❶ 油井采油技术是什么
油井试油并确认具有工业开采价值后,如何最大限度地将地下原油开采到地面上来,实现合理、高产、稳产,选择合适的采油工艺方法和方式十分重要。目前,常用的采油方法有自喷采油和机械采油(见图5-1)。
图5-10射流泵工作原理图
5.射流泵采油装置
射流泵分为地面部分、中间部分和井下部分。其中地面部分和中间部分与水力活塞泵相同,所不同的是水力喷射泵只能安装成开式动力液循环系统。井下部分是射流泵,由喷嘴、喉管和扩散管三部分组成,如图5-10所示。
射流泵的工作原理:动力液从油管注入,经射流泵的上部流至喷嘴喷出,进入与地层液相连通的混合室。在喷嘴处,动力液的总压头几乎全部变为速度水头。进入混合室的原油则被动力液抽汲,与动力液混合后流入喉管,在喉管内进行动量和动能转换,然后通过断面逐渐扩大的扩散管,使速度水头转换为压力水头,从而将混合液举升到地面。
射流泵的特点:井下设备没有动力件;射流泵可坐入与水力活塞泵相同的工作筒内;不受举升高度的限制;适于高产液井;初期投资高;腐蚀和磨损会使喷嘴损坏;地面设备维修费用相当高。
❷ 胜利油区“双低”单元综合治理效果分析及主攻方向
凡哲元邴绍献徐龙云周香翠马妤冯义娜
摘要分析研究了胜利油田“八五”以来“双低”单元(采油速度小于1%,且采出程度小于10%)的变化状况及现状;总结了“九五”期间不同类型油藏“双低”单元治理的主要做法及效果,分析了“双低”单元治理的潜力;部署了“十五”期间“双低”单元治理计划和治理目标,明确了“十五”主攻方向,这对改善“双低”单元的开发效果和提高油田整体开发水平具有重要意义。
关键词胜利油区“双低”单元“双低”单元治理效果评价采收率
一、引言
“八五”以来,胜利油区“双低”单元逐年增加,严重地影响了全油区的开发效果,制约了油田开发水平。从1996年起,油田设立专项资金,开展了“双低”单元专项综合治理工作,效果明显。总结“双低”单元治理的主要做法,分析目前“双低”单元的潜力,提出进一步改善“双低”单元开发效果的主攻方向,对增强油田稳产基础,提高采收率,改善油田开发效果,实现油田开发良性循环具有重要意义。
二、“八五”以来胜利油区“双低”单元变化状况
1990年以来,胜利油区“双低”单元逐年增加,由1990年的71个增加到1999年的163个。从投入开发时间来看,新增加的“双低”单元中有87个单元是“八五”以来新投入开发的,其储量占“八五”以来陆上新建产能块储量的33.7%,主要是因为对其地质认识程度低、储量品位差、注水工作滞后、注采井网不完善、调整不及时等原因造成的。在163个“双低”单元中,动用储量51664×104t,占胜利油区动用储量的16.0%;共有油井1813口,开油井1116口,日产油水平4675t,平均单井日产油水平4.2t,综合含水77.8%,年产油184×104t,占全油区产油量的6.9%;注水井529口,开注水井281口,油水井利用率59.6%,注采井数比1:3;平均采油速度0.35%,平均采出程度5.44%。“双低”单元具有采油速度、采出程度低,单井控制储量高,储量动用状况差,注采井网不完善等特点,同时也说明改善开发效果的潜力较大。
163个“双低”单元分布在除海洋、清河以外的10个采油厂,其中储量绝对值较高的有滨南、河口、纯梁、现河等(表1)。
表1各采油厂“双低”单元分布状况表
三、“九五”期间“双低”单元综合治理效果评价
“九五”期间共治理“双低”单元63个,覆盖储量2.8357×108t。主要对“九五”前四年治理的50个单元进行了分析评价,这些单元分布在胜坨、东辛、渤南、临盘、牛庄等28个油田,主要为稠油出砂、低渗透和复杂断块油藏。“双低”单元总体治理效果明显,采油速度由治理前的0.59%提高到治理后的0.83%,共增加可采储量738×104t,提高采收率3.2%,扩建原油生产能力75×104t,已有17个单元彻底摆脱了“双低”局面。
1.不同类型油藏“双低”单元治理及效果
“九五”期间“双低”单元综合治理的总体做法是实施项目管理、强化组织运行,确保治理工作有序高效开展;深化油藏地质研究,做好“双低”单元治理的前期准备工作;配套完善综合治理工艺,突出工艺技术在“双低”治理中的作用;分油藏类型采取针对性治理措施:稠油出砂油藏采取防砂、降粘等措施,低渗透油藏主要是改善注入水水质,复杂断块油藏以完善注采井网为主。
1)稠油出砂油藏
“九五”前4年共治理稠油出砂油藏单元18个,如埕东油田西区馆下、胜坨油田胜三区东三等。这些“双低”单元主要生产馆陶组(Ng)、东营组(Ed),具有油层埋藏浅(1000~1500m),压实作用弱,固结成岩性差,油层胶结疏松,原油性质稠等特点[1]。因此,油井出砂严重,停产停注井多,开采困难,油水井利用率低,单元开发效果差。陈家庄油田南区、埕东油田埕古13等单元的地面原油粘度达7000mPa.s以上,埕东油田西区馆下每米油层吐砂量高达0.687m3,严重影响了油井正常生产。
针对稠油出砂油藏“稠”与“砂”的问题,开展了一系列的攻关研究,在防砂抽稠采油工艺技术上有了新的突破和发展,探索出一套防砂抽稠综合配套工艺技术,提高了油藏的开发水平。
(1)开展出砂机理研究
孤东油田四区馆上3~4单元,在治理的过程中开展了出砂机理研究,认为油井产量达到某一门限产量之前,油井产出砂仅是填充在岩石骨架中可以移动的充填砂;当超过门限产量后,因地应力变化而引起岩石骨架变性破坏,骨架砂与充填砂同时产出,油井大量出砂。根据油层出砂机理并结合沉积相研究,对不同沉积相油层采取不同的防砂技术:主河道相油层采取地层填砂与井筒机械防砂结合的双重防砂方法;河道边缘相采用地层复射挤稳定剂与绕丝管相结合的复合防砂方法,大大提高了防砂成功率,取得了很好的防砂效果。
(2)地质与工艺密切结合,因井制宜,采取针对性防砂措施
在防砂治砂的过程中,加强了油藏地质研究,充分认识油藏和单井的地质特点及井况,地质与工艺相结合,选择适合油藏和单井地质特点的防砂治砂工艺技术。胜坨油田胜三区东三单元对层数少、油层厚度薄、纵向层间渗透性差异小、口袋大于15m的出砂井,采用覆膜砂(涂料砂)防砂工艺技术;对井况复杂、层数相对较多且需分层防砂的油井主要采用树脂防砂技术;供液能力强、含水较低的油井主要应用绕丝管-砾石充填防砂技术,同时还配套应用其他防砂技术,以提高防砂措施的成功率;新井投产或老井上返采用防砂卡泵生产。此外,还应用AR-4防砂、解堵防砂、金属滤砂管防砂、稳定剂固砂等防砂方法,也取得了较好效果 胜利采油厂.利用综合配套技术,搞好胜三区东三段“双低”单元治理.2000.
