導航:首頁 > 五金知識 > matlab工具箱關於矩陣的函數

matlab工具箱關於矩陣的函數

發布時間:2023-01-25 16:08:51

⑴ matlab中求一個矩陣的最大值及位置用哪個函數

找最大元素就是max(max(A)),找對應位置用find函數 。

舉個例子:
>> A=[1 2 3 ;4 5 6]
A = 1 2 3 4 5 6
>> max(max(A))
ans = 6
>> [x y]=find(A==max(max(A)))
x = 2
y = 3
>> 找到最大元素是6,對應位置是x=2,y=3,就是第2行,第3列。

⑵ MATLAB中矩陣變換函數是怎樣的

矩陣*作
Diag 建立和提取對角陣
Fliplr 矩陣作左右翻轉
Flipud 矩陣作上下翻轉
Reshape 改變矩陣大小
Rot90 矩陣旋轉90度
Tril 提取矩陣的下三角部分
Triu 提取矩陣的上三角部分
: 矩陣的索引號,重新排列矩陣
Compan 友矩陣
Hadamard Hadamard矩陣
Hankel Hankel矩陣
Hilb Hilbert矩陣
Invhilb 逆Hilbert矩陣
Kron Kronecker張量積
Magic 魔方矩陣
Toeplitz Toeplitz矩陣
Vander Vandermonde矩陣

⑶ matlab中求矩陣的轉置矩陣,是什麼函數

方法:

B=A.' 是轉置

B=A'是共軛轉置

設A為m×n階矩陣(即m行n列),第i 行j 列的元素是a(i,j),即:A=a(i,j)

定義A的轉置為這樣一個n×m階矩陣B,滿足B=a(j,i),即 b (i,j)=a (j,i)(B的第i行第j列元素是A的第j行第i列元素),記A'=B。

將A的所有元素繞著一條從第1行第1列元素出發的右下方45度的射線作鏡面反轉,即得到A的轉置。

(3)matlab工具箱關於矩陣的函數擴展閱讀:

構造矩陣的方法:可以直接用[ ]來輸入數組,也可以用以下提供的函數來生成矩陣。

ones( ) 創建一個所有元素都為1的矩陣,其中可以制定維數,1,2….個變數

zeros() 創建一個所有元素都為0的矩陣

eye() 創建對角元素為1,其他元素為0的矩陣

diag() 根據向量創建對角矩陣,即以向量的元素為對角元素

rand() 創建隨機矩陣,服從均勻分布

randn() 創建隨機矩陣,服從正態分布

⑷ Matlab中數組轉化為矩陣的函數是什麼

reshape 重塑矩陣,reshape(A,2,6),將A變為2×6的矩陣,按列排列。

⑸ 求MATLAB工具箱函數匯總

附錄Ⅰ 工具箱函數匯總
Ⅰ.1 統計工具箱函數
表Ⅰ-1 概率密度函數
函數名 對應分布的概率密度函數
betapdf 貝塔分布的概率密度函數
binopdf 二項分布的概率密度函數
chi2pdf 卡方分布的概率密度函數
exppdf 指數分布的概率密度函數
fpdf f分布的概率密度函數
gampdf 伽瑪分布的概率密度函數
geopdf 幾何分布的概率密度函數
hygepdf 超幾何分布的概率密度函數
normpdf 正態(高斯)分布的概率密度函數
lognpdf 對數正態分布的概率密度函數
nbinpdf 負二項分布的概率密度函數
ncfpdf 非中心f分布的概率密度函數
nctpdf 非中心t分布的概率密度函數
ncx2pdf 非中心卡方分布的概率密度函數
poisspdf 泊松分布的概率密度函數
raylpdf 雷利分布的概率密度函數
tpdf 學生氏t分布的概率密度函數
unidpdf 離散均勻分布的概率密度函數
unifpdf 連續均勻分布的概率密度函數
weibpdf 威布爾分布的概率密度函數

