⑴ 钛合金与不锈钢焊接要过渡合金
也许下面这段文字能帮你去理解。
钛和钛合金与不锈钢焊接的主要难点是:1.熔点差距大,约150℃,会造成Fe流失,合金元素烧损或蒸发,使焊接接头难以焊合;2.铁与钛极易生成金属间化合物,如TiFe、TiFe2、Ti2Fe等,另外不锈钢中的合金元素铬和镍也能够与钛形成脆性的金属间化合物,同时钛还是强碳化物形成元素,与钢中的碳会化合形成形成脆性的TiC。钛、铁、铬和镍之间还可能形成多元复合脆性金属间化合物,由于金属间化合物具有较大的脆性使接头脆化,在焊接应力的作用下容易导致焊缝产生裂纹甚至断裂,导致接头的塑性和高温性能变差。3. 二者热导率、比热容和线膨胀系数的差异大,导致焊缝晶粒粗大,焊接变形大。
目前,钛和钛合金与不锈钢焊接采用的方法有:爆炸焊、摩擦焊、钎焊、闪光对焊、扩散焊。
爆炸焊连接钛/钢的接头强度较高,实现了接头的“等强度性”,目前已应用于实际生产中。但是界面处形成TiFe、TiFe2以及TiC等脆性相,削弱了接头的塑性,而且接头的热稳定性较差,焊接变形大,不适合用来焊接引带。
钛和钛合金与不锈钢的钎焊需要在真空或氩气保护下进行,主要是用来焊接精密的、微型或结构复杂的焊件。另外,钎焊接头比母材的强度要低得多,不适合在负载较大的环境下工作。
闪光对焊在接头型式上搭接焊接,可以满足接头强度要求,但是对轧辊伤害非常大。
有人选用13um镍箔作为钛/不锈钢的中间层过渡金属,在850℃、10~20 MPa、10~15 min时进行扩散连接,其接头抗拉强度可达380MPa,剪切强度可达146 MPa,且构件无明显变形;也有人对TA17和321不锈钢进行脉冲加压扩散连接:连接温度T=875℃、脉冲压力P=8~50MPa、脉冲次数N=30次、脉冲频率f=0.5Hz、脉冲前保温时间t1=0s、脉冲后保温时间t2=120s,强度达到321MPa。过渡层也可选用钒一铜双层过渡金属,因为铜是非碳化物形成元素,而且铜与钒以及铁、铬、镍之间均不形成金属间化合物,在连接温度900℃,连接压力10 MPa,焊接时间20min时,接头强度可高达540 MPa,低匹配的铜的厚度对接头强度影响较大,必须选择合适的铜层厚度,一般在20~30um。但是钛和钛合金与不锈钢扩散焊时需真空或者氩气保护,不适合板/卷材对焊。
摩擦焊焊接钛/钢能获得拉伸、疲劳强度均较高的接头,但接头的弯曲塑性和冲击韧性较差,而且摩擦焊时的变形量较大,摩擦焊工件截面大小有限,主要是用于有夹持端的轴杆焊接。其中搅拌摩擦焊已成为镁合金、锌合金、铜合金、铅合金以及铝基复合材料等材料的板状对接或搭接的连接的优先选择焊接方法;目前,搅拌摩擦焊成功地实现了不锈钢、钛合金甚至高温合金的优质连接,但主要还是处于研究阶段。不锈钢搅拌摩擦焊一个重要的难点是确定不锈钢搅拌摩擦焊摩擦头的材料。不锈钢搅拌摩擦焊摩擦头材料要求在1000℃或更高温度下具有好的耐磨性和韧性。国外对不锈钢搅拌摩擦焊的系统研究还不是很多,只是对304不锈钢进行初步的研究。 在国内,兰州理工大学对不锈钢搅拌摩擦焊进行了探索性研究,采用搅拌摩擦焊工艺对3mm厚304不锈钢板进行了对接焊接。制定了正确的焊接工艺,并且获得了优质的焊接接头析。工艺是:旋转速度:400~700rpm;焊接速度:45~-80mm/min;旋转速度与焊接速度之比:0.09~0.12;预热时间:8~12s。
⑵ 304与钛材能否焊接在一起
304奥氏体不锈钢与钛合金常规的焊接方法是不可以焊接在一起的,即使焊接在一起也是非常脆的毫无机械强度可言。
⑶ 钛和钢能焊接吗
在很人眼中,钛和钢是不能焊接的,确实,钛和钢在高温下会反应生成脆性化合物,所以焊接是无效的,但是有两种焊接方法却可以把它们焊接在一起,而且经常被使用:
1、爆炸焊接:钛钢复合钢板
2、GTAW银焊:用纯银焊丝在GTAW焊接方法下可以把钛和钢焊接在一起,但是没什么强度,一般只用来做基本的密封处理。
⑷ 钛和不锈钢能焊吗用什么焊(条)
咨询记录 · 回答于2021-12-20
⑸ 钛和不锈钢能焊吗用什么焊(条)
