⑴ MATLAB工具箱有哪些作用
MATLAB附帶了很多工具箱(Toolbox),而且每次發布新版本時,工具箱幾乎都要增加版。按F1鍵打開MATLAB的「權Help」,在窗口左邊顯示了MATLAB所有的工具箱。
一般來說,每個工具箱針對一個具體的問題,如圖像處理工具箱(Image.Processing.Toolbox)專門針對數字圖像處理問題,偏微分方程工具箱(Partial.Differential.Equation.Toolbox)是偏微分方程(組)求解函數的集合。一個工具箱中包含若干函數。實際上,工具箱也是一個函數庫,在功能方面與MATLAB主體中的數值計算和數據可視化部分相同。
但有一點區別:主體部分的核心函數都是內置函數,是用C語言編寫並編譯過的;而工具箱中的函數都是基於MATLAB的二次開發,即用MATLAB語言寫的.m文件。用Editor打開這些文件,就可以看到源代碼。
⑵ 如何在MATLAB中添加SVM函數工具箱
目的:SVM_SteveGunn添加至我的matlab工具箱內
工具/原料:Matlab 2013B 、SVM工具箱
操作步驟:
1、下載svm工具包
地址:http://www.pudn.com/downloads343/sourcecode/math/detail1499382.html
2、解壓工具包到E:\matlab\toolbox ,也可以解壓後自己命名後復制過去。 (安裝目錄)
3、打開matlab點擊set path---->add folder(也可以選擇下面的addwithsubfolder) 然後把你的工具箱文件夾添加進去就可以了,保存。
4、刷新路徑,這一步一定要做,路徑加進去後在file→Preferences→General的Toolbox Path Caching里點擊update Toolbox Path Cache更新一下。
5、驗證是否添加成功,最後在matlab的命令欄中輸入which svcoutput可以查看路徑E:\matlab\toolbox\svm\svcoutput.m就可以了。
6、調用工具箱:
用SVM做分類的使用方法
1)在matlab中輸入必要的參數:X,Y,ker,C,p1,p2
我做的測試中取的數據為:
N = 50;
n=2*N;
randn('state',6);
x1 = randn(2,N)
y1 = ones(1,N);
x2 = 5+randn(2,N);
y2 = -ones(1,N);
figure;
plot(x1(1,:),x1(2,:),'bx',x2(1,:),x2(2,:),'k.');
axis([-3 8 -3 8]);
title('C-SVC')
hold on;
X1 = [x1,x2];
Y1 = [y1,y2];
X=X1';
Y=Y1';
其中,X是100*2的矩陣,Y是100*1的矩陣
C=Inf;
ker='linear';
global p1 p2
p1=3;
p2=1;
然後,在matlab中輸入:[nsv alpha bias] = svc(X,Y,ker,C),回車之後,會顯示:
Support Vector Classification
_____________________________
Constructing ...
Optimising ...
Execution time: 1.9 seconds
Status : OPTIMAL_SOLUTION
|w0|^2 : 0.418414
Margin : 3.091912
Sum alpha : 0.418414
Support Vectors : 3 (3.0%)
nsv =
3
alpha =
0.0000
0.0000
0.0000
0.0000
0.0000
2)輸入預測函數,可以得到與預想的分類結果進行比較.
輸入:predictedY = svcoutput(X,Y,X,ker,alpha,bias),回車後得到:
predictedY =
1
1
1
1
1
1
1
1
1
3)畫圖
輸入:svcplot(X,Y,ker,alpha,bias),回車
補充:
X和Y為數據,m*n:m為樣本數,n為特徵向量數
比如:取20組訓練數據X,10組有故障,10組無故障的,每個訓練數據有13個特徵參數,則m=20,n=13
Y為20*1的矩陣,其中,10組為1,10組為-1.
對於測試數據中,如果取6組測試數據,3組有故障,3組無故障的,則m=6,n=13
Y中,m=6,n=1
可能出現的問題:
1.今天我在使用SVM通用工具箱對眼電的信號數據進行分類時出現如下錯誤:
Support Vector Classification
_____________________________
Constructing ...