表Ⅰ-2 累加分布函數
函數名 對應分布的累加函數
betacdf 貝塔分布的累加函數
binocdf 二項分布的累加函數
chi2cdf 卡方分布的累加函數
expcdf 指數分布的累加函數
fcdf f分布的累加函數
gamcdf 伽瑪分布的累加函數
geocdf 幾何分布的累加函數
hygecdf 超幾何分布的累加函數
logncdf 對數正態分布的累加函數
nbincdf 負二項分布的累加函數
ncfcdf 非中心f分布的累加函數
nctcdf 非中心t分布的累加函數
ncx2cdf 非中心卡方分布的累加函數
normcdf 正態(高斯)分布的累加函數
poisscdf 泊松分布的累加函數
raylcdf 雷利分布的累加函數
tcdf 學生氏t分布的累加函數
unidcdf 離散均勻分布的累加函數
unifcdf 連續均勻分布的累加函數
weibcdf 威布爾分布的累加函數

表Ⅰ-3 累加分布函數的逆函數
函數名 對應分布的累加分布函數逆函數
betainv 貝塔分布的累加分布函數逆函數
binoinv 二項分布的累加分布函數逆函數
chi2inv 卡方分布的累加分布函數逆函數
expinv 指數分布的累加分布函數逆函數
finv f分布的累加分布函數逆函數
gaminv 伽瑪分布的累加分布函數逆函數
geoinv 幾何分布的累加分布函數逆函數
hygeinv 超幾何分布的累加分布函數逆函數
logninv 對數正態分布的累加分布函數逆函數
nbininv 負二項分布的累加分布函數逆函數
ncfinv 非中心f分布的累加分布函數逆函數
nctinv 非中心t分布的累加分布函數逆函數
ncx2inv 非中心卡方分布的累加分布函數逆函數
icdf
norminv 正態(高斯)分布的累加分布函數逆函數
poissinv 泊松分布的累加分布函數逆函數
raylinv 雷利分布的累加分布函數逆函數
tinv 學生氏t分布的累加分布函數逆函數
unidinv 離散均勻分布的累加分布函數逆函數
unifinv 連續均勻分布的累加分布函數逆函數
weibinv 威布爾分布的累加分布函數逆函數

表Ⅰ-4 隨機數生成器函數
函 數 對應分布的隨機數生成器
betarnd 貝塔分布的隨機數生成器
binornd 二項分布的隨機數生成器
chi2rnd 卡方分布的隨機數生成器
exprnd 指數分布的隨機數生成器
frnd f分布的隨機數生成器
gamrnd 伽瑪分布的隨機數生成器
geornd 幾何分布的隨機數生成器
hygernd 超幾何分布的隨機數生成器
lognrnd 對數正態分布的隨機數生成器
nbinrnd 負二項分布的隨機數生成器
ncfrnd 非中心f分布的隨機數生成器
nctrnd 非中心t分布的隨機數生成器
ncx2rnd 非中心卡方分布的隨機數生成器
normrnd 正態(高斯)分布的隨機數生成器
poissrnd 泊松分布的隨機數生成器
raylrnd 瑞利分布的隨機數生成器
trnd 學生氏t分布的隨機數生成器
unidrnd 離散均勻分布的隨機數生成器
unifrnd 連續均勻分布的隨機數生成器
weibrnd 威布爾分布的隨機數生成器

表Ⅰ-5 分布函數的統計量函數
函數名 對應分布的統計量
betastat 貝塔分布函數的統計量
binostat 二項分布函數的統計量
chi2stat 卡方分布函數的統計量
expstat 指數分布函數的統計量
fstat f分布函數的統計量
gamstat 伽瑪分布函數的統計量
geostat 幾何分布函數的統計量
hygestat 超幾何分布函數的統計量
lognstat 對數正態分布函數的統計量
nbinstat 負二項分布函數的統計量
ncfstat 非中心f分布函數的統計量
nctstat 非中心t分布函數的統計量
ncx2stat 非中心卡方分布函數的統計量
normstat 正態(高斯)分布函數的統計量
poisstat 泊松分布函數的統計量
續表
函數名 對應分布的統計量
raylstat 瑞利分布函數的統計量
tstat 學生氏t分布函數的統計量
unidstat 離散均勻分布函數的統計量
unifstat 連續均勻分布函數的統計量
weibstat 威布爾分布函數的統計量