钛和不锈钢能焊,但不能用焊条来焊。
钛和不锈钢焊接采用的方法有:爆炸焊、摩擦焊、钎焊、闪光对焊、扩散焊。
钛和钛合金与不锈钢焊接的主要难点是:
1、熔点差距大,约150℃,会造成Fe流失,合金元素烧损或蒸发,使焊接接头难以焊合;
2、铁与钛极易生成金属间化合物,如TiFe、TiFe2、Ti2Fe等,另外不锈钢中的合金元素铬和镍也能够与钛形成脆性的金属间化合物,同时钛还是强碳化物形成元素,与钢中的碳会化合形成形成脆性的TiC。
钛、铁、铬和镍之间还可能形成多元复合脆性金属间化合物,由于金属间化合物具有较大的脆性使接头脆化,在焊接应力的作用下容易导致焊缝产生裂纹甚至断裂,导致接头的塑性和高温性能变差。
3、 二者热导率、比热容和线膨胀系数的差异大,导致焊缝晶粒粗大,焊接变形大。
(5)钛与不锈钢焊接会怎么样扩展阅读:
焊接通过下列三种途径达成接合的目的:
1、熔焊——加热欲接合之工件使之局部熔化形成熔池,熔池冷却凝固后便接合,必要时可加入熔填物辅助,它是适合各种金属和合金的焊接加工,不需压力。
2、压焊——焊接过程必须对焊件施加压力,属于各种金属材料和部分金属材料的加工。
3、钎焊——采用比母材熔点低的金属材料做钎料,利用液态钎料润湿母材,填充接头间隙,并与母材互相扩散实现链接焊件。适合于各种材料的焊接加工,也适合于不同金属或异类材料的焊接加工。
⑹ 钛合金与不锈钢能不能焊接在一起
1
钛及钛合金/不锈钢的焊接性分析
1.1
钛及钛合金的焊接性
钛及钛合金的化学活性大,400℃以上时即使在固态情况下也极易被空气、水分、油脂、氧化皮等污染,吸收o、n、h、c等,使焊接接头的塑性及冲击韧度下降,并易引起气孔;其熔点高、热容量小、热导率小的特点,使焊接接头易产生过热组织,晶粒变得粗大,特别是β钛合金,易引起塑性降低;溶解于钛中的氢在320℃时和钛会发生共析转变,析出tih
,
引起金属塑性和冲击韧度的降低,同时发生体积膨胀而引起较大的应力,严重时会导致冷裂纹产生;氢在钛中的溶解度随温度升高而下降,焊接时沿熔合线附近加热温度高,会引起氢
的析出,因此气孔常在熔合线附近形成;钛及钛合金的弹性模量相对较小所以焊接残余变形较大,并且焊后变形的矫正也较为困难。
1.2
不锈钢的焊接性
由于不锈钢本身所具有的特性,与普碳钢相比不锈钢的焊接及切割有其特殊性,更易在其焊接接头及其热影响区(haz)产生各种缺陷。焊接时要特别注意不锈钢的物理性质。马
氏体型不锈钢进行焊接时,由于热影响区中被加热到相变点以上的区域内发生a-r(m)相变,因此存在低温脆性、低温韧性恶化、伴随硬化产生的延展性下降等问题。一般来讲铁素
体型不锈钢有475℃脆化、700~800℃长时间加热下发生σ相脆性、夹杂物和晶粒粗化引起的脆化、低温脆化、碳化物析出引起耐蚀性下降以及高合金钢中易发生的延迟裂纹等问题。奥
氏体型不锈钢一般具有良好的焊接性能,但其中镍、钼含量高的高合金不锈钢进行焊接时易产生高温裂纹。另外还易发生σ相脆化,在铁素体生成元素的作用下生成的铁素体易引起低
温脆化,以及耐蚀性下降和应力腐蚀裂纹等缺陷。经焊接后,焊接接头的力学性能一般良好,但当在热影响区中的晶界上有铬的碳化物时极易生成贫铬层,而贫铬层的出现在使用过程
中易产生晶间腐蚀。双相不锈钢的焊接裂纹敏感性较低,但在热影响区内铁素体含量的增加会使晶间腐蚀敏感性提高,因此可造成耐蚀性降低及低温韧性恶化等问题。
1.3
钛及钛合金与不锈钢的综合焊接性
钛及钛合金与不锈钢的物理和化学性能差异显著,连接时易在接头处形成脆性相和较大的内应力,导致接头极易开裂,而且在密度、比热、线膨胀系数、导热系数等物理性能和力
学性能上均有较大差异,必然会降低钛及钛合金/钢连接的牢固性,即使在固态连接方法下,由于线膨胀系数差别较大,也会在焊接接头中引起较大焊接的残余应力,降低接头性能。钛
的化学活性强,在高温下,对氧、氮、氢具有较高的化学亲和力,易形成脆性化合物,使强度显著提高,而塑性和韧性急剧下降,显著地增加脆性断裂倾向及裂纹形成。钛还易与许多其它金属形成金属间化合物,钛与铁易形成金属间化合物tife和tife
