導航:首頁 > 五金知識 > bp神經網路matlab工具箱評價

bp神經網路matlab工具箱評價

發布時間:2023-03-24 20:54:25

A. matlab神經網路工具箱怎麼效果好

導入數據:選擇合適的數據,一定要選數值矩陣形式
在這里插入圖片描述在這里插入圖片描述

進行訓練
在這里插入圖片描述

接下來就點next,選擇輸入輸出,Sample are是選擇以行還是列放置矩陣的,注意調整

在這里插入圖片描述

接下來一直next,在這兒點train

在這里插入圖片描述

查看結果

在這里插入圖片描述

導出代碼:再點next,直到這個界面,先勾選下面的,再點Simple Script生成代碼
在這里插入圖片描述

使用訓練好的神經網路進行預測
使用下方命令,z是需要預測的輸入變數,net就是訓練好的模型

在這里插入圖片描述

再將結果輸出成excel就行啦

在這里插入圖片描述

打開CSDN,閱讀體驗更佳

使用MATLAB載入訓練好的caffe模型進行識別分類_IT遠征軍的博客-CSDN...
在進行下面的實驗前,需要先對數據進行訓練得到caffemodel,然後再進行分類識別 c_demo.m function [scores, maxlabel] = c_demo(im, use_gpu) % Add caffe/matlab to you Matlab search PATH to use matcaffe if exist('/home/...
繼續訪問
MATLAB調用訓練好的KERAS模型_LzQuarter的博客
下載了鏈接中的「kerasimporter.mlpkginstall」文件後,在matlab內用左側的文件管理系統打開會進入一個頁面,在該頁面的右上角有安裝的按鈕,如果之前安裝一直失敗,可以通過這個安裝按鈕的下拉選項選擇僅下載 下載還是有可能要用到VPN,但是相比...
繼續訪問
最新發布 matlab神經網路預測數據,matlab神經網路工具箱
Matlab語言是MathWorks公司推出的一套高性能計算機編程語言,集數學計算、圖形顯示、語言設計於一體,其強大的擴展功能為用戶提供了廣闊的應用空問。它附帶有30多個工具箱,神經網路工具箱就是其中之一。谷歌人工智慧寫作項目:神經網路偽原創。
繼續訪問
matlab神經網路工具箱系統預測
matlab神經網路工具箱系統預測 有原始數據 根據原始數據預測未來十年內的數據
matlab預測控制工具箱
matlab預測控制工具箱,在學習預測控制的過程中翻譯的matlab自帶的示例,希望對大家有所幫助 matlab預測控制工具箱,在學習預測控制的過程中翻譯的matlab自帶的示例,希望對大家有所幫助
用matlab做bp神經網路預測,神經網路預測matlab代碼
我覺得一個很大的原因是你預測給的輸入范圍(2014-)超出了訓練數據的輸入范圍(2006-2013),神經網路好像是具有內插值特性,不能超出,你可以把輸入變數-時間換成其他的變數,比如經過理論分析得出的某些影響因素,然後訓練數據要包括大范圍的情況,這樣可以保證預測其他年份的運量的時候,輸入變數不超出范圍,最後預測的時候給出這幾個影響因素的值,效果會好一點。輸出層是個purelin,線性組合後的輸出層輸出當然也全是幾乎相同的了。輸出層是個purelin,線性組合後的輸出層輸出當然也全是幾乎相同的了。
繼續訪問

BP神經網路預測實例(matlab代碼,神經網路工具箱)
目錄辛烷值的預測matlab代碼實現工具箱實現 參考學習b站: 數學建模學習交流 bp神經網路預測matlab代碼實現過程 辛烷值的預測 【改編】辛烷值是汽油最重要的品質指標,傳統的實驗室檢測方法存在樣品用量大,測試周期長和費用高等問題,不適用於生產控制,特別是在線測試。近年發展起來的近紅外光譜分析方法(NIR),作為一種快速分析方法,已廣泛應用於農業、制葯、生物化工、石油產品等領域。其優越性是無損檢測、低成本、無污染,能在線分析,更適合於生產和控制的需要。實驗採集得到50組汽油樣品(辛烷值已通過其他方法測
繼續訪問