表Ⅰ-6 參數估計函數
函 數 名 對應分布的參數估計
betafit 貝塔分布的參數估計
betalike 貝塔對數似然函數的參數估計
binofit 二項分布的參數估計
expfit 指數分布的參數估計
gamfit 伽瑪分布的參數估計
gamlike 伽瑪似然函數的參數估計
mle 極大似然估計的參數估計
normlike 正態對數似然函數的參數估計
normfit 正態分布的參數估計
poissfit 泊松分布的參數估計
unifit 均勻分布的參數估計
weibfit 威布爾分布的參數估計
weiblike 威布爾對數似然函數的參數估計

表Ⅰ-7 統計量描述函數
函 數 描 述
bootstrap 任何函數的自助統計量
corrcoef 相關系數
cov 協方差
crosstab 列聯表
geomean 幾何均值
grpstats 分組統計量
harmmean 調和均值
iqr 內四分極值
kurtosis 峰度
mad 中值絕對差
mean 均值
median 中值
moment 樣本模量
nanmax 包含缺失值的樣本的最大值
續表
函 數 描 述
Nanmean 包含缺失值的樣本的均值
nanmedian 包含缺失值的樣本的中值
nanmin 包含缺失值的樣本的最小值
nanstd 包含缺失值的樣本的標准差
nansum 包含缺失值的樣本的和
prctile 百分位數
range 極值
skewness 偏度
std 標准差
tabulate 頻數表
trimmean 截尾均值
var 方差

表Ⅰ-8 統計圖形函數
函 數 描 述
boxplot 箱形圖
cdfplot 指數累加分布函數圖
errorbar 誤差條圖
fsurfht 函數的交互等值線圖
gline 畫線
gname 交互標注圖中的點
gplotmatrix 散點圖矩陣
gscatter 由第三個變數分組的兩個變數的散點圖
lsline 在散點圖中添加最小二乘擬合線
normplot 正態概率圖
pareto 帕累托圖
qqplot Q-Q圖
rcoplot 殘差個案次序圖
refcurve 參考多項式曲線
refline 參考線
surfht 數據網格的交互等值線圖
weibplot 威布爾圖

表Ⅰ-9 統計過程式控制制函數
函 數 描 述
capable 性能指標
capaplot 性能圖
ewmaplot 指數加權移動平均圖
續表
函 數 描 述
histfit 添加正態曲線的直方圖
normspec 在指定的區間上繪正態密度
schart S圖
xbarplot x條圖

表Ⅰ-10 聚類分析函數
函 數 描 述
cluster 根據linkage函數的輸出創建聚類
clusterdata 根據給定數據創建聚類
cophenet Cophenet相關系數
dendrogram 創建冰柱圖
inconsistent 聚類樹的不連續值
linkage 系統聚類信息
pdist 觀測量之間的配對距離
squareform 距離平方矩陣
zscore Z分數

表Ⅰ-11 線性模型函數
函 數 描 述
anova1 單因子方差分析
anova2 雙因子方差分析
anovan 多因子方差分析
aoctool 協方差分析交互工具
mmyvar 擬變數編碼
friedman Friedman檢驗
glmfit 一般線性模型擬合
kruskalwallis Kruskalwallis檢驗
leverage 中心化杠桿值
lscov 已知協方差矩陣的最小二乘估計
manova1 單因素多元方差分析
manovacluster 多元聚類並用冰柱圖表示
multcompare 多元比較
多項式評價及誤差區間估計
polyfit 最小二乘多項式擬合
polyval 多項式函數的預測值
polyconf 殘差個案次序圖
regress 多元線性回歸
regstats 回歸統計量診斷
續表
函 數 描 述
Ridge 嶺回歸
rstool 多維響應面可視化
robustfit 穩健回歸模型擬合
stepwise 逐步回歸
x2fx 用於設計矩陣的因子設置矩陣

