A. 卷積神經網路CNN(Convolutional Neural Network)
上圖計算過程為,首先我們可以將右邊進行卷積的可以稱為過濾器也可以叫做核,覆蓋到左邊第一個區域,然後分別按照對應位置相乘再相加,3*1+1*1+2*1+0*0+0*0+0*0+1*(-1)+8*(-1)+2*(-1)=-5;
按照上述的計算方法逐步按右移一個步長(步長可以設定為1,2,...等),然後按往下移,逐漸計算相應的值,得出最終的值。
如上圖顯示,對於第一個圖像矩陣對應的圖,一邊是白色,一邊是黑色,那麼中間就會存在一個垂直的邊緣,我們可以選擇一個垂直邊緣檢測過濾器,如乘法右邊的矩陣,那麼兩者做卷積後得出的圖會顯示如等號右邊的結果矩陣對應的灰度圖中間會有一個白色的中間帶,也就是檢測出來的邊緣,那為什麼感覺中間邊緣帶會比較寬呢?而不是很細的一個局域呢?原因是我們輸入的圖像只有6*6,過於小了,如果我們選擇輸出更大的尺寸的圖,那麼結果來說就是相對的一個細的邊緣檢測帶,也就將我們的垂直邊緣特徵提取出來了。
上述都是人工選擇過濾器的參數,隨著神經網路的發展我們可以利用反向傳播演算法來學習過濾器的參數
我們可以將卷積的顧慮器的數值變成一個參數,通過反向傳播演算法去學習,這樣學到的過濾器或者說卷積核就能夠識別到很多的特徵,而不是依靠手工選擇過濾器。
- padding 操作,卷積經常會出現兩個問題:
1.每經過一次卷積圖像都會縮小,如果卷積層很多的話,後面的圖像就縮的很小了;
2.邊緣像素利用次數只有一次,很明顯少於位於中間的像素,因此會損失邊緣圖像信息。
為了解決上述的問題,我們可以在圖像邊緣填充像素,也就是 padding 操作了。
如果我們設置在圖像邊緣填充的像素數為p,那麼經過卷積後的圖像是:(n+2p-f+1)x(n+2p-f+1).
如何去選擇p呢
通常有兩種選擇:
-Valid:也就是說不填充操作(no padding),因此如果我們有nxn的圖像,fxf的過濾器,那麼我們進行卷積nxn fxf=(n-f+1)x(n-f+1)的輸出圖像;
-Same:也就是填充後是輸出圖像的大小的與輸入相同,同樣就有(n+2p)x(n+2p) fxf=nxn,那麼可以算,n+2p-f+1=n,得到p=(f-1)/2。
通常對於過濾器的選擇有一個默認的准則就是選擇過濾器的尺寸是奇數的過濾器。
- 卷積步長設置(Strided COnvolution)
卷積步長也就是我們進行卷積操作時,過濾器每次移動的步長,上面我們介紹的卷積操作步長默認都是1,也就是說每次移動過濾器時我們是向右移動一格,或者向下移動一格。
但是我們可以對卷積進行步長的設置,也就是我們能夠對卷積移動的格數進行設置。同樣假如我們的圖像是nxn,過濾器是fxf,padding設置是p,步長strided設置為s,那麼我們進行卷積操作後輸出的圖像為((n+2p-f)/s+1)x((n+2p-f)/s+1),那麼這樣就會出現一個問題,如果計算結果不是整數怎麼辦?
一般是選擇向下取整,也就是說明,只有當我們的過濾器完全在圖像上能夠覆蓋時才對它進行計算,這是一個慣例。
實際上上述所述的操作在嚴格數學角度來說不是卷積的定義,卷積的定義上我們計算的時候在移動步長之前也就是對應元素相乘之前是需要對卷積核或者說我們的過濾器進行鏡像操作的,經過鏡像操作後再把對應元素進行相乘這才是嚴格意義上的卷積操作,在數學角度上來說這個操作不算嚴格的卷積操作應該是屬於互相關操作,但是在深度學習領域中,大家按照慣例都省略了反轉操作,也把這個操作叫做卷積操作
我們知道彩色圖像有RGB三個通道,因此對於輸入來說是一個三維的輸入,那麼對三維輸入的圖像如何進行卷積操作呢?
