① 什么是超声波是干什么用的
超声波
我们知道,当物体振动时会发出声音。科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹。我们人类耳朵能听到的声波频率为20~20,000赫兹。因此,当物体的振动超过一定的频率,即高于人耳听阈上限时,人们便听不出来了,这样的声波称为“超声波”。通常用于医学诊断的超声波频率为1~5兆赫。超声波具有方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远等特点。可用于测距,测速,清洗,焊接,碎石等
虽然说人类听不出超声波,但不少动物却有此本领。它们可以利用超声波“导航”、追捕食物,或避开危险物。大家可能看到过夏天的夜晚有许多蝙蝠在庭院里来回飞翔,它们为什么在没有光亮的情况下飞翔而不会迷失方向呢?原因就是蝙蝠能发出2~10万赫兹的超声波,这好比是一座活动的“雷达站”。蝙蝠正是利用这种“雷达”判断飞行前方是昆虫,或是障碍物的。
我们人类直到第一次世界大战才学会利用超声波,这就是利用“声纳”的原理来探测水中目标及其状态,如潜艇的位置等。此时人们向水中发出一系列不同频率的超声波,然后记录与处理反射回声,从回声的特征我们便可以估计出探测物的距离、形态及其动态改变。医学上最早利用超声波是在1942年,奥地利医生杜西克首次用超声技术扫描脑部结构;以后到了60年代医生们开始将超声波应用于腹部器官的探测。如今超声波扫描技术已成为现代医学诊断不可缺少的工具。
医学超声波检查的工作原理与声纳有一定的相似性,即将超声波发射到人体内,当它在体内遇到界面时会发生反射及折射,并且在人体组织中可能被吸收而衰减。因为人体各种组织的形态与结构是不相同的,因此其反射与折射以及吸收超声波的程度也就不同,医生们正是通过仪器所反映出的波型、曲线,或影象的特征来辨别它们。此外再结合解剖学知识、正常与病理的改变,便可诊断所检查的器官是否有病。
目前,医生们应用的超声诊断方法有不同的形式,可分为A型、B型、M型及D型四大类。
A型:是以波形来显示组织特征的方法,主要用于测量器官的径线,以判定其大小。可用来鉴别病变组织的一些物理特性,如实质性、液体或是气体是否存在等。
B型:用平面图形的形式来显示被探查组织的具体情况。检查时,首先将人体界面的反射信号转变为强弱不同的光点,这些光点可通过荧光屏显现出来,这种方法直观性好,重复性强,可供前后对比,所以广泛用于妇产科、泌尿、消化及心血管等系统疾病的诊断。
M型:是用于观察活动界面时间变化的一种方法。最适用于检查心脏的活动情况,其曲线的动态改变称为超声心动图,可以用来观察心脏各层结构的位置、活动状态、结构的状况等,多用于辅助心脏及大血管疫病的诊断。
D型:是专门用来检测血液流动和器官活动的一种超声诊断方法,又称为多普勒超声诊断法。可确定血管是否通畅、管腔有否狭窄、闭塞以及病变部位。新一代的D型超声波还能定量地测定管腔内血液的流量。近几年来科学家又发展了彩色编码多普勒系统,可在超声心动图解剖标志的指示下,以不同颜色显示血流的方向,色泽的深浅代表血流的流速。现在还有立体超声显象、超声CT、超声内窥镜等超声技术不断涌现出来,并且还可以与其他检查仪器结合使用,使疾病的诊断准确率大大提高。超声波技术正在医学界发挥着巨大的作用,随着科学的进步,它将更加完善,将更好地造福于人类。
频率高于20000 Hz(赫兹)的声波。研究超声波的产生、传播 、接收,以及各种超声效应和应用的声学分支叫超声学。产生
超声波的装置有机械型超声发生器(例如气哨、汽笛和液哨等)、利用电磁感应和电磁作用原理制成的电动超声发生器、
以及利用压电晶体的电致伸缩效应和铁磁物质的磁致伸缩效应制成的电声换能器等。
超声效应 当超声波在介质中传播时,由于超声波与介质的相互作用,使介质发生物理的和化学的变化,从而产生
一系列力学的、热的、电磁的和化学的超声效应,包括以下4种效应:
①机械效应。超声波的机械作用可促成液体的乳化、凝胶的液化和固体的分散。当超声波流体介质中形成驻波时 ,悬浮在流体中的微小颗粒因受机械力的作用而凝聚在波节处,在空间形成周期性的堆积。超声波在压电材料和磁致伸缩材料中传播时,由于超声波的机械作用而引起的感生电极化和感生磁化(见电介质物理学和磁致伸缩)。
②空化作用。超声波作用于液体时可产生大量小气泡 。一个原因是液体内局部出现拉应力而形成负压,压强的降低使原来溶于液体的气体过饱和,而从液体逸出,成为小气泡。另一原因是强大的拉应力把液体“撕开”成一空洞,称为空化。空洞内为液体蒸气或溶于液体的另一种气体,甚至可能是真空。因空化作用形成的小气泡会随周围介质的振动而不断运动、长大或突然破灭。破灭时周围液体突然冲入气泡而产生高温、高压,同时产生激波。与空化作用相伴随的内摩擦可形成电荷,并在气泡内因放电而产生发光现象。在液体中进行超声处理的技术大多与空化作用有关。
③热效应。由于超声波频率高,能量大,被介质吸收时能产生显著的热效应。
④化学效应。超声波的作用可促使发生或加速某些化学反应。例如纯的蒸馏水经超声处理后产生过氧化氢;溶有氮气的水经超声处理后产生亚硝酸;染料的水溶液经超声处理后会变色或退色。这些现象的发生总与空化作用相伴随。超声波还可加速许多化学物质的水解、分解和聚合过程。超声波对光化学和电化学过程也有明显影响。各种氨基酸和其他有机物质的水溶液经超声处理后,特征吸收光谱带消失而呈均匀的一般吸收,这表明空化作用使分子结构发生了改变 。
超声应用 超声效应已广泛用于实际,主要有如下几方面:
①超声检验。超声波的波长比一般声波要短,具有较好的方向性,而且能透过不透明物质,这一特性已被广泛用于超声波探伤、测厚、测距、遥控和超声成像技术。超声成像是利用超声波呈现不透明物内部形象的技术 。把从换能器发出的超声波经声透镜聚焦在不透明试样上,从试样透出的超声波携带了被照部位的信息(如对声波的反射、吸收和散射的能力),经声透镜汇聚在压电接收器上,所得电信号输入放大器,利用扫描系统可把不透明试样的形象显示在荧光屏上。上述装置称为超声显微镜。超声成像技术已在医疗检查方面获得普遍应用,在微电子器件制造业中用来对大规模集成电路进行检查,在材料科学中用来显示合金中不同组分的区域和晶粒间界等。声全息术是利用超声波的干涉原理记录和重现不透明物的立体图像的声成像技术,其原理与光波的全息术基本相同,只是记录手段不同而已(见全息术)。用同一超声信号源激励两个放置在液体中的换能器,它们分别发射两束相干的超声波:一束透过被研究的物体后成为物波,另一束作为参考波。物波和参考波在液面上相干叠加形成声全息图,用激光束照射声全息图,利用激光在声全息图上反射时产生的衍射效应而获得物的重现像,通常用摄像机和电视机作实时观察。
②超声处理。利用超声的机械作用、空化作用、热效应和化学效应,可进行超声焊接、钻孔、固体的粉碎、乳化 、脱气、除尘、去锅垢、清洗、灭菌、促进化学反应和进行生物学研究等,在工矿业、农业、医疗等各个部门获得了广泛应用。
③基础研究。超声波作用于介质后,在介质中产生声弛豫过程,声弛豫过程伴随着能量在分子各自电度间的输运过程,并在宏观上表现出对声波的吸收(见声波)。通过物质对超声的吸收规律可探索物质的特性和结构,这方面的研究构成了分子声学这一声学分支。普通声波的波长远大于固体中的原子间距,在此条件下固体可当作连续介质 。但对频率在1012赫以上的 特超声波 ,波长可与固体中的原子间距相比拟,此时必须把固体当作是具有空间周期性的点阵结构。点阵振动的能量是量子化的 ,称为声子(见固体物理学)。特超声对固体的作用可归结为特超声与热声子、电子、光子和各种准粒子的相互作用。对固体中特超声的产生、检测和传播规律的研究,以及量子液体——液态氦中声现象的研究构成了近代声学的新领域——
量子声学。
超声波还可以进行雷达探测.清洗较为精细的物品,如钟表,可以利用超声波来击碎病人体内胆结石,还可以利用超声波测距.
