『壹』 数控机床NC系统故障一般怎么处理
数控机床NC系统故障:
1、硬件故障
有时由于NC系统出现硬件的损坏,使机床停机。对于这类故障的诊断,首先必须了解该数控系统的工作原理及各线路板的功能,然后根据故障现象进行分析,在有条件的情况下利用交换法准确定位故障点。
例一、一台采用德国西门子SINUMERIKSYSTEM3的数控机床,其PLC采用S5─130W/B,一次发生故障,通过NC系统PC功能输入的R参数,在加工中不起作用,不能更改加工程序中R参数的数值。通过对NC系统工作原理及故障现象的分析,我们认为PLC的主板有问题,与另一台机床的主板对换后,进一步确定为PLC主板的问题。经专业厂家维修,故障被排除。
例二、另一台机床也是采用SINUMERIKSYSTEM3数控系统,其加工程序程序号输入不进去,自动加工无法进行。经确认为NC系统存储器板出现问题,维修后,故障消除。
例三、一台采用德国HEIDENHAIN公司TNC155的数控铣床,一次发生故障,工作时系统经常死机,停电时经常丢失机床参数和程序。经检查发现NC系统主板弯曲变形,经校直固定后,系统恢复正常,再也没有出现类似故障。
2、软故障
数控机床有些故障是由于NC系统机床参数引起的,有时因设置不当,有时因意外使参数发生变化或混乱,这类故障只要调整好参数,就会自然消失。还有些故障由于偶然原因使NC系统处于死循环状态,这类故障有时必须采取强行启动的方法恢复系统的使用。
例一、一台采用日本发那科公司FANUC-OT系统的数控车床,每次开机都发生死机现象,任何正常操作都不起作用。后采取强制复位的方法,将系统内存全部清除后,系统恢复正常,重新输入机床参数后,机床正常使用。这个故障就是由于机床参数混乱造成的。
例二、一台专用数控铣床,NC系统采用西门子的SINUMERIKSYSTEM3,在批量加工中NC系统显示2号报警“LIMITSWITCH”,这种故障是因为Y轴行程超出软件设定的极限值,检查程序数值并无变化,经仔细观察故障现象,当出现故障时,CRT上显示的Y轴坐标确定达到软件极限,仔细研究发现是补偿值输入变大引起的,适当调整软件限位设置后,故障被排除。这个故障就是软件限位设置不当造成的。
例三、一台采用西门子SINUMERIK810的数控机床,一次出现问题,每次开机系统都进入AUTOMATIC状态,不能进行任何操作,系统出现死机状态。经强制启动后,系统恢复正常工作。这个故障就是因操作人员操作失误或其它原因使NC系统处于死循环状态。
3、因其它原因引起的NC系统故障有时因供电电源出现问题或缓冲电池失效也会引起系统故障。
例一、一台采用德国西门子SINUMERIKSYSTEM3的数控机床,一次出现故障,NC系统加上电后,CRT不显示,检查发现NC系统上“COUPLINGMODULE”板上左边的发光二极管闪亮,指示故障。对PLC进行热启动后,系统正常工作。但过几天后,这个故障又出现了,经对发光二极管闪动频率的分析,确定为电池故障,更换电池后,故障消除。
例二、一台采用西门子SINUMERIK810的数控机床,有时在自动加工过程中,系统突然掉电,测量其24V直流供电电源,发现只有22V左右,电网电压向下波动时,引起这个电压降低,导致NC系统采取保护措施,自动断电。经确认为整流变压器匝间短路,造成容量不够。更换新的整流变压器后,故障排除。
例三、另一台也是采用西门子SINUMIK810的数控机床,出现这样的故障,当系统加上电源后,系统开始自检,当自检完毕进入基本画面时,系统掉电。经分析和检查,发现X轴抱闸线圈对地短路。系统自检后,伺服条件准备好,抱闸通电释放。抱闸线圈采用24V电源供电,由于线圈对地短路,致使24V电压瞬间下降,NC系统采取保护措施自动断电。
『贰』 数控机床电源故障都有哪些情况分析