孤岛油田针对中16-13井区粉细岩油藏,在防砂工艺配套技术上采取因井制宜、解防结合的防砂治砂策略:对地层能量充足、出砂严重的井实施混排、地填石英砂、覆膜砂封口、砾石绕丝环空充填防砂工艺技术;对单层生产、射孔密度小的井实行复射孔、解堵、化学防砂技术,已形成了针对不同油井特点的解堵防砂工艺技术 孤岛采油厂.孤岛油田馆1+2中16-13井区“双低”单元治理效果总结.2000.
(3)综合运用射孔、防砂、抽稠、稠油解堵、井筒降粘等技术,防砂扶停产井
义东油田沾4区、埕东油田西区馆下等单元由于油稠,出砂严重导致大部分井长期停产,储量动用状况变差,可采储量损失严重。在治理过程中综合运用以下技术:应用深穿透、大孔径、高孔密的射孔技术,增加原油渗流面积,降低油流入井筒的附加阻力,充分发挥油井潜能,为稠油常规开采及其他工艺措施的实施提供有利条件;高泵压、大排量充填式涂料砂防砂、PS防砂、机械防砂等防砂技术,不仅可以提高防砂井的成功率,而且还有较好的解堵效果;根据生产井的井况和原油粘度高低,采用不同的抽油杆、泵型和机型配套模式;在稠油生产过程中,容易在射孔炮眼附近形成蜡质或胶质成分沉积,堵塞油流通道,作业过程中入井液也容易在射孔孔眼形成乳化堵塞,影响油井产能,为充分发挥油井潜能,对近井地带有堵塞的油井可采取微生物采油等稠油解堵技术;开发出HKJ-1型降粘剂,以保持“地层-井筒-泵”的供排协调。
义东油田沾4区综合配套应用以上技术,实行从地层—井筒—地面全方位、多层次、立体的防砂扶井措施,恢复长期停产井10口,初期日增油48.3t,效果明显。
(4)采用蒸汽吞吐热力引效技术,热力启动高粘度油井,提高储量动用程度
为了充分发挥稠油出砂油藏的地下资源优势,采用注蒸汽吞吐热力引效技术,增强油层渗流条件,提高储量动用程度,改善开采效果。该技术特别适用于油层厚度大、储量丰度高,但由于油稠、出砂严重而无法开采的油井。埕东油田埕古13单元油层胶结疏松,出砂严重,原油稠,地面原油粘度平均为5546mPa.s,油井无法正常生产,在部分高粘度井点上利用了此项技术,CN13-6井热力启动后,生产效果较好,转抽后生产正常,已累积产油14474t。
通过前四年的综合治理工作,稠油出砂油藏18个“双低”单元的采油速度由治理前的0.64%提高到治理后的0.86%。已累积增油75×104t,增加可采储量278.1×104t,提高采收率2.62%,取得了明显的治理效果。
2)低渗透油藏
“九五”期间共治理低渗透油藏“双低”单元15个,覆盖储量4209×104t。“双低”单元主要储集层是下第三系沙三段,油层埋藏较深,在2500m以上,储集层渗透率低,砂体连通性差,并且蒙脱石、伊蒙混层等水敏性矿物含量高,遇水易膨胀,堵塞地层,使渗透率下降。由于低渗透油藏储集层发育差,注水开发时对水质要求高,但大多数单元注入水水质不合格,悬浮物固体、机械杂质含量等严重超过行业标准,如五号桩油田桩74单元,空气渗透率仅为6.4×10-3μm2,注入水中含油量30.2mg/L,悬浮物固体含量11.4mg/L,严重超标,污染油层,使地层吸水能力下降,渗流条件变差,采油井供液不足,开发效果差。
针对低渗透油藏开发过程中主要存在问题,“双低”单元治理过程中,从改善注入水水质入手,加强注水配套工艺技术研究,采取油层改造措施,发挥各个环节的整体优势。
(1)利用水质处理技术,改善注入水水质
利用注水精细过滤装置,对注入水进行多级过滤,精细处理污水,改善注入水水质,使处理后水中的悬浮物固体含量、颗粒粒径、含油量等指标达到行业标准。
(2)采用增注技术,提高注水井注入能力
在改善注入水水质的同时,通过改造干线提高泵压,上单体增压泵井口提压,酸化增注等措施,提高注水井注入能力,恢复地层能量。
(3)采用油层改造、油层保护技术,提高产油井产出能力
通过酸化压裂等油层改造措施,解除油层污染,解放油层,同时采取钻井、采油、作业等全过程中的油层保护措施,减少外来因素对油层的污染,提高采油井的产出能力。
通过综合应用以上注水配套工艺技术,同时进一步完善注采井网,提高注采对应率和水驱控制程度,现河庄油田河135、五号桩油田桩74、纯化油田纯92等低效单元在注水水质处理和水井增注工艺技术上有了很大提高,开发效果得到明显改善。现河庄油田河135断块注入水中悬浮物固体含量已有处理前的58.8mg/L下降到处理后2.0mg/L,达到行业标准,采油速度由治理前的0.34%提高到治理后的0.75%,开发效果得到明显改善。
低渗透油藏单元治理效果明显,15个治理单元已累积增油28×104t,增加可采储量169×104t,提高采收率4.01%,增加产能15×104t,采油速度由治理前0.67%的提高到治理后的0.79%。
3)复杂断块油藏
“九五”前4年共治理复杂断块油藏13个单元,包括东辛油田营66、胜坨油田坨15、滨南滨37-363等,具有断层多,断裂系统复杂,断块含油面积小,含油井段长,含油层系多,层间差异大,油水关系复杂等地质特点[2,3],但对其地质认识、尤其是构造认识程度低,造成注采系统难以完善,储量动用程度低,开发效果较差。因此,深化断块油藏的地质认识特别是构造认识,是取得好的治理效果的前提。
(1)充分利用三维地震等技术,深化油藏认识,为编制调整方案做好前期准备
断块油藏治理过程中,充分利用三维地震资料,并结合钻井、测井、生产动态等资料开展精细地质研究,尤其是构造研究,建立精细地质模型,落实构造和储量。东辛油田营66断块利用三维资料综合解释成果,对该块的构造及储量有了新的认识,认为断块内部构造相对简单,仅在腰部有两条近东西的南掉断层,并存在基本无井控制的不连续高点。由于该块构造格局发生了变化,含油面积向西南扩大了0.5km2,新增地质储量70×104t,这些地质新认识为编制调整方案奠定了基础 姜岩.营66双低单元综合治理的做法与效果分析.2000.