② 超声波在生活中还有什么用途呢
利用超声的机械作用、空化作用、热效应和化学效应,可进行超声焊接、钻孔、固体的粉碎、乳化、脱气、除尘、去锅垢、清洗、灭菌、促进化学反应和进行生物学研究等,在工矿业、农业、医疗等各个部门获得了广泛应用。
超声波是一种机械振动在媒质中的传播过程,其频率一般在20kHz以上。超声波的应用很广泛,利用超声的机械作用、空化作用、热效应和化学效应,可进行超声焊接、钻孔、固体的粉碎、乳化、脱气、除尘、去锅垢、清洗、灭菌、促进化学反应和进行生物学研究等,在工矿业、农业、医疗等各个部门获得了广泛应用。
超声波的用途
1、医学超声波检查:医学超声波检查的工作原理与声纳有一定的相似性,即将超声波发射到人体内,当它在体内遇到界面时会发生反射及折射,并且在人体组织中可能被吸收而衰减。因为人体各种组织的形态与结构是不相同的,因此其反射与折射以及吸收超声波的程度也就不同,医生们正是通过仪器所反映出的波型、曲线,或影象的特征来辨别它们。此外再结合解剖学知识、正常与病理的改变,便可诊断所检查的器官是否有病。
2、超声除油:将黏附有油污的制件放在除油液中,并使除油过程处于一定频率的超声波场作用下的除油过程,称为超声波除油。引入超声波可以强化除油过程、缩短除油时间、提高除油质量、降低化学药品的消耗量。尤其对复杂外形零件、小型精密零件、表面有难除污物的零件及绝缘材料制成的零件有显著的除油效果,可以省去费时的手工劳动,防止零件的损伤。
③ 超声波是什么意思
超声波是一种频率高于20000Hz(赫兹)的声波,它的方向性好,反射能力强,易于获得较集中的声能,在水中传播距离比空气中远,可用于测距、测速、清洗、焊接、碎石、杀菌消毒等。在医学、军事、工业、农业上有很多的应用。超声波因其频率下限超过人的听觉上限而得名。
科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹(Hz)。我们人类耳朵能听到的声波频率为20Hz~20000Hz。因此,我们把频率高于20000Hz的声波称为“超声波”。通常用于医学诊断的超声波频率为1MHz~30MHz。
(3)肺癌做超声波检查什么扩展阅读:
超声波特点
1)超声波在传播时,波长短,方向性强,能量易于集中。
2)超声波能在各种不同媒质中传播,且可传播足够远的距离。
3)超声波与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息诊断或对传声媒质产生效用及治疗。
4)超声波可在气体、液体、固体、固熔体等介质中有效传播。
5)超声波可传递能量。
6)超声波会产生反射、干涉、叠加和共振现象。
④ 癌症检查方法有哪些
首先是血液检查,这种检查非常方便,只要去检验科或者找病房护士抽几管血,就可以等待结果出来,这是因为如果身体上长癌,癌细胞会向四周散发特定的分子,比如可以促进血管生长的因子(因为癌症组织也需要血管供给它营养物质)等,所以这些物质都叫做“肿瘤标志物”,下面的表格展示了常见的肿瘤标志物:
肿瘤标志物
相关肿瘤
肿瘤标志物
相关肿瘤
肿瘤标志物
相关肿瘤
AFP(甲胎蛋白)
肝细胞癌
CEA (癌胚抗原)
常见的癌症
CA125(癌抗原125)
卵巢癌
CA199(糖基抗原)
胰腺癌、胆管癌、结直肠癌
CA153
乳腺癌
CA724
胃癌
CA50
胰腺、结直肠癌
NSE
小细胞癌
PSA
前列腺癌
SCCA
宫颈鳞癌
CA242
胰腺癌、胃癌
CYFRA21-1
肺鳞癌、宫颈癌、食管癌
影像检查,最常见的是X光照相,它成本低廉然,但提供的信息比较有限,CT是更常用的检查手段,此外还有PET/CT检查和磁共振成像,对于早期癌症筛查来说,CT、X片以及超声最为常见,磁共振成像有自身的优势,如在脑部检查时可以提供丰富的信息,有助于医生诊断。对于乳腺检查,还有专门的钼靶检查成像。
内镜检查,如检查肠胃的肠镜、胃镜,诊断鼻咽癌的鼻咽镜等,内镜可以直接观察到人体内丰富的信息:形态、色泽、纹理。如果能发现病变,还可以同时采集某些组织,为进一步做病理活检提供帮助,可以为临床诊断提供更加准确的信息。
其他检查,其他零零散散的检查方法可以归入此类,比如宫颈癌的细胞涂片检查,直肠癌检查的肛门指检,新型的技术还有基因检测,可以发现特定基因片段的突变情况。
上面只是说了早期发现癌症的手段,并非“方法”,因为CT和血检只是检查的工具,不是早期发现的策略。正如问题“在拳击场上如何击倒对手?”回答显然不是“用拳头”,而是“如何使用钩拳,摆拳等拳法配合技巧抓住时机以取得胜利”,同样的,人们最想要明白的是,什么情况下“我去抽血化验?”,什么情况下“我去放射科拍一张CT片?”否则,身体没有任何症状,人们为什么要无缘无故去做检查呢?无论是时间还是金钱,看起来都不太划算。
还有两个值得我们注意的问题:一是癌症本身不是一种病,而是多种疾病的集合。因为不同人体器官产生的癌症性质不同,对于同一种病不同人产生的特征也是不同的,所以早期癌症的检测方法应随部位的不同、病人的不同而进行调整,试图用一种手段一劳永逸地发现所有早期癌症,是非常困难的,至少目前看来有相当长的路要走;二是以上的手段均无法100%确定“得癌”或者“不得癌”,因为医学上有所谓“假阳性”和“假阴性”之说,即会出现这样的情况:不是癌症的病人,被诊断成癌症了,或者反过来,本来出现了病变却没查出来,这些源于检查手段的局限性。
正是一些检查手段的“假阳性”和“假阴性”率较高,所以对于一些癌症检测方法带来的整体收益是否有利于病人,还存在一些争议。假阳性是一种“过度诊断”,被误诊为癌症的病人会带来疾病的重压,亲朋好友也会焦虑恐慌,进一步会导致更多的检查,乃至侵袭性的治疗,在《众病之王:癌症传》中有一个很好的比喻:蜘蛛耗尽体力来织出完美的网来捕获空中的苍蝇,如果网的密度增加,虽然捕获苍蝇的可能也会增加,但同样,捕获到空中的垃圾和碎屑的概率也会增加(假阳性),如果把网织得稀松一些,那么会出现一些漏网的苍蝇(假阴性)。