多年的数控机床维修经验证实,在故障总数中,由电源引发的故障占了相当大的比例。数控机床电源故障中很多属于机床用户有能力自行排除的器件损坏故障,其领域已属于片级修理。
1、数控机床电源
把数控机床所使用的电源分成了三级,从一次电源到三次电源,依次为派生关系,其造成的故障频次和难度也依次增加。具体分级如下:
(1)一次电源。一次电源即由车间电网供给的三相380V电源,它是数控机床工作的总能源供给。要求该电源要稳定,一般电压波动范围要控制在5%~10%,并且要无高频干扰。
(2)二次电源。由三相电源经变压器从一次电源派生。其用途主要有:
1)派生的单相交流220V、交流1l0V,供电给CNC单元及显示器单元,做为热交换器、机床控制回路和开关电源的电源。
2)有的数控机床派生的三相低电压做直流24V整流桥块的电源。有的数控机床由三相变压器产生三相交流220V,供给伺服放大器电源组件作为其工作电源。
(3)三次电源。三次电源是数控机床使用的各种直流电源,它是由二次电源转化来的。主要有这样几种:
1)由伺服放大器电源组件提供的直流电压、由伺服放大器组件逆变成频率和电压幅值可变的三相交流电以控制交流伺服电动机的转速。
2)整流桥块提供的交流24V,作为液压系统电磁阀,电动机闸电磁铁电源和伺服放大器单元的“ready”和“controllerenable”信号源。
3)由开关电源或DC/DC电源模块提供的低压直流电压,这些电压有:+5V、±12V、±15V,分别做为测量光栅、数控单元和伺服单元电气板的电源。
2、数控机床电源回路使用的器件
数控机床从一次电源到三次电源使用的器件分别有:
(1)车间配电装置,一般包括:与车间电网连接的三相交流稳压器和断路器(又称空气开关,或闸刀开关)。
(2)机床元器件,包括:滤波器、电抗器、三相交流变压器、断路器、整流器、熔断器、伺服电源组件、DC/DC模块和开关电源。
3、电源故障实例分析
(1)电网波动过大PLC不工作。表现为PLC无输出。先查输入信号(电源信号、干扰信号、指令信号与反馈信号)。例如,采用SINUMERIK3G-4B系统的数控车床,其内置式PLC无法工作。采用观察法,先用示波器检查电网电压波形,发现电网波动过大,欠压噪声跳变持续时间>1s(外因)。由于该机床处于调试阶段,电源系统内组件故障应当排除在外,由内部抗电网干扰措施(滤波、隔离与稳压)可知,常规的电源系统已无法隔断或滤去持续时间过长的电网欠压噪声,这是抗电网措施不足所致(内因),导致PLC不能获得正常电源输入而无法工作。在系统电源输入端加入一个交流稳压器,PLC工作正常。
(2)电源故障。某双工位数控车床,每个工位都由单独的NC系统控制,NC系统采用西门子公司的SINUMERIK810/T系统。右工位的NC系统经常在零件自动加工中断电停机,重新启动系统后,NC系统仍可自动工作。检查24V供电电源负载,并无短路问题。对图样进行分析,两台NC系统,共用一个24V整流电源。引起这个故障可能有两个原因:
1)供电质量不高,电源波动,而出故障的NC系统对电源的要求较灵敏。
2)NC系统本身的问题,系统不稳定。
根据这个判断,首先对24V电源电压进行监视,发现其电压幅值较低,只有21V左右。经观察发现,在出故障的瞬间,这个电压向下浮动,而NC系统断电后,电压马上回升到22V左右。故障一般都发生在主轴启动时,其原因可能是24V整流变压器有问题,容量不够,或匝间短路,使整流电压偏低,电网电压波动,影响NC系统的正常工作。为确定这个故障的原因,用交流稳压电源将交流380V供电电压提高到400V,这个故障就没有再出现。为此更换24V整流变压器,问题彻底解决。