(2)完善注采系统,提高储量动用程度
对断块油藏构造形态、储集层发育状况和流体分布有进一步认识后,部署了治理方案,完善注采系统,提高储量动用程度。东辛油田营66块利用新的地质认识成果,在微构造高点钻新井12口,新井投产平均初日产油能力18.1t,并选择老井下电泵提液,提高开采强度。这些治理措施,明显改善了开发效果,采油速度由治理前的0.4%提高到2.86%,增加可采储量68×104t。
复杂断块油藏在治理过程中,通过加强前期地质研究工作,落实构造和储量,治理效果明显,采油速度由治理前的0.38%提高到治理后0.62%,已累积增油52×104t,增加可采储量260×104t,提高采收率4.3%。
2.经济效益分析评价
用增量法对1996、1997年“双低”治理单元进行了经济后评估。从评价结果来看,1996年治理单元中,内部收益率大于12%的单元13个,储量占95.5%;1997年内部收益率大于12%的单元5个,储量占94.5%。大部分治理单元经济效益明显。但也存在着一部分低效益区块,主要原因是这些低效益单元的新井、低效井比例过高,为29%。
另外,从百万吨产能建设投资对比来看,1996年“双低”治理单元的百万吨产能投资为6.1×108元,而同期新区的百万吨产能投资为18.5×108元,“双低”治理单元的投资要远低于新区产能投资。经过对投资构成分析,钻井投资两者差别不大,主要是地面建设投资和公用工程投资“双低”治理单元要大大低于新区产能建设区块。
四、“双低”单元综合治理潜力分析及主攻方向
在总结“九五”以来“双低”单元综合治理做法的基础上,按照“分析有潜力、技术有保障、治理有效益”的原则,对胜利油区163个“双低”单元进行筛选评价,分析其潜力,提出进一步改善“双低”单元开发效果的主要措施和主攻方向。
1.“双低”单元“十五”治理潜力
分析认为1999年底“双低”单元中可治理的有92个,储量2.3445×108t。“十五”期间重点安排治理单元73个,储量1.93×108t,预计增加可采储量460×104t,增加产能45×104t。其中复杂断块油藏35个单元,储量7819×104t,增加可采储量200×104t;稠油出砂油藏17个单元,储量6405×104t,增加可采储量160×104t;低渗透油藏21个单元,储量5056×104t,增加可采储量100×104t。
2.“双低”单元综合治理主攻方向
1)稠油出砂油藏
该类油藏在“双低”单元中占有较大的比例,油稠、出砂是该类油藏治理的难点,也是需要攻关的方向。
(1)加强油层出砂机理研究
胜利油区油藏类型复杂,岩石类型多种多样,不同油藏、沉积相带、不同层位、不同完井方式和不同含水阶段出砂情况各不相同,油层出砂机理较为复杂。根据稠油出砂油藏的出砂特点,开展不同砂岩类型(粉细砂岩和疏松砂岩)的出砂机理研究;因井制宜,开展不同井况和不同沉积相带的出砂机理研究、不同含水阶段(特别是高含水阶段)的出砂机理研究。
(2)完善防砂抽稠配套工艺技术
在目前工艺技术水平的基础上,地质与工艺相结合,油层-井底-井筒-地面四位一体,从油层射孔、井底解堵、防砂、有杆泵抽稠、井筒降粘、地面集输等多层次、多方位,进一步完善防砂抽稠配套工艺技术,提高该类油藏工艺技术应用水平。
(3)开展低廉、高效防砂技术攻关
近几年发展起来的涂料砂防砂、PS防砂等技术,防砂效果较好,但措施费用较高,一定程度上制约了推广和应用。开展低廉、高效的防砂技术攻关,要在延长防砂措施有效期的同时,降低防砂成本。
(4)开展防砂提液技术攻关
目前油井防砂后普遍存在着采液强度下降的问题,影响了单井产量和单元开采效果。开展高采液强度的防砂技术研究,研究出在防砂的同时,采液强度不但不会下降,反而能提高,形成防砂不防液的防砂技术,提高稠油出砂油藏的采油速度。
2)低渗透油藏
该类油藏主要从提高注水井的注入能力和油井的采出能力入手,开展攻关研究。具体工作有以下四个方面。第一,深化低渗透油藏的渗流机理研究。开展低速非线型渗流理论研究、双重介质渗流规律、合理驱动压力梯度、井网适应性等研究,寻求解决“注不进、采不出”的途径,为改善目前低渗透“双低”单元的开发效果提供理论依据。第二,切实加强水质精细处理。对于污水回注的“双低”单元要进行多级精细过滤(采用精细过滤装置),使悬浮物固体含量、颗粒粒径、含油量等指标达到部颁标准;加强注入水与地层的配伍性研究,对于水敏性地层,要采取防膨措施,防止伤害地层。第三,逐步完善高压注水配套技术。在解决注入水水质问题的同时,通过干线提压(泵站升级改造)、井口增压(单体增压泵)、油层改造(酸化压裂)、增注工艺等手段,逐步完善高压注水配套技术,提高注水井注入能力,并把水质精细处理技术和高压增注技术结合起来,发挥整体优势,加强注水,恢复地层能量,彻底解决低渗透油藏注水问题。第四,充分利用油层保护、油层改造和水平井等技术。油水井要采取钻井、采油、作业、注水等全过程的油层保护措施,减少外来因素对地层的污染,并采用油层改造和水平井等技术,提高油藏的注入和产出能力。
3)复杂断块油藏
复杂断块油藏具有断层多、块小、构造复杂等特点,且受地质认识手段的限制,早期投入开发的复杂断块油藏多存在着构造不落实,储集层认识不清等问题,应充分利用三维地震技术,加强精细地质研究,深化对油藏的地质认识。
针对难于完善注采系统的小断块油藏,可进行注CO2和单井吞吐试验和攻关,以提高储量动用程度,挖掘该类油藏的潜力;对含油层系多、含油井段长,层间动用差异大、注采不均衡的断块油藏,可利用分层注水和细分开发层系技术,提高水驱动用程度,改善开发效果。
五、结论
“九五”期间“双低”单元治理效果明显,油区“双低”储量不断增长的趋势得到控制。目前年新增加的“双低”动用储量与治理升级的储量基本处于平衡状态。
不同类型油藏应采取有针对性的治理措施,提高治理效果。稠油出砂油藏主要是选择和应用好防砂抽稠配套技术。低渗透油藏主要是加强水质精细处理、高压注水、防膨解堵、完善注采井网、提高注入产出能力。复杂断块油藏主要是深化地质认识,落实构造和储量,完善注采系统,提高储量动用程度。
主要参考文献
[1]李兴国.陆相储集层沉积与微型构造.北京:石油工业出版社,2000:106~107.
[2]王平,李纪辅,李幼琼.复杂断块油田详探与开发.北京:石油工业出版社,1994:8~9.
[3]程世铭,张福仁.东辛复杂断块油藏.北京:石油工业出版社,1997:3~7.