用matlab做bp神經網路預測,matlab人工神經網路預測
ylabel('函數輸出','fontsize',12);%畫出預測結果誤差圖figureplot(error,'-*')title('BP網路預測誤差','fontsize',12)ylabel('誤差','fontsize',12)xlabel('樣本','fontsize',12)。三、訓練函數與學習函數的區別函數的輸出是權值和閾值的增量,訓練函數的輸出是訓練好的網路和訓練記錄,在訓練過程中訓練函數不斷調用學習函數修正權值和閾值,通過檢測設定的訓練步數或性能函數計算出的誤差小於設定誤差,來結束訓練。.
繼續訪問
matlab訓練神經網路模型並導入simulink詳細步驟
之前的神經網路相關文章: Matlab-RBF神經網路擬合數據 Matlab RBF神經網路及其實例 4.深度學習(1) --神經網路編程入門 本文介紹一下怎麼把訓練好的神經網路導入到simulink並使用,假定有兩個變數,一個輸出變數,隨機生成一點數據 x1 = rand(1000,1);x2 = rand(1000,1);x = [x1 x2];y = rand(1000,1); 在App裡面找到神經網路工具箱 點擊Next 選擇對應的數據,注意選擇好對應的輸入和輸出,還
繼續訪問

用matlab做bp神經網路預測,matlab神經網路怎麼預測
它的學習規則是使用最速下降法,通過反向傳播來不斷調整網路的權值和閾值,使網路的誤差平方和最小。Network可以看出,你的網路結構是兩個隱含層,2-3-1-1結構的網路,演算法是traindm,顯示出來的誤差變化為均方誤差值mse。達到設定的網路精度0.001的時候,誤差下降梯度為0.0046,遠大於默認的1e-5,說明此時的網路誤差仍在快速下降,所以可以把訓練精度目標再提高一些,比如設為0.0001或者1e-5。如果你所選用的激活函數是線性函數,那麼就可以先把輸出的表達式寫出來,即權向量和輸入的矩陣乘積。
繼續訪問

matlab訓練模型、導出模型及VC調用模型過程詳解
MATLAB是美國MathWorks公司出品的商業數學軟體,為演算法開發、數據可視化、數據分析以及數值計算等提供了高級計算語言和互動式環境。隨著人工智慧的崛起,MATLAB也添加了自己的機器學習工具包,只需要很少的代碼或命令就能完成模型訓練和測試的過程,訓練好的模型也能方便的導出,供VC等調用。本文主要介紹模型訓練、導出和調用的整個過程。 軟體版本: VC2015,matlab2018a ...
繼續訪問

matlab神經網路預測模型,matlab人工神經網路預測
谷歌人工智慧寫作項目:小發貓matlab帶有神經網路工具箱,可直接調用,建議找本書看看,或者MATLAB論壇找例子常見的神經網路結構。核心調用語句如下:%數據輸入%選連樣本輸入輸出數據歸一化[inputn,inputps]=mapminmax(input_train);[outputn,outputps]=mapminmax(output_train);%%BP網路訓練%%初始化網路結構net=newff(inputn,outputn,[88]);net.trainParam.epochs=100;=0.0
繼續訪問

在Matlab中調用pytorch上訓練好的網路模型
在Matlab中調用pytorch上訓練好的網路模型
繼續訪問

MATLAB_第二篇神經網路學習_BP神經網路
BP神經網路代碼實現1. BP神經網路的簡介和結構參數1.1 BP神經網路的結構組成1.2 BP神經網路訓練界面的參數解讀 非常感謝博主wishes61的分享. 1. BP神經網路的簡介和結構參數 一種按照誤差逆向傳播演算法訓練的多層前饋神經網路用於預測BP神經網路的計算過程:由正向計算過程和反向計算過程組成。 正向傳播過程,輸入模式從輸入層經隱單元層逐層處理,並轉向輸出層,每一層神經元的狀態隻影響下一層神經元的狀態。 如果在輸出層不能得到期望的輸出,則轉入反向傳播,將誤差信號沿原來的連接通路返回,通過修改各
繼續訪問

MATLAB神經網路擬合回歸工具箱Neural Net Fitting的使用方法
本文介紹MATLAB軟體中神經網路擬合(Neural Net Fitting)工具箱的具體使用方法~
繼續訪問