(3)一台VDF.BOEHRINGER公司(德国)生产的PNE480L数控车床,合上主开关启动数控系统时,在显示面板上除READY(准备好)灯不亮外,其余指示灯全亮。该机数控系统为西门子SYSTEM5T系统。因为故障发生于开机的瞬间,因此应检查开机清零信号RESET是否异常。又因为主板上的DP6灯亮,而且DP6是监视有关直流电源的,因此需要对驱动DP6的相关电路及有关直流电源进行检查。其步骤如下:
因为DP6灯亮属报警显示,故首先对DP6的相关电路进行检查。经检查,确认驱动DP6的双稳态触发器LA10逻辑状态不对,已损坏。用新件更换后,虽然DP6指示灯不亮了,但故障现象仍然存在,数控箱还是不能启动。检查*RESET信号及数控箱内各连接器的连接情况良好,但*RESET信号不正常,并发现与其相关的A38位置上的LA01与非门电路逻辑关系不正确。于是对各直流电流进行检查。
检查±15V、±5V、±12V、+24V,发现电压为-5V~4.0V,误差超过±5%。进一步检查,发现该电路整流桥后有一滤波大电容C19的焊脚处印制电路板铜箔断裂。将其焊好后,电压正常,LA01电路逻辑关系及*RESET信号正确,故障排除,数控箱能正常启动。
(4)返回参考点异常。这是由于返回参考点时没有满足“必须沿返回参考点方向,并距参考点不能过近(128个脉冲以上)及返回参考点进度不能过低”的条件。对这类故障的处理步骤是[2,3]:
1)距参考点位置>128个脉冲,返回参考点过程中。①电动机转了不到1转(即没有接收到1转信号),此时首先变更返回时的开始位置,在位置偏差量>128个脉冲的状态下,在返回参考点方向上进行1转以上的快速进给,检测是否输入过1转信号。②电动机转了1转以上,这是使用了分离型的脉冲编码器。此时,检查位置返回时脉冲编码器的1转信号是否输入到了轴卡中,如果是,则是轴卡不良;如果未输入,则先检查编码器用的电源电压是否偏低(允许电压波动在0.2V以内),否则是脉冲编码器不良。
2)距参考点位置<128个脉冲。①检查进给速度指令值,快速进给倍率信号,返回参考点减速信号及外部减速信号是否正常。②变更返回时的开始位置,使其位置偏差量超过128个脉冲。③返回参考点速度过低。速度必须为位置偏差量超过128个脉冲的速度,如果速度过低,电动机1转信号散乱,不可能进行正确的位置检测。
(5)某加工中心,配置F-0M系统,在自动运转时突然出现刀库、工作台同时旋转。经复位、调整刀库、工作台后工作正常。但在断电重新启动机床时,CRT上出现410号伺服报警。查L/M轴伺服PRDY、VRDY两指示灯均亮;进给轴伺服电源AC100V、AC18V正常;x、y、z伺服单元上的PRDY指示灯均不亮,三个MCC也未吸合;测量其上电压发现24V、±15V异常;轴伺服单元上电源熔断器电阻太大,经更换后,直流电压恢复正常,重新运行机床,401号报警消失。
(6)故障现象:某公司产VF2型立式铣加工中心。机床运行一年零七个月以后,加工中出现161号报警(x-axisovercurrentordrivefault),机床停止运行。使用“RESET”键报警可以清除,机床可恢复运行。此故障现象偶尔发生,机床带病运行两年后,故障发生频次增加,而且出现故障转移现象:即使用复位键清除161号报警时,报警信息转报162号(Y-axisovercurrentordrivefault),如果再次清除,则再次转报z轴,以此类推。机床已无法维持运行。
故障分析及检查:根据故障报警信息在几伺服轴之间转移现象,不难看出故障发生在与各伺服轴都相关的公共环节,也就是说,是数控单元的“位置控制板”或伺服单元的电源组件出现了故障。位控板是数控单元组件之一,根据经验分析,数控单元电气板出现故障的概率很低,所以分析检查伺服电源组件是比较可行的排故切入点。检查发现此机床伺服电源分成两部分,其中输出低压直流±12V两路的是开关电源。测量结果分别是:+11.73V,-11.98V。分析此结果,正电压输出低了0.27V,电压降低幅度2.3%。由于缺乏量化概念,在暂时找不到其它故障源的情况下,假定此开关电源有故障。
