导航:首页 > 制冷设备 > 超声波技术什么时候有的

超声波技术什么时候有的

发布时间:2022-05-29 01:18:41

㈠ 超声波清洗是什么时候出现的啊技术成熟吗

自19世纪末到20世纪初,在物理学上发现了压电效应与反压电效应之后,人们解决了利用电子学技术产生超声波的办法,从此迅速揭开了发展与推广超声技术的历史篇章。1922年,德国出现了首例超声波治疗的发明专利;1939年发表了有关超声波治疗取得临床效果的文献报道。40年代末期超声治疗在欧美兴起,直到1949年召开的第一次国际医学超声波学术会议上,才有了超声治疗方面的论文交流,为超声治疗学的发展奠定了基础。1956年第二届国际超声医学学术会议上已有许多论文发表,超声治疗进入了实用成熟阶段。

㈡ 谁知道关于超声波的故事啊急啊!

超声波的故事

小 炉 匠

话说公元一九五八年,神州大地一片狂热。从日产千吨钢,亩产万斤粮开始,工农兵学商都在大放‘卫星’。科学界里的卫星也不少了,比如论证亩产万斤粮的可行性,建三门峡大坝的好处等等,已有多文论述这里就不提了。这里要说个没多少人注意的小卫星:超声波技术之推广。当时,经常有人提到要把这个或那个东西“超一超”,好像能点石成金一样。记得我识字的时候,中小学生读的《我们爱科学》杂志就曾刊登过一篇叫《神奇的魔棍》的幻想故事。这魔棍就是一袖珍超声波发生器,能够把污水变为汽水。那时汽水对小学生来说可绝对是奢侈品,要到春游的时候才能几个人凑钱喝一瓶。因此,在我的心目中超声是一种神力,对其崇拜是大人们不能想象的。这里要讲的是一个大人的故事,它完全是真实的,只不过像其它口述历史一样被演义化了。
那是六十年代初,正是超声波运动热火朝天的时候。有人说它能帮助炼钢,缩短出钢的时间,又有人说它能提高煤的产热量,提高发电的效率。看来都有些实际数据支持,可却没有一个统一的理论来解释。那时先父作为一名物理学家,参加了氢弹研制中的一个小课题,因此他平时虽在中关村的物理所上班,却每隔一个星期就到“乡下”去出几天差。实际上是去京郊良乡的原子能所工作。去良乡要乘科学院的班车,那时乘车和现在秩序差不多,车一来大伙儿一拥而上,把车门堵得死死的。家父颇有些旧知识分子的斯文,不但不跟着去挤,反而站在后面,用浑厚的男低音劝说大家不要急 “越挤上车越慢,排好队上得才快”。 在一次热火朝天的上车过程中,他突然象阿基米德洗澡、牛顿挨苹果砸一样的顿悟。超声波的理论就在这挤车的场景中展现。他认为在化学反应时许多分子竞争一个反应物的结合位点,这种竞争可能使结合减慢,从而减慢反应速度,就好像大家挤车门一样。超声的作用可以使分子一张一弛地接触反应位点,就可能提高结合的机率,好象有秩序地上车速度快一样。这一理论是对是错另当别论,但它确实可以对诸如钢水中碳的氧化率,煤炭燃烧是否完全,以及化肥合成速度等看似不相关的问题给出一个共同的解释。因此当家父把他的想法在学术会议上一讲,竟然合者甚众。从此也得了一个“超声理论家”的虚名。
最使家父得意,并多次在我们三兄弟面前夸口的是,北朝鲜派了一位副首相来,口口声声要“请老师吃饭”并在席间亲耳聆听家父理论一番。
