導航:首頁 > 五金知識 > emd工具箱黃鍔

emd工具箱黃鍔

發布時間:2022-09-18 13:32:31

㈠ EMD是什麼縮寫

經驗模態分解(Empirical Mode Decomposition, 簡稱EMD))方法是由美國NASA的黃鍔博士提出的一種信號分析方法.它依據數據自身的時間尺度特徵來進行信號分解, 無須預先設定任何基函數。這一點與建立在先驗性的諧波基函數和小波基函數上的傅里葉分解與小波分解方法具有本質性的差別。正是由於這樣的特點, EMD 方法在理論上可以應用於任何類型的信號的分解, 因而在處理非平穩及非線性數據上, 具有非常明顯的優勢。所以, EMD方法一經提出就在不同的工程領域得到了迅速有效的應用, 例如用在海洋、大氣、天體觀測資料與地震記錄分析、機械故障診斷、密頻動力系統的阻尼識別以及大型土木工程結構的模態參數識別方面。 經驗模態分解(EmpiilMdDmpiti簡稱EMD)法是美籍華人NdE,Hunag等人於1998年提出的,適合於分析非線性、非平穩信號序列,具有很高的信噪比。該方法的關鍵是經驗模式分解,它能使復雜信號分解為有限個本徵模函數(IntrinsciMdoe Funcotin,簡稱IMF),所分解出來的各IMF分量包含了原信號的不同時間尺度的局部特徵信號。經驗模態分解法能使非平穩數據進行平穩化處理,然後進行希爾伯特變換獲得時頻譜圖,得到有物理意義的頻率。與短時傅立葉變換、小波分解等方法相比,這種方法是直觀的、直接的、後驗的和自適應的,因為基函數是由數據本身所分解得到。由於分解是基於信號序列時間尺度的局部特性,因此具有自適應性。
對數據信號進行MED分解就是為了獲得本徵模函數,因此,在介紹MED分析方法的具體過程之前,有必要先介紹EMD分解過程中所涉及的基本概念的定義:本徵模函數,這是掌握EMD方法的基礎。
本徵模函數
在物理上,如果瞬時頻率有意義,那麼函數必須是對稱的,局部均值為零,並且具有相同的過零點和極值點數目。在此基礎上,NordneE.Hunag等人提出了本徵模函數(IntrinsciMdoeFunctino,簡稱IMF)的概念。本徵模函數任意一點的瞬時頻率都是有意義的。Hunag等人認為任何信號都是由若干本徵模函數組成,任何時候,一個信號都可以包含若干個本徵模函數,如果本徵模函數之間相互重疊,便形成復合信號。EMD分解的目的就是為了獲取本徵模函數,然後再對各本徵模函數進行希爾伯特變換,得到希爾伯特譜。 Hunag認為,一個本徵模函數必須滿足以下兩個條件: (1)l函數在整個時間范圍內,局部極值點和過零點的數目必須相等,或最多相差一個; (2)在任意時刻點,局部最大值的包絡(上包絡線)和局部最小值的包絡(下包絡線) 平均必須為零。 第一個條件是很明顯的,它與傳統的平穩高斯信號的窄帶要求類似。對於第二個條件,是一個新的概念,它把經典的全局性要求修改為局部性要求,使瞬時頻率不再受不對稱波形所形成的不必要的波動所影響。實際上,這個條件應為「數據的局部均值是零」。但是對於非平穩數據來說,計算局部均值涉及到「局部時間尺度」的概念,而這是很難定義的。因此,在第二個條件中使用了局部極大值包絡和局部極小值包絡的平均為零來代替,使信號的波形局部對稱。Huang等人研究表明,在一般情況下,使用這種代替,瞬時頻率還是符合所研究系統的物理意義。本徵模函數表徵了數據的內在的振動模式。由本徵模函數的定義可知,由過零點所定義的本徵模函數的每一個振動周期,只有一個振動模式,沒有其他復雜的騎波;一個本徵模函數沒有約束為是一個窄帶信號,並且可以是頻率和幅值的調制,還可以是非穩態的;單由頻率或單由幅值調制的信號也可成為本徵模函數。
EMD方法的分解過程
由於大多數所有要分析的數據都不是本徵模函數,在任意時間點上,數據可能包含多個波動模式,這就是簡單的希爾伯特變換不能完全表徵一般數據的頻率特性的原因。於是需要對原數據進行EMD分解來獲得本徵模函數。 EMD分解方法是基於以下假設條件:(1)數據至少有兩個極值,一個最大值和一個最小值;(2)數據的局部時域特性是由極值點間的時間尺度唯一確定;(3)如果數據沒有極值點但有拐點,則可以通過對數據微分一次或多次求得極值,然後再通過積分來獲得分解結果。這種方法的本質是通過數據的特徵時間尺度來獲得本徵波動模式,然後分解數據。這種分解過程可以形象地稱之為「篩選(shitfing)」過程。 分解過程是:找出原數據序列X()t所有的極大值點並用三次樣條插值函數擬合形成原數據的上包絡線;同樣,找出所有的極小值點,並將所有的極小值點通過三次樣條插值函數擬合形成數據的下包絡線,上包絡線和下包絡線的均值記作ml,將原數據序列X(t)減去該平均包絡ml,得到一個新的數據序列h,: X(t)-ml=hl 由原數據減去包絡平均後的新數據,若還存在負的局部極大值和正的局部極小值,說明這還不是一個本徵模函數,需要繼續進行「篩選」。