例子,如上圖我們輸入圖像假設為6×6×3,3代表有RGB三個通道channel,或者可以叫depth深度,過濾器的選擇為3×3×3,其中需要規定的是,顧慮器的channel必須與輸入圖像的channel相同,長寬沒有限制,那麼計算過程是,我們將過濾器的立體覆蓋在輸入,這樣對應的27個數對應相乘後相加得到一個數,對應到我們的輸出,因此這樣的方式進行卷積後我們得出的輸出層為4×4×1。如果我們有多個過濾器,比如我們分別用兩個過濾器一個提取垂直特徵,一個提取水平特徵,那麼輸出圖4×4×2 。也就是代表我們輸出的深度或者說通道與過濾器的個數是相等的。
第l層的卷積標記如下:
加入我們的過濾器是3×3×3規格的,如果我們設定10個過濾器,那麼需要學習的參數總數為每個過濾器為27個參數然後加上一個偏差bias那麼每個過濾器的參數為28個,所以十個過濾器的參數為280個。從這里也就可以看出,不管我們輸入的圖片大小是多大,我們都只需要計算這些參數,因此參數共享也就很容易理解了。
為了縮減模型的大小,提高計算速度,同時提高所提取特徵的魯棒性,我們經常會使用池化層。池化層的計算方式與卷積類似,只是我們需要對每一個通道都進行池化操作。
池化的方式一般有兩種:Max Pooling和Average Pooling。
上面為Max Pooling,那麼計算方法與卷積類似,首先設定超參數比如過濾器的大小與步長,然後覆蓋到對應格子上面,用最大值取代其值作為輸出的結果,例如上圖為過濾器選擇2×2,步長選擇為2,因此輸出就是2×2的維度,每個輸出格子都是過濾器對應維度上輸入的最大值。如果為平均池化,那麼就是選擇其間的平均值作為輸出的值。
因此從上面的過程我們看到,通過池化操作能夠縮小模型,同時能讓特徵值更加明顯,也就提高了提取特徵的魯棒性。
B. CNN、RNN、DNN的一般解釋
CNN(卷積神經網路)、RNN(循環神經網路)、DNN(深度神經網路)的內部網路結構有什麼區別?
轉自知乎 科言君 的回答
神經網路技術起源於上世紀五、六十年代,當時叫 感知機 (perceptron),擁有輸入層、輸出層和一個隱含層。輸入的特徵向量通過隱含層變換達到輸出層,在輸出層得到分類結果。早期感知機的推動者是Rosenblatt。 (扯一個不相關的:由於計算技術的落後,當時感知器傳輸函數是用線拉動變阻器改變電阻的方法機械實現的,腦補一下科學家們扯著密密麻麻的導線的樣子…)
但是,Rosenblatt的單層感知機有一個嚴重得不能再嚴重的問題,即它對稍復雜一些的函數都無能為力(比如最為典型的「異或」操作)。連異或都不能擬合,你還能指望這貨有什麼實際用途么o(╯□╰)o
隨著數學的發展,這個缺點直到上世紀八十年代才被Rumelhart、Williams、Hinton、LeCun等人(反正就是一票大牛)發明的 多層感知機 (multilayerperceptron)克服。多層感知機,顧名思義,就是有多個隱含層的感知機(廢話……)。好好,我們看一下多層感知機的結構:
圖1 上下層神經元全部相連的神經網路——多層感知機
多層感知機可以擺脫早期離散傳輸函數的束縛,使用sigmoid或tanh等連續函數模擬神經元對激勵的響應,在訓練演算法上則使用Werbos發明的反向傳播BP演算法。對,這貨就是我們現在所說的 神經網路 NN ——神經網路聽起來不知道比感知機高端到哪裡去了!這再次告訴我們起一個好聽的名字對於研(zhuang)究(bi)很重要!
多層感知機解決了之前無法模擬異或邏輯的缺陷,同時更多的層數也讓網路更能夠刻畫現實世界中的復雜情形。相信年輕如Hinton當時一定是春風得意。
多層感知機給我們帶來的啟示是, 神經網路的層數直接決定了它對現實的刻畫能力 ——利用每層更少的神經元擬合更加復雜的函數[1]。
(Bengio如是說:functions that can be compactly
represented by a depth k architecture might require an exponential number of
computational elements to be represented by a depth k − 1 architecture.)