可实际上北朝同志兴师动众派一位副首相来并不是为了听空头理论,而是另一番原委。原来当时在原子能所有几位敢想敢干的年青人,把铀矿石拿来“超一超”,想借此提高铀235的分离效率。不成想‘超’过的铀矿石的放射性竟比没超过的高了不少。他们又用本无放射性的水晶矿石来试验,竟发现‘超’过的水晶也产生了微弱的放射性。这一成果报到了上面,受到高度重视。一位留过洋并主持原子弹研制的大科学家这时也认为超声能够打破原子核。这可是个超级大卫星啊,上面指示一定要保守机密。等咱们研究清楚了再说。那时候对美国大鼻子,苏联老毛子,印度缠头阿三之类保密都比较简单。那时候只要长得像外国人,想到西山都不行,别说接近原子基地了。可是百密必有一疏,竞被有着鲜血之谊的朝鲜兄弟探到了风声。这不,副首相就是奔着这个来的。
家父当时是否在这绝密卫星的圈内,他从未提过。但他很善谈,常常开口千言离题万里。组织上派他和那副首相的一番会晤,可谓用心良苦。想必他绝未泄露国家机密。否则在不久后文革中一定会受到严厉的清算。我们也就会知道的。
但是在副首相无功而返之后家父却对这件事来了兴趣。他来到原子能所,让放这颗大卫星的年轻人表演给他看看。尔等拿出一块铀矿石,在盖革计数器(一种测量放射性强度的仪器)下先测出放射性强度。然后打开超生波发生器,把矿石“超”了一遍。之后再放到盖革计数前去测量,果然听见噼噼啪啪声音不断,表明‘超’后放射性增强了许多。几位年轻人又拿来一片水晶,先放在计数器下,只听见几声零星的哔剥,几乎没有放射性。然后再照样‘超’了几分钟,再拿去测,哔啵声(放射性)果然强了不少。
家父看到这里,突然象明白了什么,马上叫他们在水晶片上涂了一层凡士林油膏,再拿去‘超’。超完往计数器下一放,只听噼噼啪啪,好似青菜倒进滚油锅,计数器的指针打到标度之外,放射性强之又强。父亲一见,又让他们用铀矿石重新作一次实验,超前测测,超后再测测。然后用水冲冲再测。结果虽然‘超’后的放射性明显增加,但用水一冲就回到了‘超’前的水平。这时父亲才胸有成竹地道出了超声加强放射性的秘密:原来当时的超声波发生器是土制的“簧片哨”,也就是用压缩空气强力吹过一个哨子样的装置,产生音调极高,人耳听不见的超声波。当矿石放在哨子下时,不仅受到了超声,同时也被强烈的气流吹着。这原子能所成天和放射性矿石打交道,灰尘中也有许多放射性微粒。往矿石上一吹,就在其表面沾上许多放射性微粒,当然可以增加矿石的放射性,也能让原来没有放射性的水晶染上放射尘埃,呈现出放射性来。父亲大概在第一眼看他们比较铀矿石和水晶时就有了这想法。水晶表面光洁,只能沾上很少的尘埃,放射性就弱;铀矿石表面粗糙,能沾上很多尘埃,也就显出较强的放射性,于是他叫把水晶涂上凡士林,油膏可以粘上大量灰尘,果然就出现比铀矿还高的放射性。而用水冲洗铀矿石可以洗掉尘埃,也就洗去了放射性。
整个过程也就是那么几分钟,一颗诺贝尔物理奖级的“大卫星”就陨落了。我想家父那时的表情绝对是帅呆了。这种“温酒斩华雄”的事,一个人一生也遇不到几回吧。之后我问他为什么可以瞬间看破那么多人都深信不疑的实验结果。他说,从物理的基本知识来说,超声波的能量和打破原子核所需的能量差上好多个数量级呢。他还说几个年轻人的幼稚还有情可原,但那位留过洋的首席科学家犯这种低级错误就奇怪了,也许他根本就没看过实验,就拿这项成果去报功,所以才没有机会去怀疑气流的秘密。
几十年过去了。如果父亲错了,今天的物理教科书上绝对会有‘超声核裂变’一章。咱中国的物理学家也会得一回诺贝尔奖。但这些都没有发生。 历史是经常会重复的。1990年度,美国科学家搞出的‘冷聚变’热核反应和这故事的水平差不多,但诚实的美国科学家们花了大量时间去重复这实验,一年多以后才尘埃落定,普遍否定了冷聚变的可能性。但现在还有些不信邪的日本科学家在坚持研究。