故障排除:为验证输出电压偏差是造成机床故障的根源,用一台WYJ型双路晶体管直流稳压器替代原电源,将两路输出电压调节对称,幅值调到12V,开机后,机床报警消失。在接下来的20个工作日的考验运行中,故障不再复现。完全证实了故障是由于此伺服电源组件损坏引起的。
理论分析[4]:运算放大器和比较器,有些用单电源供电,有些用双电源供电,用双电源的运放要求正负供电对称,其差值一般不能大于0.2V(具有调节功能的运放除外),否则将无法正常工作。而此故障电源,两路输出电压相差了0.25V,超出了误差允许范围,这是故障发生的根本原因。
『叁』 变压器短路问题
变压器本身没有保护功能,通过连接在变压器高压侧的高压开关柜实施保护。
遇到你说的这种情况时,变压器高压侧的开关柜检测到短路电流后,将通过断路器跳闸或者熔断器熔断来保护变压器。
至于是断路器跳闸还是熔断器熔断,根据高压开关柜的类别而定。
处理变压器短路事故,首先要通过检查、试验找出问题实质所在;其次处理过程还应注意相关问题。具体思考如下:
首先,变压器短路事故后的检查、试验。变压器在遭受突发短路时,高低压侧都将受很大的短路电流,在断路器来不及断开的很短时间内,短路电流产生与电流平方成正比的电动力将作用于变压器的绕组,此电动力可分为辐向力和轴向力。在短路时,作用在绕组上的辐向力将使高压绕组受到张力,低压绕组受到压力。由于绕组为圆形,圆形物体受压力比受张力更容易变形,因此,低压绕组更易变形。在突发短路时产生的轴向力使绕组压缩和使高低压绕组发生轴向位移,轴向力也作用于铁芯和夹件。
因此,变压器在遭受突发短路时,最容易发生变形的是低压绕组和平衡绕组,然后是高中压绕组、铁芯和夹件。因此,变压器短路事故后的检查主要是检查绕组、铁芯、夹件以及其它部位。
一、绕组的检查与试验
由于变压器短路时,在电动力作用下,绕组同时受到压、拉、弯曲等多种力的作用,其造成的故障隐蔽性较强,也是不容易检查和修复的,所以短路故障后应重点检查绕组情况。
(一)变压器直流电阻的测量
根据变压器直流电阻的测量值来检查绕组的直流电阻不平衡率及与以往测量值相比较,能有效地考察变压器绕组受损情况。例如,某台变压器短路事故后低压侧C向直流电阻增加了约10%,由此判断绕组可能有新股情况,最后将绕组吊出检查,发现C相绕组断1股。
(2)变压器绕组电容量的测量。
绕组的电容由绕组匝间、层间及饼间电容和绕组发电容构成。此电容和绕组与铁芯及地的间隙、绕组与铁芯的间隙、绕组匝间、层间及饼间间隙有关。当绕组变形时,一般呈“S”形的弯曲,这就导致绕组对铁芯的间隙距离变小,绕组对地的电容量将变大,而且间隙越小,电容量变化越大,因此绕组的电容量可以间接地反映绕组的变形程度。
(3)吊罩后的检查。
变压器吊罩后,如果检查出变压器内部有熔化的铜渣或铝渣或高密度电缆纸的碎片,则可以判断绕组发生了较大程度的变形和断股等,另外,从绕组垫块移位或脱落、压板等位、压钉位移等也可以判断绕组的受损程度。
2、铁芯与夹件的检查。
变压器的铁芯应具有足够的机械强度。铁芯的机械强度是靠铁芯上的所有夹紧件的强度及其连接件来保证的。当绕组产生电动力时,绕组的轴向力将被夹件的反作用力抵消,如果夹件、拉板的强度小于轴向力时,夹件、拉板和绕组将受到损坏。因此,应仔细检查铁芯、夹件、拉板及其连接件的状况。
(1)检查铁芯上铁轭芯片是否有上下窜动情况。
(2)应测量穿芯螺杆与铁芯的绝缘电阻,检查穿芯螺杆外套是否受损;检查拉板、拉板连接件是否损坏。
(3)因为在变压器短路时,压板与夹件之间可能发生位移,使压板与压钉上铁轭的接地连接片拉断或过电流烧损,所以对于绕组压板,除了检查压钉、压板的受损外,还应检查绕组与压钉及上铁轭的接地连接是否可靠。