❸ 气驱应力敏感性实验
实验在室温下进行,实验中应用113型氦孔隙度仪和112型高低渗透率仪按“岩心常规分析方法(SY/T5336-1996)、覆压下岩石孔隙度和渗透率测定方法(SY/T6385-1999)”标准执行。
(一)常规孔渗分析
1.氦孔隙度
样品测试前均在105℃下烘干至恒重。样品颗粒体积用岩心公司的孔隙度仪测得,其原理为波耳定律:
深层高压低渗透油田开发:以东濮凹陷文东油田沙三段油藏为例
颗粒体积计算:
深层高压低渗透油田开发:以东濮凹陷文东油田沙三段油藏为例
式中:P1为参比室中的压力,MPa;Vref为参比室体积,cm3;P2为氦气扩散进岩心柱后的压力,MPa;Vmatrix为岩心柱体积,cm3;Vgrain为样品的颗粒体积,cm3。
柱塞样品总体积由千分尺度量样品的直径和长度计算而得;总体积减去颗粒体积即为孔隙体积。
深层高压低渗透油田开发:以东濮凹陷文东油田沙三段油藏为例
式中:Vp为孔隙体积,cm3;Vb为总体积,cm3。
2.空气渗透率
使用岩心公司的空气渗透率仪对柱塞岩样进行空气渗透率测试。用200psi环压将样品密封在哈斯勒夹持器中,让干燥的空气稳定通过样品,测其进出口压力和空气流速。样品渗透率通过达西公式计算,其表达式为
深层高压低渗透油田开发:以东濮凹陷文东油田沙三段油藏为例
式中:K为渗透率,10-3μm2;Patm为大气压,760mmHg(lmm Hg=133.3224Pa,下同);μ为气体粘度,mPa·s;P1为进口压力,psi;P2为出口压力,psi;Qa为流速,cm3/s;A为截面积,cm2;L为长度,cm。
(二)覆压孔渗分析
1.测试过程
岩心在105℃下烘干至恒重,将样品装入岩心夹持器,建立模拟上覆压力,测量岩石孔隙度、渗透率,然后逐点增加上覆压力,同时测量各上覆压力下的孔隙度、渗透率。覆压增加到最大值后再逐点降低覆压,降压同时测量各压力下的孔隙度、渗透率。
实验在室温25℃条件下进行,最大覆压分别为35MPa和40MPa。
2.实验结果校正
实验测定的孔隙度φ(1)、渗透率ka(1)为静水压力条件,需要校正为单轴压力下的孔隙度φ(2)、渗透率Ka(2),校正步骤如下:
a.应用实验室测定的静水压力条件孔隙度φ(1)、渗透率Ka(1)分别除以常压条件下孔隙度φ(0)、渗透率Ka(0),在同一坐标系下绘制孔隙度变化系数Fφ(1)=φ(1)/φ(0)、渗透率变化系数FKa(1)=Ka(1)/Ka(0)与上覆压力的关系曲线1和曲线2。
b.根据下式计算出单轴向孔隙度φ(2):
深层高压低渗透油田开发:以东濮凹陷文东油田沙三段油藏为例
式中:φ(0)为常压条件下的原始孔隙度,%;φ(1)为静水压力下测定的孔隙度,%;φ(2)为校正后单轴压力下的孔隙度,%。
c.校正后单轴孔隙度φ(2)除以常压条件下孔隙度φ(0),得出单轴向孔隙度变化系数Fφ(2),在孔隙度变化曲线上找出对应A点。
d.由A点垂直向下交渗透率变化系数曲线2于B点,交点B对应的纵坐标值即为单轴向渗透率变化系数FKa(2)。
e.单轴向渗透率变化系数FKa(2)乘以常压下渗透率值Ka(0),即为单轴向渗透率值。
(三)实验结果及分析
实验中共测试及收集样品21块,样品克氏渗透率为(0.37~165)×10-3pm2,平均值为26.93×10-3pm2。定义参数——渗透率百分数=Kpi/K0×100%,孔隙度百分数=φp/φ0×100%。式中:φpi、Kpi为某一净覆压力(pi)下的孔隙度、渗透率;φ0,K0为初始孔隙度、渗透率(pi=0)。
1.渗透率与净覆压力的关系
图4-2-1 渗透率百分数与净覆压力的关系
图4-2-2 渗透率随净覆压力的变化
分析实验结果(图4-2-1,图4-2-2),高渗样品的渗透率百分数与净覆压力的相关程度好于低渗样品,渗透率越高,线性相关性越强。中、高渗储层(K=165×10-3μm2,89×10-3μm2)好于低渗储层(10×10-3μm2<K<50×10-3μm2),特低渗储层(1×10-3μm2<K<l0×10-3μm2)好于超低渗储层(K<1×10-3μm2)。这种趋势在净覆压增加过程尤为明显,这也表明渗透率高储层弹性变形占主导。渗透率越低,解除净覆压其渗透率的恢复程度越差,其原因是低渗储层中刚性颗粒含量低,软、塑性矿物含量高,同时也可能有微裂缝存在(图版4-2-1)。有效应力增加时,软、塑性矿物被重新压实,裂缝、微裂缝闭合,且上述过程的可逆性较差。
图版4-2-1
随净覆压力增大,渗透率呈非线性降低。净覆压力0~15MPa范围内,渗透率随净覆压力的增加急剧降低,渗透率损失大;净覆压力高于20MPa后,渗透率随净覆压力增加降低的趋势变缓并趋于稳定。分析认为,岩石承受净覆压力作用先后经历压实、弹性变形、弹-塑性变形、塑性变形几个过程。从图中也可以看出,岩石渗透率越低,渗透率与净覆压力的线性相关性越弱,渗透率的可恢复程度越差,渗透率损失越大,储层应力敏感性越强。
岩石渗透率随净覆压力的不断增加而减小,且刚开始受到净覆压力时下降的速度较快,净覆压力大干20MPa以后趋于平缓。解除净覆压力,渗透率不能恢复至初始值,且渗透率越低,可恢复程度越差。在有效应力作用下,原来处于张开状态的喉道缩小变形,并趋于闭合。地层岩石为不均匀各向异性介质,随净覆压力增加,刚性颗粒发生弹性变形,塑性颗粒重新压实。弹性形变主要表现为岩石骨架或孔隙的弹性压缩。压实变形主要表现为柔性、塑性颗粒的变形及脆性颗粒的破坏等。解除净覆压力,已缩小变形或趋于闭合的喉道因颗粒的压实变形恢复不到初始状态,造成渗透率的不完全恢复。分析中发现净覆压增加过程,早期渗透率下降较快(渗透率越低,越明显)的原因是此过程中微裂缝闭合及岩石的重新压实占主导作用,而后渗透率下降较慢岩石发生弹性变形。文东油田原始地层压力系数高达1.71~1.88,储层岩石处于欠压实状态。岩心从井筒中取出,地层压力释放,岩石颗粒更加疏松、膨胀。应力敏感性实验中,低围压阶段,颗粒的压缩、压实程度较大。
净覆压力解除过程中净覆压力与渗透率的相关性好于净覆压力增加过程中净覆压力与渗透率的相关性(渗透率越低越明显。渗透率越低,微裂缝越发育,微裂缝的可恢复性差,即微裂缝的弹性变形差。),相关性好的过程说明弹性变形占优势,微裂缝欠发育。
净覆压力由1.38MPa增至20MPa,岩心气测渗透率损失率多为15%~30%。净覆压力由1.38MPa增至40MPa时,渗透率损失率为15%~35%。渗透率减小主要集中在20MPa以前,净覆压超过20MPa后渗透率变化量很小。
2.孔隙度与净覆压力的关系