㈢ 超声成像技术是什么时候发展起来的

楼主:
目前,医生们应用的超声诊断方法有不同的形式,可分为A型、B型、M型及D型四大类。
A型:是以波形来显示组织特征的方法,主要用于测量器官的径线,以判定其大小。可用来鉴别病变组织的一些物理特性,如实质性、液体或是气体是否存在等。
B型:用平面图形的形式来显示被探查组织的具体情况。检查时,首先将人体界面的反射信号转变为强弱不同的光点,这些光点可通过荧光屏显现出来,这种方法直观性好,重复性强,可供前后对比,所以广泛用于妇产科、泌尿、消化及心血管等系统疾病的诊断。
M型:是用于观察活动界面时间变化的一种方法。最适用于检查心脏的活动情况,其曲线的动态改变称为超声心动图,可以用来观察心脏各层结构的位置、活动状态、结构的状况等,多用于辅助心脏及大血管疫病的诊断。
D型:是专门用来检测血液流动和器官活动的一种超声诊断方法,又称为多普勒超声诊断法。可确定血管是否通畅、管腔有否狭窄、闭塞以及病变部位。新一代的D型超声波还能定量地测定管腔内血液的流量。近几年来科学家又发展了彩色编码多普勒系统,可在超声心动图解剖标志的指示下,以不同颜色显示血流的方向,色泽的深浅代表血流的流速。现在还有立体超声显象、超声CT、超声内窥镜等超声技术不断涌现出来,并且还可以与其他检查仪器结合使用,使疾病的诊断准确率大大提高。超声波技术正在医学界发挥着巨大的作用,随着科学的进步,它将更加完善,将更好地造福于人类。

超声波具有如下特性:
1) 超声波可在气体、液体、固体、固熔体等介质中有效传播。
2) 超声波可传递很强的能量。
3) 超声波会产生反射、干涉、叠加和共振现象。
4) 超声波在液体介质中传播时,可在界面上产生强烈的冲击和空化现象。
希望我的回答能让你满意。

㈣ 什么时候人们开始使用超声波

20世纪50年代,英国格拉斯哥医生唐纳德
超声波是超过人能听到的最高频(2万赫兹)的声波,可广泛用在各技术部门.超声波的发现源于意大利.18世纪时,意大利教士,生物学家斯帕兰扎尼揭示了蝙蝠能在黑暗中飞行自如的奥秘:它是用超声波确定障碍物的位置的.超声波的运用源于英国.20世纪50年代,英国格拉斯哥医生唐纳德发现,超声波可用来探测孕妇腹中胎儿的情况.今医生借超声波可观察,监视母腹中胎儿的位置,生长发育和活动情况,并及早确定是否双胞胎或胎儿畸形.超声波亦能用于诊断胆结石,肝肿大及眼球,胰腺,乳房,肾等脏
器的病变.此外,利用超声波还可进行金属探伤,航海探测等.

超声波是频率高于20000赫兹的声波,它方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远,可用于测距、测速、清洗、焊接、碎石、杀菌消毒等。在医学、军事、工业、农业上有很多的应用。超声波因其频率下限大约等于人的听觉上限而得名。

㈤ 超声波的由来

超声波是超过人能听到的最高频(2万赫兹)的声波,可广泛用在各技
术部门.超声波的发现源于意大利.18世纪时,意大利教士,生物学家斯帕
兰扎尼揭示了蝙蝠能在黑暗中飞行自如的奥秘:它是用超声波确定障碍物的
位置的.超声波的运用源于英国.20世纪50年代,英国格拉斯哥医生唐纳
德发现,超声波可用来探测孕妇腹中胎儿的情况.今医生借超声波可观察,
监视母腹中胎儿的位置,生长发育和活动情况,并及早确定是否双胞胎或胎
儿畸形.超声波亦能用于诊断胆结石,肝肿大及眼球,胰腺,乳房,肾等脏
器的病变.此外,利用超声波还可进行金属探伤,航海探测等.

