㈠ MATLAB如何使用ga遺傳演算法工具箱進行優化
1、首先,打開MATLAB軟體。
2、設置一個m文件,用於計算個體的適應度函數輸出值一個適應度,輸入是我們要優化的參數;例如:要優化的參數(x ,y ,z)則適應度函數的基本結構應是v=function(x, y, z)。
3、輸入「gatool」指令打開工具箱,如圖所示。
4、如圖所示,打開的ga工具箱界面。
5、輸入我們的適應度函數,和要優化的個數,和一些其它設置,要根據我們的任務決定;例如:適應度函數為:v=function(x, y, z)時要配置適應度函數項為@function。
6、要優化的參數個數為3。左後單擊「start」開始,等待一段時間就會出現我們要優化的參數。
㈡ 用matlab優化工具箱自帶的遺傳演算法(只能找到近似最優解)時,往往重復計算很多次都不能得到最優解
要想得到較精確的最優解,可以通過設定Function tolerance的誤差值,Constrainttolerance的誤差值。
㈢ 使用matlab遺傳演算法工具箱能不能解決組合優化問題還有使用工具箱方便還是自己編程方便呢
1、要看你組來合優化是屬於哪種問題,源一般的組合優化都是混合整數線性或非線性的,那麼就不行了,因此要對遺傳演算法改進才能計算。
2、如果有現成的工具箱求解你的組合優化問題肯定要方便些,但碰到具體問題,可能要對參數進行一些設置更改,所以最好能有編程基礎,那樣就可以自己修改工具箱裡面的參數或策略了
對你的補充問題,組合優化問題一般都是用matlab 和 lingo實現吧。建議買一本數學建模的書看一看,都涉及到組合優化問題,也可以下載論文看看。lingo對編程要簡單些,主要是求混合規劃,缺點是似乎還不能用上多目標問題,一般的組合優化都屬於多目標問題。但是matlab功能強大的多。