表Ⅰ-12 非線性回歸函數
函 數 描 述
nlinfit 非線性最小二乘數據擬合(牛頓法)
nlintool 非線性模型擬合的互動式圖形工具
nlparci 參數的置信區間
nlpredci 預測值的置信區間
nnls 非負最小二乘

表Ⅰ-13 試驗設計函數
函 數 描 述
cordexch D-優化設計(列交換演算法)
daugment 遞增D-優化設計
dcovary 固定協方差的D-優化設計
ff2n 二水平完全析因設計
fracfact 二水平部分析因設計
fullfact 混合水平的完全析因設計
hadamard Hadamard矩陣(正交數組)
rowexch D-優化設計(行交換演算法)

表Ⅰ-14 主成分分析函數
函 數 描 述
barttest Barttest檢驗
pcacov 源於協方差矩陣的主成分
pcares 源於主成分的方差
princomp 根據原始數據進行主成分分析

表Ⅰ-15 多元統計函數
函 數 描 述
classify 聚類分析
mahal 馬氏距離
manova1 單因素多元方差分析
manovacluster 多元聚類分析

表Ⅰ-16 假設檢驗函數
函 數 描 述
ranksum 秩和檢驗
signrank 符號秩檢驗
signtest 符號檢驗
ttest 單樣本t檢驗
ttest2 雙樣本t檢驗
ztest z檢驗

表Ⅰ-17 分布檢驗函數
函 數 描 述
jbtest 正態性的Jarque-Bera檢驗
kstest 單樣本Kolmogorov-Smirnov檢驗
kstest2 雙樣本Kolmogorov-Smirnov檢驗
lillietest 正態性的Lilliefors檢驗

表Ⅰ-18 非參數函數
函 數 描 述
friedman Friedman檢驗
kruskalwallis Kruskalwallis檢驗
ranksum 秩和檢驗
signrank 符號秩檢驗
signtest 符號檢驗

表Ⅰ-19 文件輸入輸出函數
函 數 描 述
caseread 讀取個案名
casewrite 寫個案名到文件
tblread 以表格形式讀數據
tblwrite 以表格形式寫數據到文件
tdfread 從表格間隔形式的文件中讀取文本或數值數據

表Ⅰ-20 演示函數
函 數 描 述
aoctool 協方差分析的互動式圖形工具
disttool 探察概率分布函數的GUI工具
glmdemo 一般線性模型演示
randtool 隨機數生成工具
polytool 多項式擬合工具
rsmdemo 響應擬合工具
robustdemo 穩健回歸擬合工具

Ⅰ.2 優化工具箱函數
表Ⅰ-21 最小化函數表
函 數 描 述
fgoalattain 多目標達到問題
fminbnd 有邊界的標量非線性最小化
fmincon 有約束的非線性最小化
fminimax 最大最小化
fminsearch, fminunc 無約束非線性最小化
fseminf 半無限問題
linprog 線性課題
quadprog 二次課題

表Ⅰ-22 方程求解函數表
函 數 描 述
\ 線性方程求解
fsolve 非線性方程求解
fzero 標量非線性方程求解

表Ⅰ-23 最小二乘函數表
函 數 描 述
\ 線性最小二乘
lsqlin 有約束線性最小二乘
lsqcurvefit 非線性曲線擬合
lsqnonlin 非線性最小二乘
lsqnonneg 非負線性最小二乘

表Ⅰ-24 實用函數表
函 數 描 述
optimset 設置參數
optimget 獲取參數

表Ⅰ-25 大型方法的演示函數表
函 數 描 述
circustent 馬戲團帳篷問題—二次課題
molecule 用無約束非線性最小化進行分子組成求解
optdeblur 用有邊界線性最小二乘法進行圖形處理