。钛/钢焊接时,由于钢中存在的ni、cr、c等
元素也能与ti形成tini、tini、tini、ticr、tic等多种金属间化合物脆性相,使焊缝更脆,性能进一步降低。
⑺ 钛钢与不锈钢可否焊接
钛钢与不锈钢可焊接:来钛钢是不锈钢的一种,所以,可以和不锈钢焊接。焊接方法主要是手工焊(MMA)、金属极气体保自护焊(MIG/MAG)和钨极惰性气体保护焊(TIG)三种。
【钛钢】就是316L不锈钢,其成分中没有钛百。因为具有和钛一样的光泽与质感,强度与耐腐性能也只比钛合金略度输一筹,所以被称为“钛钢”。
316L不锈知钢和304不锈钢一样都属于奥氏体不锈钢,其特点是:无磁性,硬度低,耐腐蚀性强,被广泛的用于船用五金等行业。道
⑻ 钛和不锈钢能焊吗用什么焊(条)
摘要 钛和不锈钢能焊,但不能用焊条来焊。钛和不锈钢焊接采用的方法有:爆炸焊、摩擦焊、钎焊、闪光对焊、扩散焊。钛和钛合金与不锈钢焊接的主要难点是:
⑼ 铌和钛元素对不锈钢焊接性有何影响
铌和钛都能细化晶粒,降低时效敏感性,有利于提高焊接性能。
⑽ 钛合金和不锈钢怎么焊接
1
钛及钛合金/不锈钢的焊接性分析
1.1
钛及钛合金的焊接性
钛及钛合金的化学活性大,400℃以上时即使在固态情况下也极易被空气、水分、油脂、氧化皮等污染,吸收O、N、H、C等,使焊接接头的塑性及冲击韧度下降,并易引起气孔;其熔点高、热容量小、热导率小的特点,使焊接接头易产生过热组织,晶粒变得粗大,特别是β钛合金,易引起塑性降低;溶解于钛中的氢在320℃时和钛会发生共析转变,析出TiH
,
引起金属塑性和冲击韧度的降低,同时发生体积膨胀而引起较大的应力,严重时会导致冷裂纹产生;氢在钛中的溶解度随温度升高而下降,焊接时沿熔合线附近加热温度高,会引起氢
的析出,因此气孔常在熔合线附近形成;钛及钛合金的弹性模量相对较小所以焊接残余变形较大,并且焊后变形的矫正也较为困难。
1.2
不锈钢的焊接性
由于不锈钢本身所具有的特性,与普碳钢相比不锈钢的焊接及切割有其特殊性,更易在其焊接接头及其热影响区(HAZ)产生各种缺陷。焊接时要特别注意不锈钢的物理性质。马
氏体型不锈钢进行焊接时,由于热影响区中被加热到相变点以上的区域内发生a-r(M)相变,因此存在低温脆性、低温韧性恶化、伴随硬化产生的延展性下降等问题。一般来讲铁素
体型不锈钢有475℃脆化、700~800℃长时间加热下发生σ相脆性、夹杂物和晶粒粗化引起的脆化、低温脆化、碳化物析出引起耐蚀性下降以及高合金钢中易发生的延迟裂纹等问题。奥
氏体型不锈钢一般具有良好的焊接性能,但其中镍、钼含量高的高合金不锈钢进行焊接时易产生高温裂纹。另外还易发生σ相脆化,在铁素体生成元素的作用下生成的铁素体易引起低
温脆化,以及耐蚀性下降和应力腐蚀裂纹等缺陷。经焊接后,焊接接头的力学性能一般良好,但当在热影响区中的晶界上有铬的碳化物时极易生成贫铬层,而贫铬层的出现在使用过程
中易产生晶间腐蚀。双相不锈钢的焊接裂纹敏感性较低,但在热影响区内铁素体含量的增加会使晶间腐蚀敏感性提高,因此可造成耐蚀性降低及低温韧性恶化等问题。
1.3
钛及钛合金与不锈钢的综合焊接性
钛及钛合金与不锈钢的物理和化学性能差异显著,连接时易在接头处形成脆性相和较大的内应力,导致接头极易开裂,而且在密度、比热、线膨胀系数、导热系数等物理性能和力
学性能上均有较大差异,必然会降低钛及钛合金/钢连接的牢固性,即使在固态连接方法下,由于线膨胀系数差别较大,也会在焊接接头中引起较大焊接的残余应力,降低接头性能。钛
的化学活性强,在高温下,对氧、氮、氢具有较高的化学亲和力,易形成脆性化合物,使强度显著提高,而塑性和韧性急剧下降,显著地增加脆性断裂倾向及裂纹形成。钛还易与许多其它金属形成金属间化合物,钛与铁易形成金属间化合物TiFe和TiFe
。钛/钢焊接时,由于钢中存在的Ni、Cr、C等
元素也能与Ti形成TiNi、TiNi、TiNi、TiCr、TiC等多种金属间化合物脆性相,使焊缝更脆,性能进一步降低。