即便大牛們早就預料到神經網路需要變得更深,但是有一個夢魘總是縈繞左右。隨著神經網路層數的加深, 優化函數越來越容易陷入局部最優解 ,並且這個「陷阱」越來越偏離真正的全局最優。利用有限數據訓練的深層網路,性能還不如較淺層網路。同時,另一個不可忽略的問題是隨著網路層數增加, 「梯度消失」現象更加嚴重 。具體來說,我們常常使用sigmoid作為神經元的輸入輸出函數。對於幅度為1的信號,在BP反向傳播梯度時,每傳遞一層,梯度衰減為原來的0.25。層數一多,梯度指數衰減後低層基本上接受不到有效的訓練信號。
2006年,Hinton利用預訓練方法緩解了局部最優解問題,將隱含層推動到了7層[2],神經網路真正意義上有了「深度」,由此揭開了深度學習的熱潮。這里的「深度」並沒有固定的定義——在語音識別中4層網路就能夠被認為是「較深的」,而在圖像識別中20層以上的網路屢見不鮮。為了克服梯度消失,ReLU、maxout等傳輸函數代替了sigmoid,形成了如今DNN的基本形式。單從結構上來說, 全連接的 DNN 和圖 1 的多層感知機是沒有任何區別的 。
值得一提的是,今年出現的高速公路網路(highway network)和深度殘差學習(deep resial learning)進一步避免了梯度消失,網路層數達到了前所未有的一百多層(深度殘差學習:152層)[3,4]!具體結構題主可自行搜索了解。如果你之前在懷疑是不是有很多方法打上了「深度學習」的噱頭,這個結果真是深得讓人心服口服。
圖2 縮減版的深度殘差學習網路,僅有34 層,終極版有152 層,自行感受一下
如圖1所示,我們看到 全連接 DNN 的結構里下層神經元和所有上層神經元都能夠形成連接 ,帶來的潛在問題是 參數數量的膨脹 。假設輸入的是一幅像素為1K*1K的圖像,隱含層有1M個節點,光這一層就有10^12個權重需要訓練,這不僅容易過擬合,而且極容易陷入局部最優。另外,圖像中有固有的局部模式(比如輪廓、邊界,人的眼睛、鼻子、嘴等)可以利用,顯然應該將圖像處理中的概念和神經網路技術相結合。此時我們可以祭出題主所說的卷積神經網路CNN。對於CNN來說,並不是所有上下層神經元都能直接相連,而是 通過「卷積核」作為中介。同一個卷積核在所有圖像內是共享的,圖像通過卷積操作後仍然保留原先的位置關系。 兩層之間的卷積傳輸的示意圖如下:
圖3 卷積神經網路隱含層(摘自Theano 教程)
通過一個例子簡單說明卷積神經網路的結構。假設圖3中m-1=1是輸入層,我們需要識別一幅彩色圖像,這幅圖像具有四個通道ARGB(透明度和紅綠藍,對應了四幅相同大小的圖像),假設卷積核大小為100*100,共使用100個卷積核w1到w100(從直覺來看,每個卷積核應該學習到不同的結構特徵)。用w1在ARGB圖像上進行卷積操作,可以得到隱含層的第一幅圖像;這幅隱含層圖像左上角第一個像素是四幅輸入圖像左上角100*100區域內像素的加權求和,以此類推。同理,算上其他卷積核,隱含層對應100幅「圖像」。每幅圖像對是對原始圖像中不同特徵的響應。按照這樣的結構繼續傳遞下去。CNN中還有max-pooling等操作進一步提高魯棒性。
圖4 一個典型的卷積神經網路結構,注意到最後一層實際上是一個全連接層(摘自Theano 教程)
在這個例子里,我們注意到 輸入層到隱含層的參數瞬間降低到了 100*100*100=10^6 個 !這使得我們能夠用已有的訓練數據得到良好的模型。題主所說的適用於圖像識別,正是由於 CNN 模型限制參數了個數並挖掘了局部結構的這個特點 。順著同樣的思路,利用語音語譜結構中的局部信息,CNN照樣能應用在語音識別中。