㈥ 超声波于何时何地被何人发现

我们知道,当物体振动时会发出声音。科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹。我们人类耳朵能听到的声波频率为16~20,000赫兹。因此,当物体的振动超过一定的频率,即高于人耳听阈上限时,人们便听不出来了,这样的声波称为“超声波”。通常用于医学诊断的超声波频率为1~5兆赫。

虽然说人类听不出超声波,但不少动物却有此本领。它们可以利用超声波“导航”、追捕食物,或避开危险物。大家可能看到过夏天的夜晚有许多蝙蝠在庭院里来回飞翔,它们为什么在没有光亮的情况下飞翔而不会迷失方向呢?原因就是蝙蝠能发出2~10万赫兹的超声波,这好比是一座活动的“雷达站”。蝙蝠正是利用这种“雷达”判断飞行前方是昆虫,或是障碍物的。

我们人类直到第一次世界大战才学会利用超声波,这就是利用“声纳”的原理来探测水中目标及其状态,如潜艇的位置等。此时人们向水中发出一系列不同频率的超声波,然后记录与处理反射回声,从回声的特征我们便可以估计出探测物的距离、形态及其动态改变。医学上最早利用超声波是在1942年,奥地利医生杜西克首次用超声技术扫描脑部结构;以后到了60年代医生们开始将超声波应用于腹部器官的探测。如今超声波扫描技术已成为现代医学诊断不可缺少的工具。

医学超声波检查的工作原理与声纳有一定的相似性,即将超声波发射到人体内,当它在体内遇到界面时会发生反射及折射,并且在人体组织中可能被吸收而衰减。因为人体各种组织的形态与结构是不相同的,因此其反射与折射以及吸收超声波的程度也就不同,医生们正是通过仪器所反映出的波型、曲线,或影象的特征来辨别它们。此外再结合解剖学知识、正常与病理的改变,便可诊断所检查的器官是否有病。

目前,医生们应用的超声诊断方法有不同的形式,可分为A型、B型、M型及D型四大类。

A型:是以波形来显示组织特征的方法,主要用于测量器官的径线,以判定其大小。可用来鉴别病变组织的一些物理特性,如实质性、液体或是气体是否存在等。

B型:用平面图形的形式来显示被探查组织的具体情况。检查时,首先将人体界面的反射信号转变为强弱不同的光点,这些光点可通过荧光屏显现出来,这种方法直观性好,重复性强,可供前后对比,所以广泛用于妇产科、泌尿、消化及心血管等系统疾病的诊断。

M型:是用于观察活动界面时间变化的一种方法。最适用于检查心脏的活动情况,其曲线的动态改变称为超声心动图,可以用来观察心脏各层结构的位置、活动状态、结构的状况等,多用于辅助心脏及大血管疫病的诊断。

D型:是专门用来检测血液流动和器官活动的一种超声诊断方法,又称为多普勒超声诊断法。可确定血管是否通畅、管腔有否狭窄、闭塞以及病变部位。新一代的D型超声波还能定量地测定管腔内血液的流量。近几年来科学家又发展了彩色编码多普勒系统,可在超声心动图解剖标志的指示下,以不同颜色显示血流的方向,色泽的深浅代表血流的流速。现在还有立体超声显象、超声CT、超声内窥镜等超声技术不断涌现出来,并且还可以与其他检查仪器结合使用,使疾病的诊断准确率大大提高。超声波技术正在医学界发挥着巨大的作用,随着科学的进步,它将更加完善,将更好地造福于人类。

频率高于20000 Hz(赫兹)的声波。研究超声波的产生、传播 、接收,以及各种超声效应和应用的声学分支叫超声学。产生

超声波的装置有机械型超声发生器(例如气哨、汽笛和液哨等)、利用电磁感应和电磁作用原理制成的电动超声发生器、

以及利用压电晶体的电致伸缩效应和铁磁物质的磁致伸缩效应制成的电声换能器等。

超声效应 当超声波在介质中传播时,由于超声波与介质的相互作用,使介质发生物理的和化学的变化,从而产生

一系列力学的、热的、电磁的和化学的超声效应,包括以下4种效应:

①机械效应。超声波的机械作用可促成液体的乳化、凝胶的液化和固体的分散。当超声波流体介质中形成驻波时 ,悬浮在流体中的微小颗粒因受机械力的作用而凝聚在波节处,在空间形成周期性的堆积。超声波在压电材料和磁致伸缩材料中传播时,由于超声波的机械作用而引起的感生电极化和感生磁化(见电介质物理学和磁致伸缩)。
②空化作用。超声波作用于液体时可产生大量小气泡 。一个原因是液体内局部出现拉应力而形成负压,压强的降低使原来溶于液体的气体过饱和,而从液体逸出,成为小气泡。另一原因是强大的拉应力把液体“撕开”成一空洞,称为空化。空洞内为液体蒸气或溶于液体的另一种气体,甚至可能是真空。因空化作用形成的小气泡会随周围介质的振动而不断运动、长大或突然破灭。破灭时周围液体突然冲入气泡而产生高温、高压,同时产生激波。与空化作用相伴随的内摩擦可形成电荷,并在气泡内因放电而产生发光现象。在液体中进行超声处理的技术大多与空化作用有关。
③热效应。由于超声波频率高,能量大,被介质吸收时能产生显著的热效应。
④化学效应。超声波的作用可促使发生或加速某些化学反应。例如纯的蒸馏水经超声处理后产生过氧化氢;溶有氮气的水经超声处理后产生亚硝酸;染料的水溶液经超声处理后会变色或退色。这些现象的发生总与空化作用相伴随。超声波还可加速许多化学物质的水解、分解和聚合过程。超声波对光化学和电化学过程也有明显影响。各种氨基酸和其他有机物质的水溶液经超声处理后,特征吸收光谱带消失而呈均匀的一般吸收,这表明空化作用使分子结构发生了改变 。

超声应用 超声效应已广泛用于实际,主要有如下几方面:
①超声检验。超声波的波长比一般声波要短,具有较好的方向性,而且能透过不透明物质,这一特性已被广泛用于超声波探伤、测厚、测距、遥控和超声成像技术。超声成像是利用超声波呈现不透明物内部形象的技术 。把从换能器发出的超声波经声透镜聚焦在不透明试样上,从试样透出的超声波携带了被照部位的信息(如对声波的反射、吸收和散射的能力),经声透镜汇聚在压电接收器上,所得电信号输入放大器,利用扫描系统可把不透明试样的形象显示在荧光屏上。上述装置称为超声显微镜。超声成像技术已在医疗检查方面获得普遍应用,在微电子器件制造业中用来对大规模集成电路进行检查,在材料科学中用来显示合金中不同组分的区域和晶粒间界等。声全息术是利用超声波的干涉原理记录和重现不透明物的立体图像的声成像技术,其原理与光波的全息术基本相同,只是记录手段不同而已(见全息术)。用同一超声信号源激励两个放置在液体中的换能器,它们分别发射两束相干的超声波:一束透过被研究的物体后成为物波,另一束作为参考波。物波和参考波在液面上相干叠加形成声全息图,用激光束照射声全息图,利用激光在声全息图上反射时产生的衍射效应而获得物的重现像,通常用摄像机和电视机作实时观察。
②超声处理。利用超声的机械作用、空化作用、热效应和化学效应,可进行超声焊接、钻孔、固体的粉碎、乳化 、脱气、除尘、去锅垢、清洗、灭菌、促进化学反应和进行生物学研究等,在工矿业、农业、医疗等各个部门获得了广泛应用。
③基础研究。超声波作用于介质后,在介质中产生声弛豫过程,声弛豫过程伴随着能量在分子各自电度间的输运过程,并在宏观上表现出对声波的吸收(见声波)。通过物质对超声的吸收规律可探索物质的特性和结构,这方面的研究构成了分子声学这一声学分支。普通声波的波长远大于固体中的原子间距,在此条件下固体可当作连续介质 。但对频率在1012赫以上的 特超声波 ,波长可与固体中的原子间距相比拟,此时必须把固体当作是具有空间周期性的点阵结构。点阵振动的能量是量子化的 ,称为声子(见固体物理学)。特超声对固体的作用可归结为特超声与热声子、电子、光子和各种准粒子的相互作用。对固体中特超声的产生、检测和传播规律的研究,以及量子液体——液态氦中声现象的研究构成了近代声学的新领域——
量子声学。