㈡ 圖解經驗模態分解(EMD)

經驗模態分解 (Empirical Mode Decomposition,EMD)是由美國工程師黃鍔於1998年提出的一種信號的時頻分析方法,這里的信號指的是時序信號。

常見的時序信號處理方法可以分為三類:時域、頻域和時頻域。時域分析特徵包括均值、方差、峭度、峰峰值等;頻域特徵包括頻率、能量等;而時頻域分析有小波變換等。經驗模態分解就屬於一種時頻分析方法。

黃鍔認為所有的信號都是由有限個 本徵模函數 (Intrinsic Mode Function, IMF )組成。IMF分量包含了原信號的不同時間尺度的局部特徵信號。經驗模態分解法能使非平穩數據進行平穩化處理,然後進行希爾伯特變換獲得時頻譜圖,得到有物理意義的頻率。 [1]

這和快速傅里葉變換(Fast Fourier Transform, FFT)有些像,FFT假設所有信號都是由很多周期性的正弦信號組成,這些信號有著不同的幅頻和相位。使用FFT可以將時域信號轉換到頻域,但EMD分解後的信號還在時域,並且它沒有假設信號是周期的且由很多基本的正弦信號組成。 [2]

但是EMD的使用存在一些限制條件:
⑴函數在整個時間范圍內,局部極值點和過零點的數目必須相等,或最多相差一個;
⑵在任意時刻點,局部最大值的包絡(上包絡線)和局部最小值的包絡(下包絡線) 平均必須為零。

第一條什麼意思呢,看看下面的圖就明白了,它只能是下面這種情況:

假如我們有如下信號,它是由頻率為1hz和4hz的正弦信號疊加而成:

我們發現得到的這個IMF同樣滿足EMD的兩個條件,我們可以對該IMF從第一步開始計算第二個IMF,直到最終得到的信號是一個常數、單調或者只有一個極值為止。

㈢ emd是什麼縮寫

經驗模態分解(Empirical Mode Decomposition, 簡稱EMD))方法是由美國NASA的黃鍔博士提出的一種信號分析方法.它依據數據自身的時間尺度特徵來進行信號分解, 無須預先設定任何基函數。

㈣ 黃鍔1998年關於EMD的文獻翻譯

非線性和非平穩時間序列的經驗模態分解和希爾伯特譜
望採納!

閱讀全文

與emd工具箱黃鍔相關的資料

熱點內容
怎麼看機械表要保養 瀏覽:517
小學生雕刻工具箱 瀏覽:417
k5儀表信息怎麼調 瀏覽:936
青島泰科閥門怎麼樣 瀏覽:277
地熱總閥門開關擰不動怎麼辦 瀏覽:60
03儀表盤模式怎麼換 瀏覽:284
ktv設備有哪些設備 瀏覽:191
關節軸承怎麼安裝使用 瀏覽:838
生產山楂糕需要哪些設備 瀏覽:91
機械表後面的飛輪是什麼 瀏覽:163
怎麼實現儀表盤ar導航 瀏覽:722
某同學設計了如下裝置來 瀏覽:633
超聲波儀器動態范圍是什麼意思 瀏覽:11
傳動裝置分析 瀏覽:263
風機與閥門連鎖怎麼實現 瀏覽:314
消防管道閥門抽檢比例 瀏覽:313
礦用自動除塵噴霧裝置生產工藝 瀏覽:334
鑄造灰鐵很硬怎麼回事 瀏覽:505
天然氣灶沒有自動滅火裝置會有什麼後果 瀏覽:221
江蘇旭潤設備有限公司怎麼樣 瀏覽:653