Optimising ...
??? Dimension error (arg 3 and later).
Error in ==> svc at 60
[alpha lambda how] = qp(H, c, A, b, vlb, vub, x0, neqcstr);
⑶ matlab需要安裝哪些工具箱
至於Matlab工具箱安裝中涉及到了Matlab的搜索路徑、工作目錄、當前路徑、用戶路徑等好多術語。
MATLAB和Mathematica、Maple並稱為三大數學軟體。它在數學類科技應用軟體中在數值計算方面首屈一指。
MATLAB可以進行矩陣運算、繪制函數和數據、實現演算法、創建用戶界面、連接其他編程語言的程序等,主要應用於工程計算、控制設計、信號處理與通訊、圖像處理、信號檢測、金融建模設計與分析等領域。
(3)matlab稀疏表示工具箱擴展閱讀:
編程環境:
MATLAB由一系列工具組成。這些工具方便用戶使用MATLAB的函數和文件,其中許多工具採用的是圖形用戶界面。包括MATLAB桌面和命令窗口、歷史命令窗口、編輯器和調試器、路徑搜索和用於用戶瀏覽幫助、工作空間、文件的瀏覽器。
隨著MATLAB的商業化以及軟體本身的不斷升級,MATLAB的用戶界面也越來越精緻,更加接近Windows的標准界面,人機交互性更強,操作更簡單。
而且新版本的MATLAB提供了完整的聯機查詢、幫助系統,極大的方便了用戶的使用。簡單的編程環境提供了比較完備的調試系統,程序不必經過編譯就可以直接運行,而且能夠及時地報告出現的錯誤及進行出錯原因分析。
⑷ 壓縮感知中 稀疏基有很多種 怎麼用matlab表示
⑸ MATLAB里的Toolboxes怎麼使用急求高手指點!!!
MATLAB工具箱介紹
有三十多個工具箱大致可分為兩類:功能型工具箱和領域型工具箱。
功能型工具箱主要用來擴充MATLAB的符號計算功能、圖形建模模擬功能、文字處理功能以及與硬體實時交互功能,能用於多種學科。
領域型工具箱是專業性很強的。如圖像處理工具箱(Image Processing Toolbox)、控制工具箱(Control Toolbox)、信號處理工具箱(Signal Processing Toolbox)等。下面,將MATLAB工具箱內所包含的主要內容做簡要介紹:
1) 圖像處理工具箱(Image Processing Toolbox)。
* 二維濾波器設計和濾波
* 圖像恢復增強
* 色彩、集合及形態操作
* 二維變換
* 圖像分析和統計
可由結構圖直接生成可應用的C語言源代碼。
2)控制系統工具箱(Control System Toolbox)。
魯連續系統設計和離散系統設計
* 狀態空間和傳遞函數
* 模型轉換
* 頻域響應:Bode圖、Nyquist圖、Nichols圖
* 時域響應:沖擊響應、階躍響應、斜波響應等
* 根軌跡、極點配置、LQG
3)財政金融工具箱(FinancialTooLbox)。
* 成本、利潤分析,市場靈敏度分析
* 業務量分析及優化
* 偏差分析
* 資金流量估算
* 財務報表
4)頻率域系統辨識工具箱(Frequency Domain System ldentification Toolbox
* 辨識具有未知延遲的連續和離散系統
* 計算幅值/相位、零點/極點的置信區間
* 設計周期激勵信號、最小峰值、最優能量諾等
5)模糊邏輯工具箱(Fuzzy Logic Toolbox)。
* 友好的交互設計界面
* 自適應神經—模糊學習、聚類以及Sugeno推理
* 支持SIMULINK動態模擬
* 可生成C語言源代碼用於實時應用
(6)高階譜分析工具箱(Higher—Order SpectralAnalysis Toolbox
* 高階譜估計
* 信號中非線性特徵的檢測和刻畫
* 延時估計
* 幅值和相位重構
* 陣列信號處理
* 諧波重構
(7) 通訊工具箱(Communication Toolbox)。
令提供100多個函數和150多個SIMULINK模塊用於通訊系統的模擬和分析
——信號編碼
——調制解調
——濾波器和均衡器設計
——通道模型
——同步
(8)線性矩陣不等式控制工具箱(LMI Control Toolbox)。
* LMI的基本用途
* 基於GUI的LMI編輯器
* LMI問題的有效解法
* LMI問題解決方案
(9)模型預測控制工具箱(ModelPredictive Control Toolbox
* 建模、辨識及驗證
* 支持MISO模型和MIMO模型
* 階躍響應和狀態空間模型
(10)u分析與綜合工具箱(u-Analysis and Synthesis Toolbox)
* u分析與綜合
* H2和H無窮大最優綜合
* 模型降階