全連接的DNN還存在著另一個問題——無法對時間序列上的變化進行建模。然而, 樣本出現的時間順序對於自然語言處理、語音識別、手寫體識別等應用非常重要 。對了適應這種需求,就出現了題主所說的另一種神經網路結構——循環神經網路RNN。
在普通的全連接網路或CNN中,每層神經元的信號只能向上一層傳播,樣本的處理在各個時刻獨立,因此又被成為前向神經網路(Feed-forward Neural Networks)。而在 RNN 中,神經元的輸出可以在下一個時間戳直接作用到自身 ,即第i層神經元在m時刻的輸入,除了(i-1)層神經元在該時刻的輸出外,還包括其自身在(m-1)時刻的輸出!表示成圖就是這樣的:
圖5 RNN 網路結構
我們可以看到在隱含層節點之間增加了互連。為了分析方便,我們常將RNN在時間上進行展開,得到如圖6所示的結構:
圖6 RNN 在時間上進行展開
Cool, ( t+1 )時刻網路的最終結果O(t+1) 是該時刻輸入和所有歷史共同作用的結果 !這就達到了對時間序列建模的目的。
不知題主是否發現,RNN可以看成一個在時間上傳遞的神經網路,它的深度是時間的長度!正如我們上面所說, 「梯度消失」現象又要出現了,只不過這次發生在時間軸上 。對於t時刻來說,它產生的梯度在時間軸上向歷史傳播幾層之後就消失了,根本就無法影響太遙遠的過去。因此,之前說「所有歷史」共同作用只是理想的情況,在實際中,這種影響也就只能維持若干個時間戳。
為了解決時間上的梯度消失,機器學習領域發展出了 長短時記憶單元 LSTM ,通過門的開關實現時間上記憶功能,並防止梯度消失 ,一個LSTM單元長這個樣子:
圖7 LSTM 的模樣
除了題主疑惑的三種網路,和我之前提到的深度殘差學習、LSTM外,深度學習還有許多其他的結構。舉個例子,RNN既然能繼承歷史信息,是不是也能吸收點未來的信息呢?因為在序列信號分析中,如果我能預知未來,對識別一定也是有所幫助的。因此就有了 雙向 RNN 、雙向 LSTM ,同時利用歷史和未來的信息。
圖8 雙向RNN
事實上, 不論是那種網路,他們在實際應用中常常都混合著使用,比如 CNN 和RNN 在上層輸出之前往往會接上全連接層,很難說某個網路到底屬於哪個類別。 不難想像隨著深度學習熱度的延續,更靈活的組合方式、更多的網路結構將被發展出來。盡管看起來千變萬化,但研究者們的出發點肯定都是為了解決特定的問題。題主如果想進行這方面的研究,不妨仔細分析一下這些結構各自的特點以及它們達成目標的手段。入門的話可以參考:
Ng寫的Ufldl: UFLDL教程 - Ufldl
也可以看Theano內自帶的教程,例子非常具體: Deep Learning Tutorials
歡迎大家繼續推薦補充。
當然啦,如果題主只是想湊個熱鬧時髦一把,或者大概了解一下方便以後把妹使,這樣看看也就罷了吧。
參考文獻:
[1]
Bengio Y. Learning Deep
Architectures for AI[J]. Foundations & Trends® in Machine Learning, 2009,
2(1):1-127.
[2]
Hinton G E, Salakhutdinov R R.
Recing the Dimensionality of Data with Neural Networks[J]. Science, 2006,
313(5786):504-507.
[3]
He K, Zhang X, Ren S, Sun J. Deep
Resial Learning for Image Recognition. arXiv:1512.03385, 2015.
[4]
Srivastava R K, Greff K,
Schmidhuber J. Highway networks. arXiv:1505.00387, 2015.