由实验结果得出净覆压力增加及降低过程的孔隙度百分数(图4-2-3)。随净覆压力增大,孔隙度呈非线性降低。在有效压力0~15MPa范围,孔隙度随有效压力的增加急剧降低,孔隙度损失大;当净覆压力高于20MPa,孔隙度随净覆压力增加降低的趋势变缓;当有效压力继续增大,孔隙度趋于稳定。分析认为,当净覆压力超过一定值后,岩石颗粒压缩、压实基本结束,颗粒的压缩变形空间较小,孔隙度随净覆压力的增加降低不明显。
净覆压力增加及降低过程中,孔隙度参数与净覆压力的相关关系好于此过程中渗透率与净覆压力的相关关系。这也说明净覆压力变化过程中孔隙的弹性变形好于喉道的弹性变形。即孔、喉组成的变形介质系统中喉道的塑性形变较强,而孔隙的弹性形变较强。砂岩受压时,最先被压缩的是喉道,而非孔隙。随净覆压力增加,未闭合的喉道数越来越少。渗透率不断降低,下降趋势逐渐变缓。
由图4-2-1,图4-2-2可知,当有效压力变化时,孔隙度、渗透率随净覆压力的变化具有不均衡性,净覆压力较低时变化幅度较大。净覆压力变化时,渗透率变化远远高于孔隙度的变化(图4-2-3,图4-2-4),这说明渗透率对净覆压力变化的敏感程度高于孔隙度。特别是较低净覆压力范围,渗透率随净覆压力增大而降低的幅度更大。储层岩石是一种不均匀介质,故受有效应力作用时发生不均匀变形。
净覆压力由1.38MPa增至20MPa时,孔隙度损失率多为5%~10%;净覆压力由1.38MPa增至40MPa时,孔隙度损失率多为6%~12%。孔隙度的减小主要集中在20MPa以前,净覆压力超过20MPa以后其变化量很小(图4-2-4)。
比较相同净覆压力下的渗透率损失率与孔隙度损失率发现,渗透率损失率明显高于孔隙度损失率(图4-2-5)。即由孔、喉组成的变形介质系统中,渗透率对净覆压力的反映更加敏感。
由文东油田沙三中油藏的实际特点,实际油藏的应力~应变关系与图4-1-1c较为接近。
图4-2-3 孔隙度百分数与净覆压力的关系
图4-2-4 孔隙度损失率与净覆压力的关系
3.渗透率和孔隙度损失的不可逆性
深层高压低渗油藏开发,随地层压力降低,储层逐渐受到净覆压力(有效压力)的作用,渗透率不断下降,油井产量下降。当生产压差增加(油井井底压力降低)到一定程度后,随着流体的采出油井产量不是上升反而下降。这是因为储层孔隙流体压力降低,作用在岩石骨架上的有效应力增加,压缩岩石发生变形,储层渗透性尤其是近井地带大幅度降低,渗流能力变差,采油指数大幅下降。该变化过程是不可逆的,如图4-2-1~图4-2-4所示,深层高压油藏开发渗透率和孔隙度的应力敏感性损失具有明显的不可逆性。
图4-2-5 净覆压力增加过程渗透率百分数与孔隙度百分数
由图4-2-1,图4-2-2可知,储层岩心的气测渗透率随净覆压力的增大呈非线性递减。在净覆压力由40MPa降至15MPa过程中,渗透率逐渐恢复,但渗透率恢复曲线在其降低曲线之下。将加载-卸载循环过程初始状态下岩心渗透率值与有效压力由40MPa降至1.5MPa后的渗透率值之差称为渗透率不可逆损失量。文13西储层岩心气测渗透率不可逆损失量为(1~6)×10-3μm2,渗透率不可逆损失率为4%~10%。
由图4-2-3,图4-2-4可知,储层岩心气测孔隙度随净覆压力的增加呈非线性递减。净覆压力由40MPa降至1.5MPa过程中,孔隙度逐渐恢复,但低于对应净覆压下的初始孔隙度值。图4-2-3,图4-2-4表明,文13西储层岩心气测孔隙度不可逆损失量一般低于2%。孔隙度的应力敏感性损失远远小于渗透率的应力敏感性损失。储层渗透率和孔隙度的应力敏感性损失源于储层骨架受力发生不均匀变形所致。
深层高压油藏开发,净覆压力增加相当于油井井底压力降低。所以,利用气驱和水驱过程中有效压力增加和降低过程可以分析异常高压油藏弹性开采和注水开采特征[103-105]:
a.弹性开采过程油井井底压力降低,形成生产压差,生产压差越大,即油井井底压力越小,初期原油产量越高。但是,弹性开采阶段如果生产压差过大(井底压力过低),井底附近油藏有效压力增加过快、过大会导致其渗透率的损失过大,油井产量和产能都会急剧降低。如果控制生产压差生产,初期产量不会太高,但也不会出现产量和产能急剧下降的现象。适当小的生产压差条件生产,弹性开采控制的区域更大、总产油量高、弹性开采的采收率也较高。因此,弹性开采(包括注水开采)中,不能过分追求初期产量,必须合理控制生产压差。
b.注水开采,油藏孔隙压力逐渐升高(尤其是近井附近),渗透率随之恢复。但如果弹性开采阶段油藏压力下降过大、过快,其有效压力高于弹性变形的临界压力,即使压力恢复到原始油藏压力,渗透率也不可能恢复到初始值。如果生产中出现注水井压力非正常降低将会导致注水井附近油藏产生不可逆的渗透率损失,尤其在裂缝性油藏注水开发中,这种渗透率不可逆损失更为严重。这是深层高压低渗油藏注水能力低的一个原因。
4.加压方式对渗透率变化的影响
为研究深层高压低渗油藏地层压力下降速度及地层压力恢复速度对储层物性的影响,实验室在注入速度一定的情况下,通过快速和慢速加压实验、慢速连续加压-恢复循环实验模拟深层高压油藏开发中不同有效压力下储层渗透率的变化。
(1)有效压力变化速度对渗透率损失的影响
采用与气测渗透率相同的装置对岩心进行快速和慢速加压实验,以分析有效压力(净覆压力)变化速度对储层的伤害。为增加可对比性,选择同一口井、同一深度点的岩心W13-281(2-1),w13-281(2-2)进行实验。对W13-281(2-1)进行快速加压和恢复实验,有效压力为1.5,20和40MPa;对W13-281(2-2)进行慢速加压和恢复实验,有效压力为1.5,5,10,15,20等5MPa间隔一直增大到40MPa。实验结果如图4-2-6所示。
图4-2-6 有效压力变化速度对渗透率损失的影响
分析可知,有效压力增加速度对岩心渗透率影响明显。有效压力快速增至40MPa,渗透率损失率为13.3%(W13-281(2-1)).有效压力慢速增至40MPa,渗透率损失率为12.2%(W13-281(2-2))。有效压力降低速度对岩心渗透率恢复影响也较大。有效压力快速增加的岩心W13-281(2-1)在有效压力降低至1.5MPa后,其渗透率损失率为7.7%;而有效压力缓慢增加的岩心W13-281(2-2)在有效压力降至1.5MPa后,其渗透率损失率为4.6%。可见,有效压力快速变化所造成的渗透率不可恢复损失大于有效压力缓慢变化造成的渗透率不可恢复损失,这与图4-1-1c相吻合。有效压力变化速率决定应变率的高低,有效压力快速变化导致高应变率,有效压力慢速变化导致低应变率。