同时,就上面提及的检查手段来说,血液检查的准确性其实不高,因为很多癌症分子可以释放的,我们体内正常的细胞也能释放,所以就算是“肿瘤标志物”也有很高的错误率;对影像检查来说,从CT影像上早期辨别癌症也是相当困难的工作,所以很多肿瘤临床部门往往是多个医生各自提出意见,共同下最后的诊断。国外曾经有研究得出的结论是乳腺癌早期钼靶检查,并没有使病人的生存时间延长,反而大大了“致乳腺癌”的可能性,大量放射性检查(如CT,PETCT)也对患病儿童的健康很不利,在患病儿童的癌症预后方面,复查频率和剂量有严格的限制。
这样说来,什么样的方法才能算早期发现癌症的方法呢?它至少要满足以下几个特性:
1.时效性。能把控时机,我们刚好能在癌前病变或者局部病灶时就能发现,不会在检查时让我们扑个空,不会让我们发现已经很大或者转移,就是提高医疗实践中的“投入产出比”。一些早期的“体征”,如“长时间”的咳嗽和便血等,这样的现象值得我们多加注意;女性朋友也可以对乳腺进行自检,可以发现早期的包块等;
2. 准确性。太高的“假阳性率”和“假阴性率”是无法接受的,这种方法应有令人满意的准确度,否则会得不偿失;
3. 经济性。时间短,成本低,最好能让我们自己在家里测,国外很多城市已经实现家庭医疗的远程数据分析,以减少交通支出,采集对象可以使用血液,这样采集快速方便,一般影像设备都复杂精密,决定了其检查费用很难降低。希望伴随着基因检测的普及化,相关检测费用会降低。
根据以上的特性,我们可以归纳“早发现”的一些建议:
1. 正是因为血液检查的不确定性,我们需要做动态监测,以减少“假阳性”和“假阴性”的可能;最好将自己之前的检查资料留存,建立自己的健康数据库,这样通过“健康曲线”的走势,我们会发现一些端倪;
2. 情况允许的条件下,建议做基因检测,了解基因缺陷可能导致的癌症倾向,医学上这叫做“易感基因”。有必要了解自己家里的家族病史,如结直肠癌,现在已经有孕前基因检测,据观察,在家庭中如果父母患结肠息肉导致的结肠癌,那么子女患上同类癌症的可能性高达50%;家族中姐妹患有乳腺癌,那么其患乳腺癌的几率会加倍;视网膜母细胞瘤大约有90%发生在3岁之前,有家族遗传性,与遗传缺陷有关系;
3. 建立符合经济和时间要求的癌症筛查策略,对此请看下面的表格:
1次/年
<30岁
>30岁
>40岁
>50岁
男 性
直肠指检
痰液细胞学检查(肺癌)
胸部低剂量CT
乙状结肠镜检查
大便潜血试验
前列腺癌筛查(PSA,超声)
女 性
宫颈刮片检查
盆腔检查
B超乳腺检查
直肠指检
钼靶检查结合超声
乙状结肠镜检查
大便潜血试验
当然科研人员不会满足于现有的手段,最新出现的一些技术给我们带来新的曙光,如清华大学去年发现的新的肿瘤标志物Hsp90α(热休克蛋白),对于早期肺癌的检测会带来帮助(注意,媒体据此解读成“一滴血”检测癌症是很不准确的)。美国的一个研究团队最近设计了一个检测早期癌症的原型机,通过特质的生物制剂与人体血液中一种特别的核苷酸序列反应,可以检测一些早期的癌症;美国Google公司著名的前沿创新实验室(GoogleX,曾设计出无人驾驶汽车,Google Class等产品)今年开始了一个新项目,利用纳米粒子融入我们每个人的血液中,让它无时不刻检测我们的血液,也许不远的将来,人们可以只是戴着一个监测腕带,帮助我们早期发现癌症,提醒我们及时就医。
最后值得一提的是,虽说早期发现可以提高癌症的治疗疗效,其实癌症预防是更加睿智的抗癌方法,举例来说,烟草是避免癌症最大可以避免的因素,所以世界卫生组织提倡“无烟草运动”,因为烟草不仅仅与肺癌,还与食管癌、喉癌、口腔癌等密切相关,世界卫生组织估计烟草使用每年导致22%的癌症死亡,2004年,全球740癌症死亡者中,有160万为烟草使用导致的,因此要是论效用,改善生活方式,积极预防是更加有效地抗癌策略。
⑤ 超声波的介绍
超声波
我们知道,当物体振动时会发出声音。科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹。我们人类耳朵能听到的声波频率为20~20,000赫兹。因此,当物体的振动超过一定的频率,即高于人耳听阈上限时,人们便听不出来了,这样的声波称为“超声波”。通常用于医学诊断的超声波频率为1~5兆赫。超声波具有方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远等特点。可用于测距,测速,清洗,焊接,碎石等
虽然说人类听不出超声波,但不少动物却有此本领。它们可以利用超声波“导航”、追捕食物,或避开危险物。大家可能看到过夏天的夜晚有许多蝙蝠在庭院里来回飞翔,它们为什么在没有光亮的情况下飞翔而不会迷失方向呢?原因就是蝙蝠能发出2~10万赫兹的超声波,这好比是一座活动的“雷达站”。蝙蝠正是利用这种“雷达”判断飞行前方是昆虫,或是障碍物的。
我们人类直到第一次世界大战才学会利用超声波,这就是利用“声纳”的原理来探测水中目标及其状态,如潜艇的位置等。此时人们向水中发出一系列不同频率的超声波,然后记录与处理反射回声,从回声的特征我们便可以估计出探测物的距离、形态及其动态改变。医学上最早利用超声波是在1942年,奥地利医生杜西克首次用超声技术扫描脑部结构;以后到了60年代医生们开始将超声波应用于腹部器官的探测。如今超声波扫描技术已成为现代医学诊断不可缺少的工具。
医学超声波检查的工作原理与声纳有一定的相似性,即将超声波发射到人体内,当它在体内遇到界面时会发生反射及折射,并且在人体组织中可能被吸收而衰减。因为人体各种组织的形态与结构是不相同的,因此其反射与折射以及吸收超声波的程度也就不同,医生们正是通过仪器所反映出的波型、曲线,或影象的特征来辨别它们。此外再结合解剖学知识、正常与病理的改变,便可诊断所检查的器官是否有病。