* 連續和離散系統
* u分析與綜合理論
(11)神經網路工具箱(Neursl Network Toolbox)。
* BP,Hopfield,Kohonen、自組織、徑向基函數等網路
* 競爭、線性、Sigmoidal等傳遞函數
* 前饋、遞歸等網路結構
* 性能分析及應用
(12)優化工具箱(Optimization Toolbox)。
* 線性規劃和二次規劃
* 求函數的最大值和最小位
* 多目標優化
* 約束條件下的優化
* 非線性方程求解
(13)偏微分方程工具箱(Partial DifferentialEquation Toolbox)。
* 二維偏微分方程的圖形處理
* 幾何表示
* 自適應曲面繪制,
* 有限元方法
(14)魯棒控制工具箱(Robust Control Toolbox)。
* LQG/LTR最優綜合
* H2和H無窮大最優綜合
* 奇異值模型降階
* 譜分解和建模
(15)信號處理工具箱(signal Processing Toolbox)
* 數字和模擬濾波器設計、應用及模擬
* 譜分析和估計
* FFT,DCT等變換
* 參數化模型
(16)樣條工具箱(SPline Toolbox)。
* 分段多項式和B樣條
* 樣條的構造
* 曲線擬合及平滑
* 函數微分、積分
(17)統計工具箱(Statistics Toolbox)。
* 概率分布和隨機數生成
* 多變數分析
* 回歸分析
* 主元分析
* 假設檢驗
(18)符號數學工具箱(Symbolic Math Toolbox)。
* 符號表達式和符號矩陣的創建
* 符號微積分、線性代數、方程求解
* 因式分解、展開和簡化
* 符號函數的二維圖形
* 圖形化函數計算器
(19)系統辨識工具箱(SystEm Identification Toolbox)
* 狀態空間和傳遞函數模型
* 模型驗證
* MA,AR,ARMA等
* 基於模型的信號處理
* 譜分析
(20)小波工具箱(Wavelet Toolbox)。
* 基於小波的分析和綜合
* 圖形界面和命令行介面
* 連續和離散小波變換及小波包
* 一維、二維小波
* 自適應去噪和壓縮
⑹ 如何用matlab構建稀疏表達矩陣並對信號進行稀疏處理
直接輸入上面的A,然後用命令:A = spares(A),就把A轉化成稀疏矩陣了。
⑺ 如何向MATLAB中添加新工具箱
今天費了好大的勁終於將SVM_SteveGunn添加至我的matlab工具箱內,並且已能成功運行,現在把在添加以及運行中出現的各種問題羅列如下,並一一解決:
1、將下載的svm工具箱添加至matlab安裝目錄下
1、單獨下載的工具箱
2、把新的工具箱拷貝到某個目錄(我的是D:softmatlab2011b oolbox)。
注意:你要是添加的很多個m文件,那就把這些m文件直接拷到再下一層你想要的工具箱的文件夾里
例如,我要添加的是支持向量機工具箱,在剛才的文件夾下我已經有svm(支持向量機工具箱)文件夾了,但有的m文件還沒有,我就把新的m文件統統拷到D:softmatlab2011b oolbox svm目錄下了。如果你連某工具箱(你打算添加的)的文件夾都沒有,那就把文件夾和文件一起拷到D:softmatlab2011b oolbox 下。
先把工具箱保存到MATLAB安裝目錄的根目錄下面,然後運行matlab---->file---->set path---->add folder 然後把你的工具箱文件夾添加進去就可以了
3、在matlab的菜單file下面的set path把它( D:softmatlab2011b oolbox svm )加上。
4、 把路徑加進去後在file→Preferences→General的Toolbox Path Caching里點擊update Toolbox Path Cache更新一下。
記得一定要更新!我就是沒更新,所以添加了路徑,一運行還是不行。後來更新了才行。
2、在對svm工具箱進行使用時,發現了'qp.dll 不是有效的 Win32 應用程序 '
問題描述:
mex在不同windows OS下編譯的結果,所以我們需要重新編譯一下qp.dll
解決方案:
steve gunn 的包下面有一個optimiser 文件夾,把current Diretory目錄改為optimiser目錄,例如E:matlabProgramSVM_SteveGunnOptimiser,然後運行命令
>> mex -v qp.c pr_loqo.c
命令運行完畢後,你會發現原先的qp.dll變為qp.dll.old,還出現了qp.mexw32,我們把該文件改為qp.dll 復制到工具箱文件夾下。原先的工具箱文件qp.dll可以先改一下名字...