3、变压器油及气体的分析。
变压器遭受短路冲击后,在气体继电器内可能会积聚大量气体,因此在变压器事故后可以取气体继电器内的气体和对变压器内部的油进行化验分析,即可判断事故的性质。其次,变压器短路故障处理中应注意的事项。
1、更换绝缘件时应保证绝缘件的性能。
处理时对所更换的绝缘件应测试其性能,且符合要求方可使用。特别对引线支架木块的绝缘应引起重视。木块在安装前应置于80℃左右的热变压器油中浸渍一段时间,以保证木块的绝缘。
2、变压器绝缘测试应在变压器注油静止24小时后进行。
由于某些受潮的绝缘件在热油浸泡较长时间后,水分会扩散到绝缘的表面,如果注油后就试验往往绝缘缺陷检查不出来。例如一台31.5MVA的110kV变压器低压侧在处理时更换了kV铜排的一块支架木块,变压器注油后试验一切正常,10kV低压侧对铁芯、夹件及地绝缘电阻减小为约1MΩ。后经吊罩检查,发现10kV铜排的支架木块绝缘非常低。因此绝缘测试应在变压器注油静止24小时后进行较为可靠。
3、铁芯回装应注意其尖角。
在回装上铁轭时,应注意铁芯芯片的尖角,并及时测量油道间绝缘,特别是要注意油道处的芯片尖角,要防止芯片搭接造成铁芯多点接地。例如一台120MVA的220kV变压器,在低压侧更换绕组回装上铁轭时,由于在回装时没有注意芯片尖角,又没有及时测量油道间绝缘,安装完毕后测量油道间绝缘为0,最后花费了较长时间才找到是由于铁芯芯片尖角短接了油道。
4、更换抗短路能力较强的绕组材料,改进结构。
变压器绕组的机械强度主要是由下面两个方面决定的:一是由绕组自身结构的因素决定的绕组机械强度;二是绕组内径侧的支撑及绕组轴向压紧结构和拉板、夹件等制作工艺所决定的机械强度。当前,大多数变压器厂家采用半硬铜线或自粘性换位导线来提高绕组的自身抗短路能力,采用质量更好的硬纸板筒或增加撑条的数量来提高绕组受径向力的能力,并采用拉板或弹簧压钉等提高绕组受轴向力的能力。作为电力变压器的技术部门,在签订变压器销售合同前的技术论证时和变压器绕组更换时,应对绕组的抗短路能力进行充分考察,并予以足够重视。
5、变压器的干燥。
由于变压器受短路冲击后一般需要较长时间进行检修,为防止变压器受潮,可以采取两种措施:
一是在每天收工前将变压器扣罩,使用真空泵对变压器进行抽真空,以抽去变压器器身表面的游离水,第二天开工时,使用干燥的氮气或干燥空气解除真空,一般变压器在检修后热油循环24小时即可直接投入运行;
二是每天收工后,对变压器采取防雨措施,在工作全部完工后,对变压器采用热油喷淋法进行干燥,这种方法一般需要7-10天的时间。
此外,在变压器发生短路故障后,除了按照常规项目对变压器进行试验外,应重点结合变压器油、气体继电器内气体、绕组直流电阻、绕组电容量、绕组变形测量的试验结果判断分析故障的性质,并检查绕组的变形、铁芯及夹件的位移与松动情况,然后确定对变压器的处理方案及应采取的预防措施。在因变压器短路故障造成绕组严重变形需要更换绕组时,应注意铁芯芯片的回装、所有绝缘件的烘干、变压器油的处理及变压器的整体干燥。
『肆』 变压器短路故障的原因是什么
变压器短路故障原因分析因变压器出口短路导致变压器内部故障和事故的原因很多,也比较复杂,它与结构设计、原材料的质量、工艺水平、运行工况等因数有关,但电磁线的选用是关键。从近几年解剖变压基于变压器静态理论设计而选用的电磁线,与实际运行时作用在电磁线上的应力差异较大。(1)目前各厂家的计算程序中是建立在漏磁场的均匀分布、线匝直径相同、等相位的力等理想化的模型基础上而编制的,而事实上变压器的漏磁场并非均匀分布,在铁轭部分相对集中,该区域的电磁线所受到机械力也较大;换位导线在换位处由于爬坡会改变力的传递方向,而产生扭矩;由于垫块弹性模量的因数,轴向垫块不等距分布,会使交变漏磁场所产生的交变力延时共振,这也是为什么处在铁心轭部、换位处、有调压分接的对应部位的线饼首先变形的根本原因。