目前,医生们应用的超声诊断方法有不同的形式,可分为A型、B型、M型及D型四大类。
A型:是以波形来显示组织特征的方法,主要用于测量器官的径线,以判定其大小。可用来鉴别病变组织的一些物理特性,如实质性、液体或是气体是否存在等。
B型:用平面图形的形式来显示被探查组织的具体情况。检查时,首先将人体界面的反射信号转变为强弱不同的光点,这些光点可通过荧光屏显现出来,这种方法直观性好,重复性强,可供前后对比,所以广泛用于妇产科、泌尿、消化及心血管等系统疾病的诊断。
M型:是用于观察活动界面时间变化的一种方法。最适用于检查心脏的活动情况,其曲线的动态改变称为超声心动图,可以用来观察心脏各层结构的位置、活动状态、结构的状况等,多用于辅助心脏及大血管疫病的诊断。
D型:是专门用来检测血液流动和器官活动的一种超声诊断方法,又称为多普勒超声诊断法。可确定血管是否通畅、管腔有否狭窄、闭塞以及病变部位。新一代的D型超声波还能定量地测定管腔内血液的流量。近几年来科学家又发展了彩色编码多普勒系统,可在超声心动图解剖标志的指示下,以不同颜色显示血流的方向,色泽的深浅代表血流的流速。现在还有立体超声显象、超声CT、超声内窥镜等超声技术不断涌现出来,并且还可以与其他检查仪器结合使用,使疾病的诊断准确率大大提高。超声波技术正在医学界发挥着巨大的作用,随着科学的进步,它将更加完善,将更好地造福于人类。
频率高于20000 Hz(赫兹)的声波。研究超声波的产生、传播 、接收,以及各种超声效应和应用的声学分支叫超声学。产生
超声波的装置有机械型超声发生器(例如气哨、汽笛和液哨等)、利用电磁感应和电磁作用原理制成的电动超声发生器、
以及利用压电晶体的电致伸缩效应和铁磁物质的磁致伸缩效应制成的电声换能器等。
超声效应 当超声波在介质中传播时,由于超声波与介质的相互作用,使介质发生物理的和化学的变化,从而产生
一系列力学的、热的、电磁的和化学的超声效应,包括以下4种效应:
①机械效应。超声波的机械作用可促成液体的乳化、凝胶的液化和固体的分散。当超声波流体介质中形成驻波时 ,悬浮在流体中的微小颗粒因受机械力的作用而凝聚在波节处,在空间形成周期性的堆积。超声波在压电材料和磁致伸缩材料中传播时,由于超声波的机械作用而引起的感生电极化和感生磁化(见电介质物理学和磁致伸缩)。
②空化作用。超声波作用于液体时可产生大量小气泡 。一个原因是液体内局部出现拉应力而形成负压,压强的降低使原来溶于液体的气体过饱和,而从液体逸出,成为小气泡。另一原因是强大的拉应力把液体“撕开”成一空洞,称为空化。空洞内为液体蒸气或溶于液体的另一种气体,甚至可能是真空。因空化作用形成的小气泡会随周围介质的振动而不断运动、长大或突然破灭。破灭时周围液体突然冲入气泡而产生高温、高压,同时产生激波。与空化作用相伴随的内摩擦可形成电荷,并在气泡内因放电而产生发光现象。在液体中进行超声处理的技术大多与空化作用有关。
③热效应。由于超声波频率高,能量大,被介质吸收时能产生显著的热效应。
④化学效应。超声波的作用可促使发生或加速某些化学反应。例如纯的蒸馏水经超声处理后产生过氧化氢;溶有氮气的水经超声处理后产生亚硝酸;染料的水溶液经超声处理后会变色或退色。这些现象的发生总与空化作用相伴随。超声波还可加速许多化学物质的水解、分解和聚合过程。超声波对光化学和电化学过程也有明显影响。各种氨基酸和其他有机物质的水溶液经超声处理后,特征吸收光谱带消失而呈均匀的一般吸收,这表明空化作用使分子结构发生了改变 。
超声应用 超声效应已广泛用于实际,主要有如下几方面:
①超声检验。超声波的波长比一般声波要短,具有较好的方向性,而且能透过不透明物质,这一特性已被广泛用于超声波探伤、测厚、测距、遥控和超声成像技术。超声成像是利用超声波呈现不透明物内部形象的技术 。把从换能器发出的超声波经声透镜聚焦在不透明试样上,从试样透出的超声波携带了被照部位的信息(如对声波的反射、吸收和散射的能力),经声透镜汇聚在压电接收器上,所得电信号输入放大器,利用扫描系统可把不透明试样的形象显示在荧光屏上。上述装置称为超声显微镜。超声成像技术已在医疗检查方面获得普遍应用,在微电子器件制造业中用来对大规模集成电路进行检查,在材料科学中用来显示合金中不同组分的区域和晶粒间界等。声全息术是利用超声波的干涉原理记录和重现不透明物的立体图像的声成像技术,其原理与光波的全息术基本相同,只是记录手段不同而已(见全息术)。用同一超声信号源激励两个放置在液体中的换能器,它们分别发射两束相干的超声波:一束透过被研究的物体后成为物波,另一束作为参考波。物波和参考波在液面上相干叠加形成声全息图,用激光束照射声全息图,利用激光在声全息图上反射时产生的衍射效应而获得物的重现像,通常用摄像机和电视机作实时观察。
②超声处理。利用超声的机械作用、空化作用、热效应和化学效应,可进行超声焊接、钻孔、固体的粉碎、乳化 、脱气、除尘、去锅垢、清洗、灭菌、促进化学反应和进行生物学研究等,在工矿业、农业、医疗等各个部门获得了广泛应用。
③基础研究。超声波作用于介质后,在介质中产生声弛豫过程,声弛豫过程伴随着能量在分子各自电度间的输运过程,并在宏观上表现出对声波的吸收(见声波)。通过物质对超声的吸收规律可探索物质的特性和结构,这方面的研究构成了分子声学这一声学分支。普通声波的波长远大于固体中的原子间距,在此条件下固体可当作连续介质 。但对频率在1012赫以上的 特超声波 ,波长可与固体中的原子间距相比拟,此时必须把固体当作是具有空间周期性的点阵结构。点阵振动的能量是量子化的 ,称为声子(见固体物理学)。特超声对固体的作用可归结为特超声与热声子、电子、光子和各种准粒子的相互作用。对固体中特超声的产生、检测和传播规律的研究,以及量子液体——液态氦中声现象的研究构成了近代声学的新领域——
声波是属于声音的类别之一,属于机械波,声波是指人耳能感受到的一种纵波,其频率范围为16Hz-20KHz。当声波的频率低于16Hz时就叫做次声波,高于20KHz则称为超声波声波。