㈦ 超声波焊接的发展史

超声波金属焊接是19世纪30年代偶然发现的。当时在作电流点焊电极加超声振动试验时,发现不通电流也能焊接上,因而发展了超声金属冷焊技术。超声波焊接虽然发现较早,但是到目前为止,其作用机理还不是很清楚。它类似于摩擦焊,但有区别,超声焊接时间很短,温度低于再结晶;它与压力焊也不相同,因为所加的静压力比压力焊小的多。一般认为在超声波焊接过程中的初始阶段,切向振动出去金属表面的氧化物,并是粗糙表面的突出部分产生反复的微焊和破坏的过程而使接触面积增大,同时使焊区温度升高,在焊件交界面产生塑性变形。这样在接触压力的作用下,相互接近到原子引力能够发生作用的距离时,即形成焊点。焊接时间过长,或超声波振幅过大会使焊接强度下降,甚至破坏。

㈧ 什么是超声波

超声波技术是一门以物理、电子、机械及材料学为基础的通用技术之一。超声波技术是通过超声波产生、传播及接收的物理过程而完成的。超声波具有聚束、定向及反射、透射等特性。超声波的应用超声波测液位超声波液位计按超声振动幅射大小不同大致可分为:1、用超声波使物体或物性变化的功率应用称功率超声,例如:在液体中发生足够大的能量,产生空化作用,能用于清洗、乳化。2、用超声波得到若干信息,获得通信应用,称检测超声,例如:用超声波在介质中的脉冲反射对物体进行厚度测试称超声测厚。超声波测厚及应用在工业领域中超声波测厚是一门成熟的高新技术,它的最大优点是检测安全、可靠及精度高,而且它可以巡回在运行状态进行检测。超声测厚仪按工作原理分:有共振法、干涉法及脉冲反射法等几种。由于脉冲反射法并不涉及共振机理,与被测物表面的光洁度关系不密切,所以超声波脉冲法测厚仪是最受用户欢迎的一种仪表。超声波测厚仪主要有主机和探头两部分组成。主机电路包括发射电路、接收电路、计数显示电路三部分,由发射电路产生的高压冲击波激励探头,产生超声发射脉冲波,脉冲波经介质介面反射后被接收电路接收,通过单片机计数处理后,经液晶显示器显示厚度数值,它主要根据声波在试样中的传播速度乘以通过试样的时间的一半而得到试样的厚度。

阅读全文

与超声波技术什么时候有的相关的资料

热点内容
手机连接电脑的wifi设备名称是什么原因 浏览:417
阀门在安装前应进行什么试验 浏览:923
暖气阀门开关旋钮结构 浏览:753
如何用仪表判断油气分离器好坏 浏览:559
制作奶茶需要什么设备 浏览:683
哪些计量仪器需要外校 浏览:809
什么的超声波填空 浏览:96
轴承609z是什么意思 浏览:497
传热实验装置简图 浏览:755
联裕机械手怎么样 浏览:381
绕线机自动排线装置 浏览:18
皇冠方向轴承多少钱 浏览:707
航拍仪器是什么图片 浏览:536
什么是机械表的发条 浏览:486
轴承检测仪器具有哪些 浏览:987
空调只有制冷怎么制热 浏览:292
工地消防器材都有哪些 浏览:11
DIY家具需要哪些电动工具 浏览:150
创客工具箱电脑版 浏览:765
oms系统如何上新设备投产申请 浏览:353