表Ⅰ-26 中型方法的演示函數表
函 數 描 述
bandemo 香蕉函數的最小化
dfildemo 過濾器設計的有限精度
goaldemo 目標達到舉例
optdemo 演示過程菜單
tutdemo 教程演示

Ⅰ.3 樣條工具箱函數
表Ⅰ-27 三次樣條函數
函 數 描 述
csapi 插值生成三次樣條函數
csape 生成給定約束條件下的三次樣條函數
csaps 平滑生成三次樣條函數
cscvn 生成一條內插參數的三次樣條曲線
getcurve 動態生成三次樣條曲線

表Ⅰ-28 分段多項式樣條函數
函 數 描 述
pplst 顯示關於生成分段多項式樣條曲線的M文件
ppmak 生成分段多項式樣條函數
ppual 計算在給定點處的分段多項式樣條函數值

表Ⅰ-29 B樣條函數
函 數 描 述
splst 顯示生成B樣條函數的M文件
spmak 生成B樣條函數
spcrv 生成均勻劃分的B樣條函數
spapi 插值生成B樣條函數
spap2 用最小二乘法擬合生成B樣條函數
spaps 對生成的B樣條曲線進行光滑處理
spcol 生成B樣條函數的配置矩陣

表Ⅰ-30 有理樣條函數
函 數 描 述
rpmak 生成有理樣條函數
rsmak 生成有理樣條函數

表Ⅰ-31 操作樣條函數
函 數 描 述
fnval 計算在給定點處的樣條函數值
fmbrk 返回樣條函數的某一部分(如斷點或系數等)
fncmb 對樣條函數進行算術運算
fn2fm 把一種形式的樣條函數轉化成另一種形式的樣條函數
fnder 求樣條函數的微分(即求導數)
fndir 求樣條函數的方向導數
fnint 求樣條函數的積分
fnjmp 在間斷點處求函數值
fnplt 畫樣條曲線圖
fnrfn 在樣條曲線中插入斷點。
fntlr 生成tarylor系數或taylor多項式

表Ⅰ-32 樣條曲線端點和節點處理函數
函 數 描 述
augknt 在已知節點數組中添加一個或多個節點
aveknt 求出節點數組元素的平均值
brk2knt 增加斷點數組中元素的重次
knt2brk 從節點數組中求得節點及其重次
knt2mlt 從節點數組中求得節點及其重次
sorted 求出節點數組points的元素在節點數組meshpoints中屬於第幾個分量
aptknt 求出用於生成樣條曲線的節點數組

表Ⅰ-33 樣條曲線端點和節點處理函數
函 數 描 述
newknt 對分段多項式樣條函數進行重分布
optknt 求出用於內插的最優節點數組
chbpnt 求出用於生成樣條曲線的合適節點數組

表Ⅰ-34 解線性方程組的函數
函 數 描 述
slvblk 解對角占優的線性方程組
bkbrk 描述分塊對角矩陣的詳細情況

表Ⅰ-35 樣條GUI函數
函 數 描 述
bspligui 在節點處生成B樣條曲線
splinetool 用一系列方法生成各種樣條曲線

Ⅰ.4 偏微分方程數值解工具箱函數
表Ⅰ-36 偏微分方程求解演算法函數
函 數 描 述
adaptmesh 生成自適應網格並求解PDE問題
assema 組合面積的整體貢獻
assemb 組合邊界條件的貢獻
assempde 組合剛度矩陣和PDE問題的右端項
hyperbolic 求解雙曲線PDE問題
parabolic 求解拋物線型PDE問題
pdeeig 求解特徵值PDE問題
pdenonlin 求解非線性PDE問題
poisolv 在矩形網格上對泊松方程進行快速求解

表Ⅰ-37 用戶界面演算法函數
函 數 描 述
pdecirc 繪圓
pdeellip 繪橢圓
pdemdlcv 將PDE工具箱1.0模型的M文件轉換為PDE工具箱1.0.2版本的格式
pdepoly 繪多邊形
pderect 繪矩形
pdetool PDE工具箱圖形用戶集成界面(GUI)