超声波具有如下特性:
1) 超声波可在气体、液体、固体、固熔体等介质中有效传播。
2) 超声波可传递很强的能量。
3) 超声波会产生反射、干涉、叠加和共振现象。
4) 超声波在液体介质中传播时,可在界面上产生强烈的冲击和空化现象。
超声波是声波大家族中的一员。
声波是物体机械振动状态(或能量)的传播形式。所谓振动是指物质的质点在其平衡位置附近进行的往返运动。譬如,鼓面经敲击后,它就上下振动,这种振动状态通过空气媒质向四面八方传播,这便是声波。
超声波是指振动频率大于20KHz以上的,人在自然环境下无法听到和感受到的声波。
超声波治疗的概念:
超声治疗学是超声医学的重要组成部分。超声治疗时将超声波能量作用于人体病变部位,以达到治疗疾患和促进机体康复的目的。
在全球,超声波广泛运用于诊断学、治疗学、工程学、生物学等领域。赛福瑞家用超声治疗机属于超声波治疗学的运用范畴。
(一)工程学方面的应用:水下定位与通讯、地下资源勘查等
(二)生物学方面的应用:剪切大分子、生物工程及处理种子等
(三)诊断学方面的应用:A型、B型、M型、D型、双功及彩超等
(四)治疗学方面的应用:理疗、治癌、外科、体外碎石、牙科等
超声波的特点:
1、超声波在传播时,方向性强,能量易于集中。
2、超声波能在各种不同媒质中传播,且可传播足够远的距离。
3、超声与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息(诊断或对传声媒质产生效应。(治疗)
超声波是一种波动形式,它可以作为探测与负载信息的载体或媒介(如B超等用作诊断);超声波同时又是一种能量形式,当其强度超过一定值时,它就可以通过与传播超声波的媒质的相互作用,去影响,改变以致破坏后者的状态,性质及结构(用作治疗)。
超声波的发展史:
一、国际方面:
自19世纪末到20世纪初,在物理学上发现了压电效应与反压电效应之后,人们解决了利用电子学技术产生超声波的办法,从此迅速揭开了发展与推广超声技术的历史篇章。
1922年,德国出现了首例超声波治疗的发明专利。
1939年发表了有关超声波治疗取得临床效果的文献报道。
40年代末期超声治疗在欧美兴起,直到1949年召开的第一次国际医学超声波学术会议上,才有了超声治疗方面的论文交流,为超声治疗学的发展奠定了基础。1956年第二届国际超声医学学术会议上已有许多论文发表,超声治疗进入了实用成熟阶段。
二、国内方面:
国内在超声治疗领域起步稍晚,于20世纪50年代初才只有少数医院开展超声治疗工作,从1950年首先在北京开始用800KHz频率的超声治疗机治疗多种疾病,至50年代开始逐步推广,并有了国产仪器。公开的文献报道始见于1957年。到了70年代有了各型国产超声治疗仪,超声疗法普及到全国各大型医院。
40多年来,全国各大医院已积累了相当数量的资料和比较丰富的临床经验。特别是20世纪80年代初出现的超声体外机械波碎石术和超声外科,是结石症治疗史上的重大突破。如今已在国际范围内推广应用。高强度聚焦超声无创外科,已使超声治疗在当代医疗技术中占据重要位置。而在21世纪(HIFU)超声聚焦外科已被誉为是21世纪治疗肿瘤的最新技术。
超声波治病机理:
1.机械效应:超声在介质中前进时所产生的效应。(超声在介质中传播是由反射而产生的机械效应)它可引起机体若干反应。超声振动可引起组织细胞内物质运动,由于超声的细微按摩,使细胞浆流动、细胞震荡、旋转、摩擦、从而产生细胞按摩的作用,也称为“内按摩”这是超声波治疗所独有的特性,可以改变细胞膜的通透性,刺激细胞半透膜的弥散过程,促进新陈代谢、加速血液和淋巴循环、改善细胞缺血缺氧状态,改善组织营养、改变蛋白合成率、提高再生机能等。使细胞内部结构发生变化,导致细胞的功能变化,使坚硬的结缔组织延伸,松软。
超声波的机械作用可软化组织,增强渗透,提高代谢,促进血液循环,刺激神经系统和细胞功能,因此具有超声波独特的治疗意义。
2.温热效应:人体组织对超声能量有比较大的吸收本领,因此当超声波在人体组织中传播过程中,其能量不断地被组织吸收而变成热量,其结果是组织的自身温度升高。
产热过程既是机械能在介质中转变成热能的能量转换过程。即内生热。超声温热效应可增加血液循环,加速代谢,改善局部组织营养,增强酶活力。一般情况下,超声波的热作用以骨和结缔组织为显著,脂肪与血液为最少。
3.理化效应:超声的机械效应和温热效应均可促发若干物理化学变化。实践证明一些理化效应往往是上述效应的继发效应。TS-C型治疗机通过理化效应继发出下列五大作用:
A.弥散作用:超声波可以提高生物膜的通透性,超声波作用后,细胞膜对钾,钙离子的通透性发生较强的改变。从而增强生物膜弥散过程,促进物质交换,加速代谢,改善组织营养。
B.触变作用:超声作用下,可使凝胶转化为溶胶状态。对肌肉,肌腱的软化作用,以及对一些与组织缺水有关的病理改变。如类风湿性关节炎病变和关节、肌腱、韧带的退行性病变的治疗。
C.空化作用:空化形成,或保持稳定的单向振动,或继发膨胀以致崩溃,细胞功能改变,细胞内钙水平增高。成纤维细胞受激活,蛋白合成增加,血管通透性增加,血管形成加速,胶原张力增加。
D.聚合作用与解聚作用:水分子聚合是将多个相同或相似的分子合成一个较大的分子过程。大分子解聚,是将大分子的化学物变成小分子的过程。可使关节内增加水解酶和原酶活性增加。
E.消炎,修复细胞和分子:超声作用下,可使组织PH值向碱性方面发展。缓解炎症所伴有的局部酸中毒。超声可影响血流量,产生致炎症作用,抑制并起到抗炎作用。使白细胞移动,促进血管生成。胶原合成及成熟。促进或抑制损伤的修复和愈合过程。从而达到对受损细胞组织进行清理、激活、修复的过程。
量子声学。
超声波还可以进行雷达探测.清洗较为精细的物品,如钟表,可以利用超声波来击碎病人体内胆结石,还可以利用超声波测距.