C. CNN網路簡介
卷積神經網路簡介(Convolutional Neural Networks,簡稱CNN)
卷積神經網路是近年發展起來,並引起廣泛重視的一種高效識別方法。20世紀60年代,Hubel和Wiesel在研究貓腦皮層中用於局部敏感和方向選擇的神經元時發現其獨特的網路結構可以有效地降低反饋神經網路的復雜性,繼而提出了卷積神經網路(Convolutional
Neural
Networks-簡稱CNN)。現在,CNN已經成為眾多科學領域的研究熱點之一,特別是在模式分類領域,由於該網路避免了對圖像的復雜前期預處理,可以直接輸入原始圖像,因而得到了更為廣泛的應用。
K.Fukushima在1980年提出的新識別機是卷積神經網路的第一個實現網路。隨後,更多的科研工作者對該網路進行了改進。其中,具有代表性的研究成果是Alexander和Taylor提出的「改進認知機」,該方法綜合了各種改進方法的優點並避免了耗時的誤差反向傳播。
一般地,CNN的基本結構包括兩層,其一為特徵提取層,每個神經元的輸入與前一層的局部接受域相連,並提取該局部的特徵。一旦該局部特徵被提取後,它與其它特徵間的位置關系也隨之確定下來;其二是特徵映射層,網路的每個計算層由多個特徵映射組成,每個特徵映射是一個平面,平面上所有神經元的權值相等。特徵映射結構採用影響函數核小的sigmoid函數作為卷積網路的激活函數,使得特徵映射具有位移不變性。此外,由於一個映射面上的神經元共享權值,因而減少了網路自由參數的個數。卷積神經網路中的每一個卷積層都緊跟著一個用來求局部平均與二次提取的計算層,這種特有的兩次特徵提取結構減小了特徵解析度。
CNN主要用來識別位移、縮放及其他形式扭曲不變性的二維圖形。由於CNN的特徵檢測層通過訓練數據進行學習,所以在使用CNN時,避免了顯示的特徵抽取,而隱式地從訓練數據中進行學習;再者由於同一特徵映射面上的神經元權值相同,所以網路可以並行學習,這也是卷積網路相對於神經元彼此相連網路的一大優勢。卷積神經網路以其局部權值共享的特殊結構在語音識別和圖像處理方面有著獨特的優越性,其布局更接近於實際的生物神經網路,權值共享降低了網路的復雜性,特別是多維輸入向量的圖像可以直接輸入網路這一特點避免了特徵提取和分類過程中數據重建的復雜度。
1. 神經網路
首先介紹神經網路,這一步的詳細可以參考資源1。簡要介紹下。神經網路的每個單元如下:
其對應的公式如下:
其中,該單元也可以被稱作是Logistic回歸模型。當將多個單元組合起來並具有分層結構時,就形成了神經網路模型。下圖展示了一個具有一個隱含層的神經網路。
其對應的公式如下:
比較類似的,可以拓展到有2,3,4,5,…個隱含層。
神經網路的訓練方法也同Logistic類似,不過由於其多層性,還需要利用鏈式求導法則對隱含層的節點進行求導,即梯度下降+鏈式求導法則,專業名稱為反向傳播。關於訓練演算法,本文暫不涉及。
2 卷積神經網路
在圖像處理中,往往把圖像表示為像素的向量,比如一個1000×1000的圖像,可以表示為一個1000000的向量。在上一節中提到的神經網路中,如果隱含層數目與輸入層一樣,即也是1000000時,那麼輸入層到隱含層的參數數據為1000000×1000000=10^12,這樣就太多了,基本沒法訓練。所以圖像處理要想練成神經網路大法,必先減少參數加快速度。就跟辟邪劍譜似的,普通人練得很挫,一旦自宮後內力變強劍法變快,就變的很牛了。
2.1 局部感知
卷積神經網路有兩種神器可以降低參數數目,第一種神器叫做局部感知野。一般認為人對外界的認知是從局部到全局的,而圖像的空間聯系也是局部的像素聯系較為緊密,而距離較遠的像素相關性則較弱。因而,每個神經元其實沒有必要對全局圖像進行感知,只需要對局部進行感知,然後在更高層將局部的信息綜合起來就得到了全局的信息。網路部分連通的思想,也是受啟發於生物學裡面的視覺系統結構。視覺皮層的神經元就是局部接受信息的(即這些神經元只響應某些特定區域的刺激)。如下圖所示:左圖為全連接,右圖為局部連接。
