这样的反应必须具备两个条件:①反应速度不能过快,若反应速度过快会造成硫酸的过度消耗,影响生成乙烯的反应正常进行。②反应生成物对乙烯的性质无影响。经多实验发现,用大理石和硫酸反应可以达到此目的。常温时大理石和硫酸反应十分缓慢,加热时反应速度加快,但加快的幅度不是很大,基本上可以做到硫酸和乙醇同步减少,使硫酸的浓度保持在一个相对稳定的状态。实际情况也确实如此,当用大理石代替碎瓷片进行反应时,(大理石的用量不能太少),从始至终都不发生炭化,生成乙烯的气流也很乎稳。由于原实验中伴随炭化还发生了其它一些副反应,随着炭化现象的消除.这些副反应带来的不利影响也得到了有效控制,实验质量有明显提高。
Ⅵ 微管反应器原理
微化工系统是以带有微结构元件的化工装备为核心的化工系统,它的突出特点是在微时空尺度上控制流动、传递和反应过程,为实现高效、安全的物质转化提供了基础。微化工系统相关研究起源于20世纪90年代[1],多年来的研究结果表明:微化工设备内流动状态高度可控,液滴和气泡的分散尺度一般在数微米至数百微米之间;具有丰富的多相流型,一些流型中的液滴和气泡结构与尺寸高度均一;由于微尺度下传递距离短、浓度/温度梯度高以及体系巨大的比表面积,微反应器内传热/传质系数较传统化工设备大1-3个数量级[2]。
国内开展微反应器研究已经有十余年时间,在微反应器的设计制造、微混合原理的探索、气相反应、液相反应、纳米颗粒制备等领域得到迅速发展,取得了显著成果[3]。目前从事微反应器相关研究的主要有中国科学院大连物理化学研究所、清华大学、华东理工大学和山东豪迈化工技术有限公司等科研院校和科研单位。
聚合反应对反应器的传热和混合有很高的要求,传统的釜式反应器在这方面的缺陷成为获得高性能聚合产物的瓶颈之一。近年来,微反应器已能够成功应用于多种机理的聚合反应并表现出对传统釜式反应器的显著优势。从当前的发展趋势来看,微反应器在聚合反应中的应用将成为化工和高分子领域的研究热点之一。本文综述了微反应器在不同的聚合反应体系中的应用。
1
自由基聚合
聚合温度对自由基聚合所得产物的分子量和分子量分布有很大影响。因此,对反应体系温度的控制是控制产品质量的关键因素。大部分自由基聚合是较强的放热反应,且反应速度较快。在传统的釜式反应器中,反应器传热和传质能力的不足往往导致反应体系内温度分布不均,从而影响产物的分子量分布。在放热较强的自由基聚合中,使用传热能力强的微反应器可以显著改善反应结果。
Iwasaki等[4]用T形微混合器和内径分别为250μm和500μm的微管式反应器组成微反应器系统(图一),进行了一系列丙烯酸酯单体的自由基聚合。釜式反应器中丙烯酸丁酯的聚合反应产物分子量分布指数(PDI)高达10以上,而相同的反应时间和产率下微混合器中反应产物的PDI可控制在3.5以下,证明微反应器可以有效地控制自由基聚合产物的分子量分布。
图一 丙烯酸酯自由基聚合微反应器装置图
Okubo等[5]在微反应器中进行了苯乙烯的悬浮聚合,反应物和水通过K-M型微混合器形成悬浮液,再经过管式反应器进行聚合[图2(a)]。经过降温可直接在管内得到聚合物颗粒,通过改变流量可以调节聚合物颗粒大小。
微通道中的液滴聚合是一种新兴的聚合方式,其基本原理为在管内利用不良溶剂将反应体系分隔成小液滴,每个小液滴均可看做一个微型反应器。在较小的微通道尺寸下,液滴聚合的混沌混合特性进一步强化了传质效果。Okubo等利用液滴聚合合成了聚苯乙烯和聚甲基丙烯酸甲酯,反应装置见图二(b)。通过调节停留时问和控制两相间溶剂扩散的方法可以实现对聚合产物分子量的控制;与釜式反应器相比,得到的聚苯乙烯和聚甲基丙烯酸甲酯的分子量分布较窄,经过微反应器沉淀得到的聚合物粒子分布也较均一。
图二 苯乙烯自由基聚合实验装置示意图
Wu等[6}在自制的双输入微通道(500μm*600μm)反应器中进行了甲基丙烯酸羟丙酯(HPMA)的ATRP聚合。单体和催化剂从一个通道进入,引发剂从另一入口通入,通过对流量调节可以实现对产物分子量和分子量分布的调控。Wu等[7}随后又设计了结构相似的三输入微反应器,实现了环氧乙烷与HPMA的ATRP共聚合。通过调节反应时间和引发剂相对浓度两种方法均可实现对聚合产物中HPMA含量的调节。Chastek等[8]在微反应器中进行了苯乙烯和一系列丙烯酸酯的ATRP共聚合,通过特定溶剂使产物胶束化,并用动态光散射法对胶束进行了测定,反应装置见图三。
图三 ATRP共聚、胶束化和DLS检测集成装置示意图
2
阴离子聚合
Honda等[9}在由微混合器和微管反应器(内径250μm)组成的微反应器装置中进行了氨基酸-N-羧基-环内酸酐的阴离子聚合。所得产物的分子量分布窄于釜式反应器的聚合产物,并可以通过调节流速来控制产物分子量和分子量分布。如图四所示,流速降低时,反应物停留时问增长,反应程度提高,产物的分子量变大,分子量分布变窄。
图四 不同流速下的GPC流出曲线
3
阳离子聚合
Nagaki等[10]将微反应器与“阳离子池”引发技术结合,进行了一系列乙烯基醚单体的阳离子聚合(图五)。阳离子池的高效引发结合微反应器的快速混合使反应在0.5 s内即可完成,并能很好地控制产物的分子量分布,产物的PDI从釜式反应器的2.25降至1.14。
Ⅶ 六、绘制悬浮聚合的实验装置简图并标出各部分仪器的名称。(6分)
(1)试管(1分) 水槽(1分) (2)③(或酒精专灯)(1分)2KMnO 4 △ K 2 MnO 4 +MnO 2 +O 2 ↑ (2分) 导管口刚有气泡冒出就收属集(或集气瓶事先未装满水等,合理即可)(1分) 分析:根据高锰酸钾制氧气的装置用到的仪器进行选择,用排水法收集氧气时氧气须装满水,待气泡连续均匀冒出时开始收集. (1)仪器名称为试管;水槽 (2)用KMnO 4 制取O 2 需要加热,且试管口要塞棉花团,因此少了酒精灯.用排水法收集氧气时氧气须装满水,待气泡连续均匀冒出时开始收集.收集的氧气不纯可能原因有导管口刚有气泡冒出就收集(或集气瓶事先未装满水) 故答案为:(1)试管; 水槽 (2)③(或酒精灯);2KMnO 4 △ K 2 MnO 4 +MnO 2 +O 2 ↑.导管口刚有气泡冒出就收集(或集气瓶事先未装满水等,合理即可)