超声波检测还用于电阻焊的焊点强度的检测。
⑥ 什么是超声波
人类耳朵能听到的声波频率为16-20000Hz,因此当物体的振动超过一定的频率,即高于人耳听阈上限时,人们便听不出来了,这样的声波被称为超声波。超声波是频率高于20000Hz的声波,它方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远,可用于测距、测速、清洗、碎石、杀菌消毒等,在医学、军事、工业、农业上有很多的应用,通常用于医学诊断的超声波频率为1-5MHz。医学超声波检查的工作原理与声呐有一定的相似性,即将超声波发射到人体内,当它在体内遇到界面时会发生反射及折射,并且在人体组织中可被吸收而衰减。因为人体各种组织的形态和结构是不相同的,因此其反射与折射以及吸收超声波的程度也就不同。医生们可以通过仪器所反映出的波形曲线或影像的特点来辨别它们。此外,再结合解剖学知识,结合正常与病理的改变,便可诊断所检查的器官是否有病变。
⑦ 检查是什么意思
检查jiǎnchá
英文:【Examine;Check;Inspect;Review】
解释:
①为了发现问题而用心查看:~身体ㄧ~工作。
例句:我们要定期去医院检查身体。
②翻检查考(书籍、文件等)。
例句:领导来我们学校检查学生作业情况。
③检讨 ①:口头~ㄧ犯了错误要做~。
例句:小明被老师罚写200字检查。
配图
⑧ X光,核磁共振,超声,CT的异同点
1895年,德国菲试堡物理研究所所长兼物理学教授威廉·孔拉德·伦琴把新发现的电磁波命名为X光,这个“X”是无法了解的意思。世人为了表示对发明者的敬意,亦称之为“琴伦线”。X光是一种有能量的电磁波或辐射。当高速移动的电子撞击任何形态的物质时,X光便有可能发生。X光具有穿透性,对不同密度的物质有不同的穿透能力。在医学上X光用来投射人体器官及骨骼形成影象,用来辅助诊断。 1894年,实验物理学家勒纳德在放电管的玻璃壁上开了一个薄铝窗,成功地使阴极射线射出管外。 1895年,物理学家伦琴在探索阴极射线本性的研究中,意外发现了X光。X光的发现,不仅揭开了物理学革命的序幕,也给医疗保健事业带来了新的希望。伦琴因此成为第一个诺贝尔物理学奖得主。 x光是穿透性很强的射线,一种高能量光波粒子,所以一般物体都挡不住,射线要被阻挡,关键由射线强度、频率、阻挡物质与射线作用程度、阻挡物质厚度、阻挡物质大小共同决定。一般情况下,常见的X光(医院用)大约3~5cm的铅块就可以阻挡了。但是也会在背景屏上会显示阻挡物的阴影形状,就好像日食,虽挡住了太阳光,却留下了阴影。核磁共振(MRI)又叫核磁共振成像技术。是继CT后医学影像学的又一重大进步。自80年代应用以来,它以极快的速度得到发展。其基本原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。 核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MR)。 MR是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。 MR提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。MR对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。 MR也存在不足之处。它的空间分辨率不及CT,带有心脏起搏器的患者或有某些金属异物的部位不能作MR的检查,另外价格比较昂贵。超声是超过正常人耳所能听到的声波,频率在20000赫兹以上。运用超声波的物理特性和人体器官组织声学性质上的差异,以波形、曲线或图像的形式显示和记录出来,以进行疾病诊断的方法,就是超声检查。 最早使用的是A型超声,它为振幅调制型,是一种超声示波诊断,按不同的反射波判断疾病,诊断能力有限。后来出现了B型超声,为辉度调制型,是超声显像诊断类型,能直接显示二维空间图像,故又称二维超声,能直接观察到器官的影像,诊断能力大大提高。之后,又出现了D型超声,也称多普勒型,是超声频移诊断法,利用多普勒效应,显示血液流动和脏器活动的信号。此外,还相继出现了M型、C型和T型超声。近年,又生产出彩色B超,比B超分辨能力更强。 超声技术主要用于体内液性、实质性病变的诊断,对于胃、肺和胃肠道的病变则难以进行分辨。超声检查对发现病变、确定病变的位置和大小比较容易,确定病变是否为液性或含气性也较可靠,也尚能分辨肿瘤的良性与恶性。超声对检查心脏、腹部和盆腔器官包括妊娠的检查应用较多,如对肝血管瘤、肝脓肿、肝硬化,胆囊结石及肿瘤,脾和胰腺的疾病以及腹水诊断较为可靠;对肾脏、膀胱、前列腺、肾上腺、子宫、卵巢等疾病的诊断比对甲状腺、乳腺疾病的检查诊断准确;对妊娠的诊断,包括胎位、胎盘定位、多胎、死胎、胎儿畸形及葡萄胎判定等,都有相当高的价值。由于超声诊断仪不似CT昂贵,收费标准较低,因此,在临床应用较普遍,检查前的准备也很简单,如做肝、胆、胰、脾检查只需在检查当天禁食和禁水;检查妇科、前列腺则只需憋足小便即可。 什么是CT 全称:computed tomography CT是一种功能齐全的病情探测仪器,它是电子计算机X射线断层扫描技术简称。 CT的工作程序是这样的:它根据人体不同组织对X线的吸收与透过率的不同,应用灵敏度极高的仪器对人体进行测量,然后将测量所获取的数据输入电子计算机,电子计算机对数据进行处理后,就可摄下人体被检查部位的断面或立体的图像,发现体内任何部位的细小病变。 CT的发明 自从X射线发现后,医学上就开始用它来探测人体疾病。但是,由于人体内有些器官对X线的吸收差别极小,因此X射线对那些前后重叠的组织的病变就难以发现。于是,美国与英国的科学家开始了寻找一种新的东西来弥补用X线技术检查人体病变的不足。1963年,美国物理学家科马克发现人体不同的组织对X线的透过率有所不同,在研究中还得出了一些有关的计算公式,这些公式为后来CT的应用奠定了理论基础。