在上右圖中,假如每個神經元只和10×10個像素值相連,那麼權值數據為1000000×100個參數,減少為原來的千分之一。而那10×10個像素值對應的10×10個參數,其實就相當於卷積操作。
2.2 參數共享
但其實這樣的話參數仍然過多,那麼就啟動第二級神器,即權值共享。在上面的局部連接中,每個神經元都對應100個參數,一共1000000個神經元,如果這1000000個神經元的100個參數都是相等的,那麼參數數目就變為100了。
怎麼理解權值共享呢?我們可以這100個參數(也就是卷積操作)看成是提取特徵的方式,該方式與位置無關。這其中隱含的原理則是:圖像的一部分的統計特性與其他部分是一樣的。這也意味著我們在這一部分學習的特徵也能用在另一部分上,所以對於這個圖像上的所有位置,我們都能使用同樣的學習特徵。
更直觀一些,當從一個大尺寸圖像中隨機選取一小塊,比如說 8×8 作為樣本,並且從這個小塊樣本中學習到了一些特徵,這時我們可以把從這個
8×8 樣本中學習到的特徵作為探測器,應用到這個圖像的任意地方中去。特別是,我們可以用從 8×8
樣本中所學習到的特徵跟原本的大尺寸圖像作卷積,從而對這個大尺寸圖像上的任一位置獲得一個不同特徵的激活值。
如下圖所示,展示了一個33的卷積核在55的圖像上做卷積的過程。每個卷積都是一種特徵提取方式,就像一個篩子,將圖像中符合條件(激活值越大越符合條件)的部分篩選出來。
2.3 多卷積核
上面所述只有100個參數時,表明只有1個100*100的卷積核,顯然,特徵提取是不充分的,我們可以添加多個卷積核,比如32個卷積核,可以學習32種特徵。在有多個卷積核時,如下圖所示:
上圖右,不同顏色表明不同的卷積核。每個卷積核都會將圖像生成為另一幅圖像。比如兩個卷積核就可以將生成兩幅圖像,這兩幅圖像可以看做是一張圖像的不同的通道。如下圖所示,下圖有個小錯誤,即將w1改為w0,w2改為w1即可。下文中仍以w1和w2稱呼它們。
下圖展示了在四個通道上的卷積操作,有兩個卷積核,生成兩個通道。其中需要注意的是,四個通道上每個通道對應一個卷積核,先將w2忽略,只看w1,那麼在w1的某位置(i,j)處的值,是由四個通道上(i,j)處的卷積結果相加然後再取激活函數值得到的。
所以,在上圖由4個通道卷積得到2個通道的過程中,參數的數目為4×2×2×2個,其中4表示4個通道,第一個2表示生成2個通道,最後的2×2表示卷積核大小。
2.4 Down-pooling
在通過卷積獲得了特徵 (features)
之後,下一步我們希望利用這些特徵去做分類。理論上講,人們可以用所有提取得到的特徵去訓練分類器,例如 softmax
分類器,但這樣做面臨計算量的挑戰。例如:對於一個 96X96
像素的圖像,假設我們已經學習得到了400個定義在8X8輸入上的特徵,每一個特徵和圖像卷積都會得到一個 (96 − 8 + 1) × (96 − 8+ 1) = 7921 維的卷積特徵,由於有 400 個特徵,所以每個樣例 (example) 都會得到一個 892 × 400 =3,168,400 維的卷積特徵向量。學習一個擁有超過 3 百萬特徵輸入的分類器十分不便,並且容易出現過擬合 (over-fitting)。
為了解決這個問題,首先回憶一下,我們之所以決定使用卷積後的特徵是因為圖像具有一種「靜態性」的屬性,這也就意味著在一個圖像區域有用的特徵極有可能在另一個區域同樣適用。因此,為了描述大的圖像,一個很自然的想法就是對不同位置的特徵進行聚合統計,例如,人們可以計算圖像一個區域上的某個特定特徵的平均值(或最大值)。這些概要統計特徵不僅具有低得多的維度 (相比使用所有提取得到的特徵),同時還會改善結果(不容易過擬合)。這種聚合的操作就叫做池(pooling),有時也稱為平均池化或者最大池化 (取決於計算池化的方法)。