表Ⅰ-38 幾何演算法函數
函 數 描 述
csgchk 核對幾何描述矩陣的有效性
csgdel 刪除最小子域之間的界線
decsg 將建設性實體幾何模型分解為最小子域
initmesh 創建初始三角形網格
jigglemesh 微調三角形網格的內部點
pdearcl 在參數表示和圓弧長度之間進行內插
poimesh 在矩形幾何圖形上生成規則網格
refinemesh 加密一個三角形網格
wbound 寫邊界條件指定文件
wgeom 寫幾何指定函數

表Ⅰ-39 繪圖函數
函 數 描 述
pdecont 繪等值線圖
pdegplot 繪制PDE幾何圖
pdemesh 繪PDE三角形網格
pdeplot 一般PDE工具箱繪圖函數
pdesurf 繪三維表面圖

表Ⅰ-40 實用函數
函 數 描 述
Dst idst 離散化sin轉換
pdeadgsc 使用相對容限臨界值選擇三角形
pdeadworst 選擇相對於最壞值的三角形
pdecgrad PDE解的變動
pdeent 與給定三角形集合相鄰的三角形的指數
pdegrad PDE解的梯度
pdeintrp 從節點數據至三角形中點數據進行內插
pdejmps 對於自適應網格進行誤差估計
pdeprtni 從三角形中點數據向節點數據進行內插
pdesde 子域集合中點的指數
pdesdp 子域集合邊緣的指數
pdesdt 子域集合三角形的指數
pdesmech 計算結構力學張量函數
pdetrg 三角形幾何數據
pdetriq 三角型質量度量
續表
函 數 描 述
Poiasma 用於泊松方程快速求解器的邊界點矩陣
poicalc 矩形網格上泊松方程的快速求解器
poiindex 經過規范排序的矩形網格的點的指數
sptarn 求解廣義稀疏特徵值問題
tri2grid 從PDE三角形網格到矩形網格進行內插

表Ⅰ-41 自定義演算法函數
函 數 描 述
pdebound 邊界條件M文件
pdegeom 幾何模型M文件

表Ⅰ-42 演示函數
函 數 描 述
pdedemo1 單位圓盤上泊松方程的精確解
pdedemo2 求解Helmholtz方程,研究反射波
pdedemo3 求解最小表面問題
pdedemo4 用子域分解求解PDE問題
pdedemo5 求拋物線型問題(熱傳導方程)
pdedemo6 求雙曲線型PDE問題(波動方程)
pdedemo7 點源的自適應求解
pdedemo8 在矩形網格上求解泊松方程

⑹ 用matlab表示矩陣怎樣實現

一、矩陣的表示


在MATLAB中創建矩陣有以下規則:



a、矩陣元素必須在」[ ]」內;



b、矩陣的同行元素之間用空格(或」,」)隔開;



c、矩陣的行與行之間用」;」(或回車符)隔開;



d、矩陣的元素可以是數值、變數、表達式或函數;



e、矩陣的尺寸不必預先定義。

二,矩陣的創建:



1、直接輸入法



最簡單的建立矩陣的方法是從鍵盤直接輸入矩陣的元素,輸入的方法按照上面的規則。建立向量的時候可以利用冒號表達式,冒號表達式可以產生一個行向量,一般格式是: e1:e2:e3,其中e1為初始值,e2為步長,e3為終止值。還可以用linspace函數產生行向量,其調用格式為:linspace(a,b,n) ,其中a和b是生成向量的第一個和最後一個元素,n是元素總數。

2、利用MATLAB函數創建矩陣



基本矩陣函數如下:



(1) ones()函數:產生全為1的矩陣,ones(n):產生n*n維的全1矩陣,ones(m,n):產生m*n維的全1矩陣;



(2) zeros()函數:產生全為0的矩陣;



(3) rand()函數:產生在(0,1)區間均勻分布的隨機陣;