1967年,英国电子工种师亨斯费尔德在并不知道科马克研究成果的情况下,也开始了研制一种新技术的工作。他首先研究了模式的识别,然后制作了一台能加强X射线放射源的简单的扫描装置,即后来的CT,用于对人的头部进行实验性扫描测量。后来,他又用这种装置去测量全身,获得了同样的效果。1971年9月,亨斯费尔德又与一位神经放射学家合作,在伦敦郊外一家医院安装了他设计制造的这种装置,开始了头部检查。10月4日,医院用它检查了第一个病人。患者在完全清醒的情况下朝天仰卧,X线管装在患者的上方,绕检查部位转动,同时在患者下方装一计数器,使人体各部位对X线吸收的多少反映在计数器上,再经过电子计算机的处理,使人体各部位的图像从荧屏上显示出来。这次试验非常成功。1972年4月,亨斯费尔德在英国放射学年会上首次公布了这一结果,正式宣告了CT的诞生。这一消息引起科技界的极大震动,CT的研制成功被誉为自伦琴发现X射线以后,放射诊断学上最重要的成就。因此,亨斯费尔德和科马克共同获取1979年诺贝尔生理学或医学奖。而今,CT已广泛运用于医疗诊断上。 CT的成像基本原理 CT是用X线束对人体某部一定厚度的层面进行扫描,由探测器接收透过该层面的X线,转变为可见光后,由光电转换变为电信号,再经模拟/数字转换器(analog/digital converter)转为数字,输入计算机处理。图像形成的处理有如对选定层面分成若干个体积相同的长方体,称之为体素(voxel),见图1-2-1。扫描所得信息经计算而获得每个体素的X线衰减系数或吸收系数,再排列成矩阵,即数字矩阵(digital matrix),数字矩阵可存贮于磁盘或光盘中。经数字/模拟转换器(digital/analog converter)把数字矩阵中的每个数字转为由黑到白不等灰度的小方块,即象素(pixel),并按矩阵排列,即构成CT图像。所以,CT图像是重建图像。每个体素的X线吸收系数可以通过不同的数学方法算出。 CT设备 CT设备主要有以下三部分:①扫描部分由X线管、探测器和扫描架组成;②计算机系统,将扫描收集到的信息数据进行贮存运算;③图像显示和存储系统,将经计算机处理、重建的图像显示在电视屏上或用多幅照相机或激光照相机将图像摄下。探测器从原始的1个发展到现在的多达4800个。扫描方式也从平移/旋转、旋转/旋转、旋转/固定,发展到新近开发的螺旋CT扫描(spiral CT scan)。计算机容量大、运算快,可达到立即重建图像。由于扫描时间短,可避免运动产生的伪影,例如,呼吸运动的干扰,可提高图像质量;层面是连续的,所以不致于漏掉病变,而且可行三维重建,注射造影剂作血管造影可得CT血管造影(Ct angiography,CTA)。超高速CT扫描所用扫描方式与前者完全不同。扫描时间可短到40ms以下,每秒可获得多帧图像。由于扫描时间很短,可摄得电影图像,能避免运动所造成的伪影,因此,适用于心血管造影检查以及小儿和急性创伤等不能很好的合作的患者检查。 CT图像特点 CT图像是由一定数目由黑到白不同灰度的象素按矩阵排列所构成。这些象素反映的是相应体素的X线吸收系数。不同CT装置所得图像的象素大小及数目不同。大小可以是1.0×1.0mm,0.5×0.5mm不等;数目可以是256×256,即65536个,或512×512,即262144个不等。显然,象素越小,数目越多,构成图像越细致,即空间分辨力(spatial resolution)高。CT图像的空间分辨力不如X线图像高。 CT图像是以不同的灰度来表示,反映器官和组织对X线的吸收程度。因此,与X线图像所示的黑白影像一样,黑影表示低吸收区,即低密度区,如含气体多的肺部;白影表示高吸收区,即高密度区,如骨骼。但是CT与X线图像相比,CT的密度分辨力高,即有高的密度分辨力(density resolutiln)。因此,人体软组织的密度差别虽小,吸收系数虽多接近于水,也能形成对比而成像。这是CT的突出优点。所以,CT可以更好地显示由软组织构成的器官,如脑、脊髓、纵隔、肺、肝、胆、胰以及盆部器官等,并在良好的解剖图像背景上显示出病变的影像。 x线图像可反映正常与病变组织的密度,如高密度和低密度,但没有量的概念。CT图像不仅以不同灰度显示其密度的高低,还可用组织对X线的吸收系数说明其密度高低的程度,具有一个量的概念。实际工作中,不用吸收系数,而换算成CT值,用CT值说明密度。单位为Hu(Hounsfield unit)。 水的吸收系数为10,CT值定为0Hu,人体中密度最高的骨皮质吸收系数最高,CT值定为+1000Hu,而空气密度最低,定为-1000Hu。人体中密度不同和各种组织的CT值则居于-1000Hu到+1000Hu的2000个分度之间。 CT图像是层面图像,常用的是横断面。为了显示整个器官,需要多个连续的层面图像。通过CT设备上图像的重建程序的使用,还可重建冠状面和矢状面的层面图像,可以多角度查看器官和病变的关系。 CT检查技术 分平扫(plain CT scan)、造影增强扫描(contrast enhancement,CE)和造影扫描。 (一)平扫 是指不用造影增强或造影的普通扫描。一般都是先作平扫。 (二)造影增强扫描 是经静脉注入水溶性有机碘剂,如60%~76%泛影葡胺60ml后再行扫描的方法。血内碘浓度增高后,器官与病变内碘的浓度可产生差别,形成密度差,可能使病变显影更为清楚。方法分团注法、静滴法和静注与静滴法几种。 (三)造影扫描 是先作器官或结构的造影,然后再行扫描的方法。例如向脑池内注入碘曲仑8~10ml或注入空气4~6ml行脑池造影再行扫描,称之为脑池造影CT扫描,可清楚显示脑池及其中的小肿瘤。 CT诊断的临床应用 CT诊断由于它的特殊诊断价值,已广泛应用于临床。但CT设备比较昂贵,检查费用偏高,某些部位的检查,诊断价值,尤其是定性诊断,还有一定限度,所以不宜将CT检查视为常规诊断手段,应在了解其优势的基础上,合理的选择应用。 CT诊断的特点及优势 CT检查对中枢神经系统疾病的诊断价值较高,应用普遍。