灰色預測工具箱matlab,Matlab灰色預測工具箱——走過數模
2009-07-02 23:05灰色預測幾乎是每年數模培訓必不可少的內容,相對來說也是比較簡單,這里寫了四個函數,方便在Matlab裡面調用,分別是GM(1,1),殘差GM(1,1),新陳代謝GM(1,1),Verhust自己寫得難免有所疏忽,需要的朋友自己找本書本來試驗一下。。Gm(1,1)function [px0,ab,rel]=gm11(x0,number)%[px0,ab,rel]=gm...
繼續訪問
matlab利用訓練好的BP神經網路來預測新數據(先保存網路,再使用網路)
1,保存網路。save ('net') % net為已訓練好的網路,這里把他從workspace保存到工作目錄,顯示為net.mat文檔。 2,使用網路。load ('net') % net為上面保存的網路,這里把他下載到workspace。y_predict = sim(...
繼續訪問
數學建模學習(79):Matlab神經網路工具箱使用,實現多輸入多輸出預測
Matlab神經網路工具箱實現,實現多輸入多輸出預測
繼續訪問

熱門推薦 如何利用matlab做BP神經網路分析(包括利用matlab神經網路工具箱)
利用MATLAB 進行BP神經網路的預測(含有神經網路工具箱) 最近一段時間在研究如何利用預測其銷量個數,在網上搜索了一下,發現了很多模型來預測,比如利用回歸模型、時間序列模型,GM(1,1)模型,可是自己在結合實際的工作內容,發現這幾種模型預測的精度不是很高,於是再在網上進行搜索,發現神經網路模型可以來預測,並且有很多是結合時間序列或者SVM(支持向量機)等組合模型來進...
繼續訪問
bp神經網路預測案例python_詳細BP神經網路預測演算法及實現過程實例
1.具體應用實例。根據表2,預測序號15的跳高成績。表2國內男子跳高運動員各項素質指標序號跳高成績()30行進跑(s)立定三級跳遠()助跑摸高()助跑4—6步跳高()負重深蹲杠鈴()杠鈴半蹲系數100(s)抓舉()12.243.29.63.452.151402.811.05022.333.210.33.752.21203.410.97032.243.09.03.52.21403.511.4504...
繼續訪問
如何調用MATLAB訓練神經網路生成的網路進行預測
如何調用MATLAB訓練神經網路生成的網路問題引出知識准備代碼註解 問題引出 如何存儲和調用已經訓練好的神經網路。 本人前幾天在智能控制學習的過程中也遇到了這樣的問題,在論壇中看了大家的回復,雖然都提到了關鍵的兩個函數「save」和「load」,但或多或少都簡潔了些,讓人摸不著頭腦(呵呵,當然也可能是本人太菜)。通過不斷調試,大致弄明白這兩個函數對神經網路的存儲。下面附上實例給大家做個說明,希望對跟我有一樣問題的朋友有所幫助。 知識准備 如果只是需要在工作目錄下保到當前訓練好的網路,可以在命令窗口 輸入:s
繼續訪問
matlab訓練好的模型怎麼用
神經網路

B. 關於matlab的BP神經網路:

比較新的版本,比如說matlab 2010以上的,都不需要裝神經網路的工具箱
建立網路步驟:
1、數據歸一化:輸入的數據通常為P,輸出數據通常為T,數據格式為:每列對應一個樣本,歸一化常用函數:mapminmax
[pn,ps]=mapminmax(p); [tn,ts]=mapminmax(t)
pn,tn是歸一化後的數據,ps, ts是歸一化的結構體,在後面反歸一化預測值很有用。
2、建立網路並設定參數
net=newff(pn,tn,[ ]) 中括弧裡面的是輸入層數,隱含神經元數,輸出層數,還可以設定節點傳遞函數等等的參數
net.trainparam.epochs=1000 訓練的次數
net.trainparam.goal=0.0001 訓練的誤差目標值
net.trainparam.lr=0.1 學習速率,通常在0到1之間,過大過小都不好
3、預測並分析
an=sim(net, pn)
ouput=mapminmax('reverse', an, ts) 根據之前歸一化的標准,對預測結果進行反歸一化,得到結果
error=output-t 這里是對誤差進行輸出,也可以用error=sum(asb(output-t))
當然也可以作圖,比如說:
plot(p,t,'-o')
hold on
plot(p, output,'-*')
看預測值和真實值能否吻合
還可以在神經網路訓練完成後的對話框中看MSE和R方
還有很多方法提高神經網路的精度,以上程序沒有經過MATLAB調試,但大致過程如上

純手打,希望採納!

C. 關於matlab 中神經網路工具箱使用:幫我解釋下這段創建BP神經網路,用於數據分類的結果

從你的代碼上看,返回來的不是0就是1,是分類的結果啊!