(2)抗短路能力计算时没有考虑温度对电磁线的抗弯和抗拉强度的影响。按常温下设计的抗短路能力不能反映实际运行情况,根据试验结果,电磁线的温度对其屈服极限?0.2影响很大,随着电磁线的温度提高,其抗弯、抗拉强度及延伸率均下降,在250℃下抗弯抗拉强度要比在50℃时下降上,延伸率则下降40%以上。而实际运行的变压器,在额定负荷下,绕组平均温度可达105℃,*热点温度可达118℃。一般变压器运行时均有重合闸过程,因此如果短路点一时无法消失的话,将在非常短的时间内(0.8s)紧接着承受第二次短路冲击,但由于受第一次短路电流冲击后,绕组温度急剧增高,根据GBl094的规定,*高允许250℃,这时绕组的抗短路能力己大幅度下降,这就是为什么变压器重合闸后发生短路事故居多。
『伍』 变压器为什么会短路
按你所说的情况,就是a相高压线圈有短路现象,这是层间击穿。因为变压器空载试验,低压或高压线圈有故障,反应在高压的电流都会增大。不一定是低压。已经看到故障点,那就修理好,就可以了。当然,全部处理好后,长期空载24-48小时,看还有问题没有?你可随时给我留言交流
你能否找到低压线圈的原始电阻值,一般出厂试验报告上有。如果你这里找不到。可以向厂家要。告诉他出厂编号,厂家有他的档案资料。你再作对比研究。如果说,a相由于匝间或层间短路而引起电阻值变小,那短路的情况是很严重的,肯定是线匝直接碰在一起了。你想,测电阻有多大点电压。
由于不在你的现场,所以也不能没有根据的讲。你只有反复测试,反复探讨。
还有低压是400v的吗?是y接吗?低压不是箔式?是多根并绕?观察股间有否短路?b、c相是否把所有的并联根数都测量进去了(所以要看原始数据)?
再详细检查。有问题再来补充嘛。
是变压器制造厂,那就检查的手段就多了。
1、调出低压线圈直流电阻的半成品数据。进行比较。
2、认真检查a相线圈在绕线过程中的换位处有否绝缘损坏。
3、不要去怀疑设计问题(像这种400v的低压螺旋式线圈的结构是很经典的)。
4、如果现在的b、c相的电阻值与半成品时所测的数据一致。b
c相就用不到去怀疑了。
5、a相电阻小了很多,总归是有问题的。只不过不容易找到而已。
『陆』 数控车床三相隔离变压器烧毁,查了半天找不到原因,求高手指点
常见变压器故障有:骨架脆裂,绕组短路,绕组开路,击穿,绝缘电阻低,绕组电阻超差等等。
简易的变压器故障基本判断:1、用万用表分别测量进线端ABC是否相互导通,测量输出端abc是否导通,如果不导通说明绕线已经烧掉或者开路。
可参考文件:
http://wenku..com/view/0663064b767f5acfa1c7cd7f.html
『柒』 变压器会短路么
变压器不会短路,在没有负载时,变压器处于空载状态。
空载时,变压器也会消耗掉少许能量。一是电流流过一次线圈时,在线圈电阻上消耗的能量,称为铜耗。另一部分是建立励磁磁场后,铁芯中通过了交变磁通,交变磁通会在铁芯上产生涡流损耗和磁滞损耗,这部分损耗一般称为铁耗。
总体而言,空载时,输入电流主要用于励磁,由于励磁并不消耗功率,因此,空载时,变压器的功率因数很低。
『捌』 机床控制变压器为何烧坏
控制变压器本身就有隔离变压器的作用,你二次端(副边)的0V端是绝对不能接地,或者接供电系统的N线的。
『玖』 数控机床变压器如何保养
数控车床上的变压器是不太容易坏的,只要您的输出不短路是不会坏的。在控制电箱里最需要保护好的是主轴变频器,因为数控车床的使用环境比较潮湿、水汽多、油污多还有是金属粉尘多。这些东西会引起变频器内短路而使变频器损坏,您在采购数控车床时可以要求厂家用密封型变频器,因为这种变频器采用密封设计,能够防潮、防尘、防油污等,现在有很多车床厂都在用了。