对颅内肿瘤、脓肿与肉芽肿、寄生虫病、外伤性血肿与脑损伤、脑梗塞与脑出血以及椎管内肿瘤与椎间盘脱出等病诊断效果好,诊断较为可*。因此,脑的X线造影除脑血管造影仍用以诊断颅内动脉瘤、血管发育异常和脑血管闭塞以及了解脑瘤的供血动脉以外,其他如气脑、脑室造影等均已少用。螺旋CT扫描,可以获得比较精细和清晰的血管重建图像,即CTA,而且可以做到三维实时显示,有希望取代常规的脑血管造影。 CT对头颈部疾病的诊断也很有价值。例如,对眶内占位病变、鼻窦早期癌、中耳小胆指瘤、听骨破坏与脱位、内耳骨迷路的轻微破坏、耳先天发育异常以及鼻咽癌的早期发现等。但明显病变,X线平片已可确诊者则无需CT检查。 对胸部疾病的诊断,CT检查随着高分辨力CT的应用,日益显示出它的优越性。通常采用造影增强扫描以明确纵隔和肺门有无肿块或淋巴结增大、支气管有无狭窄或阻塞,对原发和转移性纵隔肿瘤、淋巴结结核、中心型肺癌等的诊断,均很在帮助。肺内间质、实质性病变也可以得到较好的显示。CT对平片检查较难显示的部分,例如同心、大血管重叠病变的显圾,更具有优越性。对胸膜、膈、胸壁病变,也可清楚显示。 心及大血管的CT检查,尤其是后者,具有重要意义。心脏方面主要是心包病变的诊断。心腔及心壁的显示。由于扫描时间一般长于心动周期,影响图像的清晰度,诊断价值有限。但冠状动脉和心瓣膜的钙化、大血管壁的钙化及动脉瘤改变等,CT检查可以很好显示。 腹部及盆部疾病的CT检查,应用日益广泛,主要用于肝、胆、胰、脾,腹膜腔及腹膜后间隙以及泌尿和生殖系统的疾病诊断。尤其是占位性病变、炎症性和外伤性病变等。胃肠病变向腔外侵犯以及邻近和远处转移等,CT检查也有很大价值。当然,胃肠管腔内病变情况主要仍依赖于钡剂造影和内镜检查及病理活检。 骨关节疾病,多数情况可通过简便、经济的常规X线检查确诊,因此使用CT检查相对较少。 CT检查范围 CT可以做哪些检查吗? 一、头部:脑出血,脑梗塞,动脉瘤,血管畸形,各种肿瘤,外伤,出血,骨折,先天畸形等; 二、 胸部:肺、胸膜及纵隔各种肿瘤,肺结核,肺炎,支气管扩张,肺脓肿,囊肿,肺不张,气胸,骨折等; 三、 腹、盆腔:各种实质器官的肿瘤、外伤、出血,肝硬化,胆结石,泌尿系结石、积水,膀胱、前列腺病变,某些炎症、畸形等; 四、 脊柱、四肢:骨折,外伤,骨质增生,椎间盘病变,椎管狭窄,肿瘤,结核等; 五、 骨骼、血管三维重建成像;各部位的MPR、MIP成像等; 六、 CTA(CT血管成像):大动脉炎,动脉硬化闭塞症,主动脉瘤及夹层等; 七、 甲状腺疾病:甲状腺腺瘤、甲状腺腺癌等; 其他:眼科及眼眶肿瘤,外伤;副鼻窦炎、鼻息肉、肿瘤、囊肿、外伤等。 由于CT的高分辨力,可使器官和结构清楚显影,能清楚显示出病变。在临床上,神经系统与头颈部CT诊断应用早,对脑瘤、脑外伤、脑血管意外、脑的炎症与寄生虫病、脑先天畸形和脑实质性病变等诊断价值大。在五官科诊断中,对于框内肿瘤、鼻窦、咽喉部肿瘤,特别是内耳发育异常有诊断价值。 在呼吸系统诊断中,对肺癌的诊断、纵隔肿瘤的检查和瘤体内部结构以及肺门及纵隔有无淋巴结的转移,做CT检查做出的诊断都是比较可靠的。 在心脏大血管和骨骼肌肉系统的检查中也是有诊断价值的。 CT的几个重要概念: 1,分辨率:是图象对客观的分辨能力,他包括空间分辨率,密度分辨率,时间分辨率。 2,CT值:在CT的实际应用中,我们蒋各种组织包括空气的吸收衰减值都与水比较,并将密度固定为上限+1000。将空气定为下限-1000,其它数值均表示为中间灰度,从而产生了一个相对的吸收系数标尺。 3,窗宽和窗位 4,部分容积效应 5,噪声 因此,在日常生活中的人群里,如感觉到身体不适,还是应该及早到医院做检查,以明确诊断。做到早检查,早发现,早诊断,早治疗。
⑨ 医院里的CR、DR、CT、磁共振、B超都是什么有啥区别
MR、CT、CR、DR、DSA、X线都是医学影像疾病诊断的一种。
MRI是磁共振影像检查,可以获得横断面,矢状面和冠状面的影像。空间分辩率好。
CT是一种X线诊断设备,是一种复杂的X线设备,可以获得横断面图像。和MRI比较密度分辨率高是其特点。
CR和DR和X线诊断同CT一样也是通过X线来完成图像的。不同的是,CR和DR比普通的X线机器在图像的获取上共先进,CR是IP板,DR更高级,是通过PACS来完成的。
DSA是做介入手术的时候用的,血管造影,数字剪影,图像显示血管走向,方便介入手术的进行。它也是X线设备的一种。
B型超声检查(type-Bultrasonic),俗称“B超”,是患者在就诊时经常接触到的医疗检查项目。超声诊断技术作为影像诊断技术的一个重要组成部分,确有许多优于CT、核磁共振的特点。
1、判断方式不同
磁共振指的是自旋磁共振(spinmagneticresonance)现象。
其意义上较广,包含核磁共振(nuclearmagneticresonance,NMR)、电子顺磁共振(electronparamagneticresonance,EPR)或称电子自旋共振(electronspinresonance,ESR)。
超声在诊断疾病时,有多种形式:
①以振幅(amplitude)形式诊断疾病的称“一维显示”,因振幅第一个英文字母是A,故称A超,又称一维超声。
②以灰阶即亮度(brightness)模式形式来诊断疾病的称“二维显示”,因亮度第一个英文字母是B,故称B超,又称二维超声或灰阶超声。
CT(ComputedTomography),即电子计算机断层扫描,它是利用精确准直的X线束、γ射线、超声波等。
DR指在计算机控制下直接进行数字化X线摄影的一种新技术,即采非晶硅平板探测器把穿透人体的X线信息转化为数字信号,并由计算机重建图像及进行一系列的图像后处理。
CR是计算机X射线(computedradiography)的英文缩写。CR是医学影像疾病诊断的一种。它使用数字化影像,方便接入PACS系统,可结合计算机技术处理图像,提高影像质量。
2、价格不同
DR、CT、磁共振、B超的价格相对高。
CR价格相对低廉,一套CR即可实现全院X线设备的数字化。