至此,卷積神經網路的基本結構和原理已經闡述完畢。
2.5 多層卷積
在實際應用中,往往使用多層卷積,然後再使用全連接層進行訓練,多層卷積的目的是一層卷積學到的特徵往往是局部的,層數越高,學到的特徵就越全局化。
3 ImageNet-2010網路結構
ImageNetLSVRC是一個圖片分類的比賽,其訓練集包括127W+張圖片,驗證集有5W張圖片,測試集有15W張圖片。本文截取2010年AlexKrizhevsky的CNN結構進行說明,該結構在2010年取得冠軍,top-5錯誤率為15.3%。值得一提的是,在今年的ImageNetLSVRC比賽中,取得冠軍的GoogNet已經達到了top-5錯誤率6.67%。可見,深度學習的提升空間還很巨大。
下圖即為Alex的CNN結構圖。需要注意的是,該模型採用了2-GPU並行結構,即第1、2、4、5卷積層都是將模型參數分為2部分進行訓練的。在這里,更進一步,並行結構分為數據並行與模型並行。數據並行是指在不同的GPU上,模型結構相同,但將訓練數據進行切分,分別訓練得到不同的模型,然後再將模型進行融合。而模型並行則是,將若干層的模型參數進行切分,不同的GPU上使用相同的數據進行訓練,得到的結果直接連接作為下一層的輸入。
上圖模型的基本參數為:
輸入:224×224大小的圖片,3通道
第一層卷積:5×5大小的卷積核96個,每個GPU上48個。
第一層max-pooling:2×2的核。
第二層卷積:3×3卷積核256個,每個GPU上128個。
第二層max-pooling:2×2的核。
第三層卷積:與上一層是全連接,3*3的卷積核384個。分到兩個GPU上個192個。
第四層卷積:3×3的卷積核384個,兩個GPU各192個。該層與上一層連接沒有經過pooling層。
第五層卷積:3×3的卷積核256個,兩個GPU上個128個。
第五層max-pooling:2×2的核。
第一層全連接:4096維,將第五層max-pooling的輸出連接成為一個一維向量,作為該層的輸入。
第二層全連接:4096維
Softmax層:輸出為1000,輸出的每一維都是圖片屬於該類別的概率。
4 DeepID網路結構
DeepID網路結構是香港中文大學的Sun
Yi開發出來用來學習人臉特徵的卷積神經網路。每張輸入的人臉被表示為160維的向量,學習到的向量經過其他模型進行分類,在人臉驗證試驗上得到了97.45%的正確率,更進一步的,原作者改進了CNN,又得到了99.15%的正確率。
如下圖所示,該結構與ImageNet的具體參數類似,所以只解釋一下不同的部分吧。
上圖中的結構,在最後只有一層全連接層,然後就是softmax層了。論文中就是以該全連接層作為圖像的表示。在全連接層,以第四層卷積和第三層max-pooling的輸出作為全連接層的輸入,這樣可以學習到局部的和全局的特徵。
D. CNN(卷積神經網路)、RNN(循環神經網路)、DNN(深度神經網路)的內部網路結構有什麼區別
如下:
1、DNN:存在著一個問題——無法對時間序列上的變化進行建模。然而,樣本出現的時間順序對於自然語言處理、語音識別、手寫體識別等應用非常重要。對了適應這種需求,就出現了另一種神經網路結構——循環神經網路RNN。
2、CNN:每層神經元的信號只能向上一層傳播,樣本的處理在各個時刻獨立,因此又被稱為前向神經網路。
3、RNN:神經元的輸出可以在下一個時間戳直接作用到自身,即第i層神經元在m時刻的輸入,除了(i-1)層神經元在該時刻的輸出外,還包括其自身在(m-1)時刻的輸出!
介紹
神經網路技術起源於上世紀五、六十年代,當時叫感知機(perceptron),擁有輸入層、輸出層和一個隱含層。輸入的特徵向量通過隱含層變換達到輸出層,在輸出層得到分類結果。早期感知機的推動者是Rosenblatt。
在實際應用中,所謂的深度神經網路DNN,往往融合了多種已知的結構,包括卷積層或是LSTM單元。