根据以上研究结果,深层高压低渗油藏开采中井底压力从较高水平缓慢降至生产压力有利于减小储层渗透率的应力敏感损害。因此,深层高压低渗油藏开发应合理控制采油速度、缓慢降低油层压力,以减小渗透率损失、提高油藏最终采收率。
(2)慢速连续加压-恢复循环实验
通过减小有效压力的方法模拟地层压力恢复过程,通过“连续加压-恢复循环实验”模拟油藏实际开采中的连续关井恢复地层压力过程。实验中以氮气为流动介质,所用实验装置与气测渗透率相同。
增压过程有效压力点依次为1.5,5,10,15,20,25,30,35,40MPa。加压过程按设计的有效压力点依次加压到该有效压力值,然后按相反顺序降低有效压力至初始值,再进入下一个加压-降压循环。图4-2-7给出了203-35(2-2)岩心连续循环加压渗透率的变化曲线。由图4-2-7可知,第一次加压渗透率下降幅度大,且有效压力松弛后,渗透率恢复程度小。这是因为第一次增压过程中存在地层压实和压缩双重作用,而以地层压实为主。随有效循环数不断增加,渗透率下降幅度逐渐减小,且有效压力降低后,渗透率恢复程度增加。第二次及第二次以后的增压过程地层压实已经完成,以地层压缩为主。故每一次增、减压渗透率的恢复程度都优于前一次。在围压升高初期,渗透率下降幅度大。随围压松弛渗透率恢复程度小。随围压循环数不断增加,渗透率下降幅度逐渐减小。降围压松弛后,渗透率恢复程度增加。
图4-2-7 岩心203-35(2-2)连续循环加压
经过六次循环,203-35(2-2)岩心加压到30MPa,其渗透率损失率为9.2%(这个值并不大)。经过六次增减压循环,岩石基本可以看做是弹性体(本体变形占绝对优势)。油田开发实践证明,如果油田开发初期地层能量释放过快就会引起近井地带渗透率显著下降,并且恢复程度小。通过频繁关井并不能从根本上减小由于地层压力下降所造成的地层伤害。也就是说,如果某一生产压力造成地层伤害,关井后进行压力恢复,然后再次以相同的生产压力开采,还会造成更严重的地层伤害。
因有效应力加载过程岩石存在重新压实及压缩过程,故储层应力敏感性评价应采用卸载曲线(卸载曲线更接近于弹性变形过程)。砂岩在应力作用下由弹性向塑性转变的转化应力一般超过100MPa,油气藏开发中涉及的有效应力范围一般低于100MPa,基本属于压实、压缩背景上的弹性变形过程。
5.应力敏感的时间效应
岩石受到应力作用需要经过一段时间才能完成全部变形。氮气驱实验中测定净覆压力作用不同时间后的渗透率,从而确定渗透率变化达到稳定的时间,即岩心的形变时间。为表征特定压力条件下岩心渗透率随加压时间的变化,定义不同时刻渗透率与稳定渗透率之比为渗透率比值。W13-358(4-1)样品(Kg=41.1×10-3μm2)的“时间效应”如图4-2-8所示。渗透率在不同有效压力作用下随时间的增加,变化幅度不断减小,并逐渐趋于某一稳定值。有效压力为20MPa,渗透率达到稳定时间为2.5小时;有效压力为40MPa,5.0h后渗透率仍未稳定。储层变形具有蠕变特性,有效压力越高,渗透率达到稳定所需的时间越长。
图4-2-8 渗透率变化的时间效应
(四)应力敏感性评价结果
以表4-2-1的6块常规气测应力敏感性样品为例探讨气测应力敏感性结果。实验数据如表4-2-1,表4-2-2,表4-2-3和图4-2-9所示。根据储层应力敏感性评价标准(敏感指数SI<0为负敏感;SI<0.1为弱敏感;SI=0.1~0.3为中等敏感;SI>0.3为强敏感;SI>0.5为超强敏感),气驱实验中储层应力敏感性为中等-强敏感。
表4-2-1 实验岩心编号与基本参数
表4-2-2 净覆压力与渗透率的关系实验数据
表4-2-3 净覆压力与孔隙度的关系实验数据
图4-2-9 净覆压力与物性的关系图
❹ 提高采收率技术是什么
我国多数油田处于注水采油的晚期,采出液体含水量高达95%,注水采收率不到40%,有一半以上的石油仍然留在地下无法采出。为减缓这些油田的衰老速度,维持我国原油稳产,减少对国外原油的依赖程度,进一步提高油藏采收率,必须进行三次采油。三次采油也称“强化采油”,是通过向油层注入化学物质、蒸汽、混相气,或对油层采用生物技术、物理技术来改变油层性质或油层中的原油性质,提高油层压力和石油采收率的方法。
我国克拉玛依油田早在1958年就开展三次采油研究工作,并进行了火烧油层采油。20世纪60年代初,大庆油田一投入开发,就开始了三次采油研究工作,先后研究过CO2水驱、聚合物溶液驱、CO2混相驱、注胶束溶液驱和微生物驱。70年代后期,我国对三次采油的研究逐渐重视起来,玉门油田开展了活性水驱油和泡沫驱油。80年代,大港油田开展了碱水驱油研究工作。90年代,大庆、胜利、大港等油田对聚合物驱油都开展了研究,相继提出了三元复合驱及泡沫复合驱等提高石油采收率新技术。其中聚合物驱油技术已工业化推广,三元复合驱油技术也在扩大化工业试验阶段。这些新技术的研究和应用,极大地提高了我国油田的原油采收率。
本节主要介绍化学驱油技术、气体混相驱油技术、热力采油技术、微生物采油技术、物理采油技术等提高油气采收率技术。
一、化学驱油技术
化学驱油技术又叫“改良水驱”,是指在注入水中加入一种或多种化学药剂,改变注入水的性质,提高波及系数和洗油效率,提高采收率的技术。根据所加入的化学药剂的不同,化学驱油技术可分为以下几种方法。
(一)聚合物驱油
聚合物是高分子化合物,它由成千上万个叫作单体的重复单元所组成,其相对分子质量可达200万及以上。聚合物具有增大水的黏度的性能。
聚合物驱油是把聚合物添加到注入水中,提高注入水的黏度,降低驱替介质流度,降低水油流度比,提高水驱油波及系数的一种改善水驱方法。该技术已成为保持油田持续高产及高含水后期提高油田开发水平的重要技术手段。如大庆油田主力油层水驱采收率在40%左右,采用聚合物驱油技术可比水驱提高采收率10%以上。
驱油用聚合物主要有两种:一种是人工合成的聚合物,主要是由丙烯酰胺单体聚合而成的聚丙烯酰胺(PAM),所以聚合物驱有时也简写成PAM驱;另一种是天然聚合物,使用最多的是黄原胶,也称聚糖或生物黄原胶。国内外矿场试验绝大多数用的是部分水解聚丙烯酰胺,它的水溶性、热稳定性和化学稳定性都比较好。
聚合物驱油机理是:聚合物溶解在水中,增加了水的黏度;在井底附近的地层中,水流速度高,聚合物分子呈线形流动;在远离井底的地层中流速慢,聚合物分子卷曲呈线团状或球状而滞留在油层孔隙喉道中,降低了水相渗透率,从而降低了油水流度比,提高了波及效率;聚合物分子的官能团(如酰胺基)可部分吸附在岩石孔隙表面,使聚合物分子部分伸展在水中,阻滞了水的流动(见图6-14)。因此,聚合物的加入,降低了水油流度比,不仅提高了平面波及效率,克服了注入水的“指进”(驱替前缘成指状穿入被驱替相的现象),而且也提高了垂向波及效率,增加了吸水厚度。