(4) eye()函數:產生單位陣;



(5) randn()函數:產生均值為0,方差為1的標准正態分布隨機矩陣。



3、利用文件建立矩陣



當矩陣尺寸較大或為經常使用的數據矩陣,則可以將此矩陣保存為文件,在需要時直接將文件利用load命令調入工作環境中使用即可。同時可以利用命令reshape對調入的矩陣進行重排。reshape(A,m,n),它在矩陣總元素保持不變的前提下,將矩陣A重新排成m*n的二維矩陣。



⑺ MATLAB矩陣(一)

本次內容涉及MATLAB中的矩陣,這是我們使用MATLAB處理數據的基本元素,學習本節的內容可以掌握基本的如何處理矩陣。

在上一節中,我們認識了MATLAB的基本操作,其中一種定義變數的方法為直接賦值如:a=1,事實上,這種操作的本質上就是定義了一個最簡單的1×1的矩陣(這一現象可以在workspace中觀察到)。
一個矩陣的基本形式可以表達為以下形式

其中,上述矩陣為行數為2,列數為4的矩陣,一個MATLAB矩陣遵循以下原則;

一般來說可以使用直接賦值的思路直接創建,如下所示:

事實上,這種直接賦值的方法實在過於費時費力,我們通常還會使用另一種方法:用冒號運算符創建等差數列(a:b:c)

MATLAB的庫函數中含有很多快速創建矩陣的函數,常見的有:ones,zeros,eye,rand,magic,true,false,這里逐項給出說明:
ones函數

zeros函數

eye函數

rand函數

randn函數

magic函數

true函數

false函數

這里還有另一類生成函數,能快速生成一維矩陣:linspace,logspace等。
linspace函數

logspace函數

比較走運的是,MATLAB中運算符的優先順序和一般的數理知識並不沖突,運算符和變數不要求強制的空格,「我加空格純粹為了美觀,當然取負號時最好不要加空格」,因此只需要認識MATLAB的一些運算符,就可以比較容易的上手矩陣運算。矩陣的運算這一部分的內容與線性代數的內容一致,已經有線性代數基礎的應該容易理解,沒有線性代數的基礎的同學建議單步執行以下命令,仔細觀察結果的變化,熟悉這些運算符的作用。
運算符操作總體上分為兩類:數組運算符和矩陣運算符。

數組運算符可以理解為針對矩陣元素的運算,與矩陣本身的性質無關,也是逐個的運算。

本次的內容幾乎都只要到MATLAB中執行即可,幾乎只需要觀察即可。生成函數很多不需要死記,函數名幾乎可以直譯,開始用幾次就可以無壓力記住(即使記錯了某個字母,MATLAB也會提示正確的名字)。

閱讀全文

與matlab工具箱關於矩陣的函數相關的資料

熱點內容
液化氣閥門指針不動 瀏覽:969
軸承的型號是怎麼選擇的 瀏覽:501
手持式電動工具絕緣 瀏覽:260
機械制圖員什麼專業能考 瀏覽:522
馬桶漏水怎麼關閥門 瀏覽:721
視頻設備哪個好用 瀏覽:118
空調塵滿清洗後製冷不好怎麼辦 瀏覽:407
甩手工具箱官方 瀏覽:527
活接應該加在閥門的什麼地方 瀏覽:264
小型機械皮鞋生產設備所需多少資金 瀏覽:266
網編工具超級工具箱怎麼用 瀏覽:715
帶轉空芯球五金件活節 瀏覽:650
截止閥跟閥門井什麼關系 瀏覽:320
matlab擬合工具箱2009b 瀏覽:66
鐵軸承油封怎麼拆 瀏覽:309
氧氣氫氣二氧化碳實驗裝置 瀏覽:773
超聲波傳播怎麼測量 瀏覽:443
自動化儀表找什麼工作 瀏覽:767
挖機帶風鎬是叫什麼機械 瀏覽:743
車床圍坐滾軸軸承怎麼調節 瀏覽:817