3、我在運行第二步時發現了『D:SOFTMATLAB~3BINMEX.PL: Error: Compile of 'qp.c' failed. Error using mex (line 206)
Unable to complete successfully.
這個是因為編譯器設置的問題,這里需要重新選擇設置編譯器,設置編譯器的方法:
mex -setup(mex和-setup之間要有空格),然後我選擇的VS2010,然後再繼續運行步驟2就成功了。
⑻ 求教SPAMS工具箱稀疏表示的一些原理
至於Matlab工具箱安裝中涉及到了Matlab的搜索路徑、工作目錄、當前路徑、用戶路徑等好多術語,可以直接查看Matlab的幫助系統,在那裡可以得到最直接的答復,但是需要一定的英文基礎哦 添加工具箱的方法很多,所有方法都是為了達到同一個目的,將工具箱的所在路徑添加到Matlab的搜索路徑下就可以了(將工具箱復制到toolbox目錄然後在set path裡面添加這個目錄就可以用了) 下面介紹一種最簡單的操作,下面以安裝mathmodl(數學建模工具箱)為例進行說明a、將你所需要安裝的工具箱解壓到$MatlabRoot\toolbox中(其實任意路徑都是可以的,但是為了方便管理,我們一般都安裝在這里),$MatlabRoot是你的Matlab安裝路徑,可以在Matlab中輸入matlabroot命令獲取(1)在Matlab輸入如下內容(當你可以直接使用資源管理器進入toolbox目錄) >> matlabrootans =D:\Program Files\MATLAB\R2008a
>> winopen(ans)復制代碼(2)此時會自動跳到Matlab的安裝目錄下,雙擊打開目錄下的toolbox文件夾(3)將mathmodl工具箱復制到toolbox中 b.將剛才mathmodl的路徑添加到Matlab搜索路徑下(可以使用Matlab命令行,也可是用Matlab菜單操作,為了簡便這里使用第二種)(1)在Matlab中如下操作,File——>Set Path——>點擊Add with subfolders(2)在瀏覽文件中,選擇剛才的安裝路徑$MatlabRoot/toolbox/mathmodl後,點擊確定 (3)此時返回到Set Path對話框,點擊左下角的保存按鈕(記住一定要保存),此時工具箱徹底安裝完畢,點擊Close關閉對話框c.測試下新安裝工具箱是可以使用,在Matlab中輸入如下內容 >>mathmodl%輸入工具箱名稱,此時一般會返回該工具箱的說明,也就是mathmodl路徑下content.m中的內容
%在命令行中輸入如下,此時會返回mathmodl路徑下所有的文件
X
⑼ 關於MATLAB中稀疏表示的K-SVD演算法的疑問,跪求各位大神指點,感激不盡,詳細內容見問題補充
字典都是小數是因為裡面每個列都經過了normalization,L2 norm都是1
如果要得到稀疏系數,試試OMPerr
⑽ matlab2014工具箱在哪
在繪圖右邊的應用程序,就是以前的工具箱。