(二)表面活性剂驱油
表面活性剂是指能够在溶液中自发地吸附于两相界面上,少量加入就能显著降低该界面自由表面能(表面张力)的物质,例如烷基苯磺酸钠、烷基硫酸钠等。表面活性剂驱油的主要机理是降低油水界面张力,改变岩石孔隙表面的润湿性,提高洗油效率。
图6-14聚合物驱油提高采收率示意图
由于地层水含有的盐种类较多,且各油田地层水所含的盐类也各不相同,因此,要选择与地层水相适应的活性剂,否则收不到预期的效果。即使是有效的表面活性剂,在表面活性剂驱油过程中也存在着两个较突出的问题:一是表面活性剂分子会被岩石表面或油膜表面吸附,导致表面活性剂在驱油过程中的沿途损失,经过一段距离后,注入水中的表面活性剂含量将大量减少,作用就非常微弱以致消失;另一个问题是表面活性剂水溶液的流度与水差不多,不能提高波及系数。
表面活性剂驱油,从工艺上讲与注水并没有什么差异,只是把注入水改为表面活性剂体系,即注入一定浓度的表面活性剂溶液,目的是提高洗油效率。目前表面活性剂驱油大体有两种方法:一种是以浓度小于2%的表面活性剂水溶液作为驱动介质的驱油方法,称为表面活性剂稀溶液驱,包括活性水驱、胶束溶液驱;另一种是用表面活性剂浓度大于2%的微乳液进行驱油,称为微乳液驱。
(三)碱水驱油及三元复合体系驱油
碱水驱油是将比较廉价的碱性化合物(如氢氧化钠)掺加到注入水中,使碱与原油的某些成分(如有机酸)发生化学反应,形成表面活性剂,降低水与原油之间的界面张力,使油水乳化,改变岩石的润湿性,并可溶解界面油膜、提高原油采收率的方法。可见,碱水驱油实质上是地下合成表面活性剂驱油。
在碱水驱油中,可以作为碱剂的化学剂主要有氢氧化钠、原硅酸钠(Na4SiO4)、氢氧化铵、氢氧化钾、磷酸三钠、碳酸钠、硅酸钠(Na2SiO3),以及聚乙烯亚胺。在上述化学试剂中,氢氧化钠和原硅酸钠的驱油效果最好,而且经济效果也比较好,此即人们通常所说的“苛性碱水驱”。
碱水驱油机理有以下几个方面:降低界面张力;油层岩石的润湿性发生反转;乳化和捕集携带作用;增溶油水界面处形成的刚性薄膜。
碱水驱油方法的工艺比较简单,不需增加新的注入设备,相对于其他化学驱油来说,成本比较低。对于注水油田,只要根据确定的碱浓度,向注入水中加入一定量的碱,就很容易转变为碱水驱方法采油。但这种方法对于大部分油田效果并不明显,其主要原因是碱虽然可以降低界面张力,但界面张力的降低程度明显受原油性质、地层条件的影响。
三元复合体系驱油是指在注入水中加入低浓度的表面活性剂(S)、碱(A)和聚合物(P)的复合体系驱油的一种提高原油采收率方法。它是20世纪80年代初国外出现的化学采油新工艺,是在二元复合驱(活性剂—聚合物;碱—聚合物)的基础上发展起来的。由于胶束—聚合物驱在表面活性剂扫过的地区几乎100%有效地驱替出来,所以近些年来,该方法无论是在实验室还是矿场实验都受到了普遍重视。但由于表面活性剂和助剂成本太高,该方法一直没有发展成为商业规模。ASP三元复合体系所需要表面活性剂和助剂总量仅为胶束—聚合物驱的三分之一,其化学剂效率(总化学成本/采油量)比胶束—聚合物驱高。大庆油田室内研究及先导性矿场试验表明,三元复合体系驱油可比水驱提高20%以上的原油采收率。
二、气体混相驱油技术
混相,简单的含义是可混合的。而混相性是指两种或两种以上的物质相能够混合而形成一种均质的能力。如果两种流体能够混相,那么将它们掺和而无任何界面,如水和酒精、石油和甲苯相混合均无界面。
混相驱油法就是通过注入一种能与原油呈混相的流体,来排驱残余油的办法。气体混相驱油是以气体为注入剂的混相驱油法。其机理是注入的混相气体在油藏条件下与地层油多次接触,油中的轻组分不断进入到气相中,形成混相,消除界面,使多孔介质中的毛管力降至零,从而降低因毛细管效应而残留在油藏中的石油。从理论上讲,它的微观驱油效率达100%;从矿场应用上讲,它对于低渗透黏土矿物含量高的水敏性油层更适用。
气体混相驱油的方法很多,按照注入的驱替剂的气体类型,可把气体混相驱油分为两大类,即烃类气体混相驱油和非烃类气体混相驱油。
早在20世纪40年代,美国就曾提出向地层注高压气(以注甲烷气为主)的气体混相驱油法。但由于它对原油的组成、油藏条件、地面设备要求较高而未得到推广。鉴于天然气中轻烃组分是原油的良好溶剂,50年代又提出了以液化石油气等其他烃类气体为混相剂的气体混相驱油,并在室内研究的基础上进行了大量的矿场实验。大约到1970年,人们对烃类气体混相驱油的兴趣达到了高潮。但是,随着烃类气体价格的急剧上涨,油藏工程师及研究者们不得不寻求更经济的办法。因此,70年代以后,CO2混相驱迅速发展起来,并成为目前重要的气体混相驱油方法之一。
三、热力采油技术
稠油亦称重质原油,是指在油层条件下原油黏度大于50mPa·s,或者在油层温度条件下脱气原油黏度大于100mPa·s,且在温度为20℃时相对密度大于0.934的原油。根据黏度和相对密度的不同,稠油又可分为普通稠油、特稠油和超稠油。我国稠油划分标准见表6-2。
表6-2我国稠油的划分标准
①指油层条件下黏度,其余指油层条件下脱气原油黏度。
指标分类第一指标第二指标黏度,mPa·s相对密度(20℃)普通稠油50①(或100)~10000>0.92特稠油10000~50000>0.95超稠油>50000>0.98
我国稠油资源丰富,分布很广,目前已在很多大中型油气盆地和地区发现众多的稠油油藏。大部分稠油油藏分布在中—新生代地层中,埋藏深度变化很大,一般在10~2000m之间。新疆克拉玛依油田九区浅层稠油油藏埋藏深度在150~400m之间,红山嘴浅层稠油油藏深度在300~700m之间。在全国范围来看,绝大部分稠油油藏埋藏深度为1000~1500m。稠油油藏具有原油黏度高、密度大、流动性差、在开采过程中流动阻力大的特点,难于用常规方法进行开采,通常采用降低稠油黏度、减小油流阻力的方法进行开采。由于稠油的黏滞性对温度非常敏感,随着温度的升高,稠油黏度显著下降,所以热力采油已成为强化开采稠油的重要手段。我国辽河油田、胜利油田、新疆克拉玛依油田已广泛应用。
热力采油是通过加热油层,使地层原油温度升高、黏度降低,变成易流动的原油,来提高原油采收率。根据热量产生的地点和方式不同,可将热力采油分为两类:一类是把热量从地面通过井筒注入油层,如蒸汽吞吐采油、蒸汽驱采油;另一类是热量在油层内产生,如火烧油层。
(一)蒸汽吞吐采油