D. matlabBP神經網路工具箱,可以調整隱含層節點數嘛

Matlab神經網路工具箱幾乎包含了現有神經網路的最新成果,神經網路工具箱模型包括感知回器、線性網路、答BP網路、徑向基函數網路、競爭型神經網路、自組織網路和學習向量量化網路、反饋網路BP神經網路具有很強的映射能力,主要用於模式識別分類、函數逼近、函數壓縮等。下面通過實例來說明BP網路在函數逼近方面的應用需要逼近的函數是f(x)=1+sin(k*pi/2*x),其中,選擇k=2進行模擬,設置隱藏層神經元數目為n,n可以改變,便於後面觀察隱藏層節點與函數逼近能力的關系。

E. 一個關於BP神經網路的問題,matlab中神經網路工具箱的初始權值和閥值是

訓練BP神經網路所採取的隨機初始參數確實是隨機的,在訓練過程中這些參數和權值都會朝著同一個大方向進行修正。例如你用BP神經網路來擬合曲線,找到輸入值與輸出值之間的線性規律,那麼在訓練的過程中這個擬合的曲線會不斷的調整其參數和權值直到滿足幾個預設條件之一時訓練停止。雖然這個訓練出來的結果有時候會有一定誤差,但都在可以接受的范圍內。
縮小誤差的一個方法是需要預先設置初始參數,雖然每次依然會得到不一樣的模型(只要參數是隨機修正的),但不同模型之間的差距會很小。另外可以反復訓練,找到一個自己覺得滿意的模型(可以是測試通過率最高,可以是平均結果誤差值最小)。
至於你說別人怎麼檢查你的論文結果,基本上都是通過你的演算法來重建模型,而且還不一定都用matlab來做,即便是用同樣的代碼都會出現不同的結果,何況是不同的語言呢?其實驗算結果最重要的是看測試時的通過率,例如在對一組新的數據進行測試(或預測)時,通過率達到95%,別人用其他的方式重建了你的模型也得到這樣的通過率,那麼你的演算法就是可行的。注意,在計算機專業的論文裡面大家看重的不是代碼,而是演算法。
補充一點:只要你訓練好了一個神經網路可以把這個神經網路以struct形式保存,這樣這個網路可以被反復使用,且每次對同一組測試數據的預測結果都會一樣。你也可以當做是檢測論文可行性的工具。

F. bp神經網路matlab工具箱建模結果

你用的是matlab的神經網路工具箱吧。那是因為權值和閾值每次都是隨機初始化的專,所以結果屬就會不一樣,
你可以把隨機種子固定,即在代碼前面加上setdemorandstream(pi); 這樣每次訓練出來的結果都是一樣的了。

看來樓主是剛開始學習神經網路的,推薦一些資料給樓主:
神經網路之家 (專講神經網路的網站,有視頻下載)

matlab中文論壇的神經網路專區
數學中國的神經網路專區

較好的書:
MATLAB神經網路原理與實例精解

G. matlab神經網路工具箱,會比自己寫的遺傳演算法優化bp神經網路好用嘛

1、遺傳演算法優化BP神經網路是指優化神經網路的參數; 2、因此,對訓練時間沒有影響。

閱讀全文

與bp神經網路matlab工具箱評價相關的資料

熱點內容
機械傳動為什麼會有高燒期 瀏覽:409
陽邏中高壓閥門廠 瀏覽:470
製取觀察氫氧化亞鐵實驗裝置 瀏覽:452
公共心肺復甦儀器叫什麼 瀏覽:927
廣州電子智能稱重儀表多少錢 瀏覽:123
機組自動控制裝置復原 瀏覽:484
蘇州電動工具吸塵器 瀏覽:184
軸承機械弓用什麼瞄好 瀏覽:586
MT30工具箱 瀏覽:738
保持架軸承怎麼測量 瀏覽:123
汽車上使用的向心軸承有什麼 瀏覽:734
儀器儀表上的字體是什麼字體 瀏覽:637
常用實驗儀器及裝置 瀏覽:973
徐州正大機械有限公司怎麼樣 瀏覽:171
什麼膩子粉生產設備好 瀏覽:409
黑石鑄造廠格魯爾怎麼打 瀏覽:34
寶馬x3哪裡調排氣閥門 瀏覽:935
手推叉車如何換軸承 瀏覽:706
小型堆肥實驗常用的加熱裝置 瀏覽:590
管道閥門進行統一標識 瀏覽:586