蒸汽吞吐采油是指在一定时间内向油层注入一定数量的高温高压湿饱和蒸汽(锅炉出口蒸汽压力在10~20MPa之间,蒸汽温度为250~300℃),关井一段时间使热量传递到储层和原油中去,然后再开井生产。由此可见,蒸汽吞吐采油可分为注汽、焖井及采油三个阶段。从向油层注汽、焖井、开井生产到下一次注汽开始时的一个完整过程叫一个吞吐周期。蒸汽吞吐采油投资较少,工艺技术较简单,增产快,经济效益好。
1.注汽阶段
注蒸汽作业前,要准备好机械采油设备,油井中下入注汽管柱、隔热油管及耐热封隔器,见图6-15。将隔热油管及封隔器下到注汽目的层以上几米处,尽量缩短未隔热井段,通过注汽管柱向油层注汽。此阶段将高温蒸汽快速注入到油层中,注入量一般在千吨当量水以上(每米油层一般注入70~120t蒸汽),注入时间一般几天到十几天。
图6-18反向燃烧法示意图
四、微生物采油技术
微生物采油技术,全称微生物提高石油采收率(Microbial Enhanced Oil Recovery,MEOR)技术,是21世纪出现的一项高新生物技术。它是指将地面分离培养的微生物菌液和营养液注入油层,或单纯注入营养液剂或油层内微生物,使其在油层内生长繁殖,产生有利于提高采收率的代谢产物,以提高油田采收率的采油方法。
(一)微生物驱油机理
(1)微生物在油藏高渗透区的生长繁殖及产生聚合物,使其能够选择性地堵塞大孔道,提高波及系数,增大扫油效率。
(2)产生气体,如CO2、H2和CH4等,这些气体能够使油层部分增压并降低原油黏度。
(3)产生酸。微生物产生的酸主要是低相对分子质量有机酸,能溶解碳酸盐,提高渗透率。
(4)产生生物表面活性剂。生物表面活性剂能够降低油水界面张力。
(5)产生有机溶剂。微生物产生的有机溶剂能够降低界面张力。
(二)微生物采油特点
(1)微生物以水为生长介质,以质量较次的糖蜜作为营养,实施方便,可从注水管线或油套环形空间将菌液直接注入地层,不需对管线进行改造和添加专用注入设备;(2)微生物在油藏中可随地下流体自主移动,作用范围比聚合物驱大,注入井后不必加压,不损伤油层,无污染,提高采收率显著;(3)以吞吐方式可对单井进行微生物处理,解决边远井、枯竭井的生产问题,提高孤立井产量和边远油田采收率;(4)选用不同的菌种,可解决油井生产中的多种问题,如降黏、防蜡、解堵、调剖;(5)提高采收率的代谢产物在油层内产生,利用率高,且易于生物降解,具有良好的生态特性。
总之,微生物采油具有成本低、工序简单、应用范围广、效果好、无污染的特点,越来越受到重视。
五、物理采油技术
物理采油技术是利用物理场来激励和处理油层或近井地带,解除油层污染,达到增产、增注和提高油气采收率的新技术。目前,声波采油技术、微波采油技术、电磁加热技术的理论研究已达到成熟阶段。
物理采油技术具有以下特点:适应性强、工艺简单、成本低、效果明显;可形成复合技术,对油层无污染;可用于高含水、中后期油田提高采收率;可用于含黏土油藏、低渗透油藏、致密油藏、稠油油藏。
物理采油技术包括人工地震采油技术、水力振荡采油技术、井下超声波采油技术、井下低频电脉冲采油技术、低频电脉冲技术。下面主要介绍人工地震采油技术和水力振荡采油技术。
(一)人工地震采油技术
人工地震采油技术是利用地面人工震源产生强大震场,以很低频率的机械波形式传到油层,对油层进行震动处理,提高水驱的波及系数,扩大扫油面积,增大驱油效率,降低残余油饱和度。
1.采油机理
(1)加快油层中流体的流速;
(2)降低原油黏度,改善流动性能;
(3)改善岩石润湿性;
(4)清除油层堵塞及提高地层渗透率;
(5)降低驱动压力。
2.特点
(1)不影响油井正常生产,不需任何井上或井下作业,避免了因油井作业造成的产量损失;
(2)一点震动就可大面积地处理油层,波及半径达400m,在波及面积上油井有效率达82%;
(3)适应性强,对各种井都有效;
(4)对油层无任何污染,具有振动解堵、疏通孔道的作用;
(5)节省人力物力,投资少,见效快,效益高,简单易行。
(二)水力振荡采油技术
水力振荡采油技术是利用在油管下部连接的井下振荡器产生水力脉冲波,通过脉冲波在油层中的传递,来解除注水井、生产井近井地带的机械杂质、钻井液和沥青质胶质堵塞,破坏盐类沉积,并使地层形成裂缝网,增大注水井吸水能力,改善油流的流动特性。振动波对地层中原油产生影响,降低原油黏度。
❺ 为什么说三次采油提高采收率前景一片光明
聚合物驱油 聚合物驱油属于三次采油技术,它的主要机理是扩大水驱的波及体积,通过注水井注入0.4~0.6倍孔隙体积的聚合物段塞,从而提高了水的黏度,减少水驱油过程水的指进的不利影响,提高驱油效率。大庆油田已经成为我国最大的实施聚合物驱油基地,1996年开始了聚合物驱大面积推广应用,喇嘛甸、萨尔图、杏树岗三个老区地质储量占大庆油田总储量92.7%,年产油量占大庆油田年总产油量88.26%。其产量构成可分为两部分:聚合物驱产油820万吨,占17.05%;水驱采油量3990万吨,占82.95%。根据萨尔图的中区西部注聚合物现场试验,聚合物驱比水驱采收率提高7.5%~12%,平均每吨聚合物增产油209吨。注聚合物初期,注入压力普遍上升比较快,当近井地带油层对聚合物吸附滞留达到平衡后,注入压力趋于稳定,当转入后续注水后,注入压力开始下降,注入压力上升幅度随注采井距和注入强度增大而增加,反映出注聚合物驱应有合理的注采井距和油层要有一定的渗透率。聚合物驱油见效后,含水大幅度下降,产油量上升。在中区西部现场注聚合物前后钻了两口相距30米的密闭取心井,岩心资料表明,萨Ⅱ1-3层水洗厚度增加了50%,葡Ⅰ1-4层水洗厚度增加了48%。目前大庆、大港、胜利等几个注聚合物试验区的筛选条件基本是埋藏深度小于2000米、渗透
微生物周期驱结果分析中国许多油田如吉林、大庆、中原、华北、青海和辽河等都进行过微生物采油现场试验,目前还主要是限于一些单井吞吐试验,但都得到明显的效果。大庆油田试验的几个菌株的降黏率都达到28%~34%,室内实验采收率可以达8%~11.57%。辽河油田在齐108断块的中质稠油油藏中分离出的多种微生物进行驯化培养和生理活性研究,筛选出适合齐108块稠油油藏的菌种,对8口井进行了2~3轮次吞吐试验,效果良好,投入产出比大于1∶3。微生物采油当前主要的问题还是要进一步加强基础研究,筛选出适合于不同油藏的菌种;掌握注入油藏中菌种的生存能力;菌种和其代谢物对油的作用;掌握微生物的分布、迁移和控制。高度重视环境保护和安全,需要油藏工程师、微生物学家、遗传学家、化学工程师、环境工程师、经济工程师多方合作,对微生物采油提高采收率做出定量和经济最优化的设计。