Ⅰ matlab bp神經網路工具箱怎麼用
%% 訓練集/測試集產來生
% 訓練源集——用於訓練網路
P_train = ;%輸入集
T_train = ;%輸出集
% 測試集——用於測試或者使用。
P_test = ;%輸入
T_test ;
N = size(P_test,2);
%% BP神經網路創建、訓練及模擬測試
% 創建網路
net = newff(P_train,T_train,9);
% 設置訓練參數
net.trainParam.epochs = 1000;
net.trainParam.goal = 1e-3;
net.trainParam.lr = 0.01;
% 訓練網路
net = train(net,P_train,T_train);
% 模擬測試、使用。
T_test = sim(net,P_test);%得到結果。
Ⅱ 關於matlab的BP神經網路:
比較新的版本,比如說matlab 2010以上的,都不需要裝神經網路的工具箱
建立網路步驟:
1、數據歸一化:輸入的數據通常為P,輸出數據通常為T,數據格式為:每列對應一個樣本,歸一化常用函數:mapminmax
[pn,ps]=mapminmax(p); [tn,ts]=mapminmax(t)
pn,tn是歸一化後的數據,ps, ts是歸一化的結構體,在後面反歸一化預測值很有用。
2、建立網路並設定參數
net=newff(pn,tn,[ ]) 中括弧裡面的是輸入層數,隱含神經元數,輸出層數,還可以設定節點傳遞函數等等的參數
net.trainparam.epochs=1000 訓練的次數
net.trainparam.goal=0.0001 訓練的誤差目標值
net.trainparam.lr=0.1 學習速率,通常在0到1之間,過大過小都不好
3、預測並分析
an=sim(net, pn)
ouput=mapminmax('reverse', an, ts) 根據之前歸一化的標准,對預測結果進行反歸一化,得到結果
error=output-t 這里是對誤差進行輸出,也可以用error=sum(asb(output-t))
當然也可以作圖,比如說:
plot(p,t,'-o')
hold on
plot(p, output,'-*')
看預測值和真實值能否吻合
還可以在神經網路訓練完成後的對話框中看MSE和R方
還有很多方法提高神經網路的精度,以上程序沒有經過MATLAB調試,但大致過程如上
純手打,希望採納!
Ⅲ 如何用MATLAB神經網路工具箱創建BP神經網路模型
1. 常用的前饋型BP網路的轉移函數有logsig,tansig,有時也會用到線性函數purelin。當網路的最後一層採用曲線函數時,輸出被限制在一個很小的范圍內,如果採用線性函數則輸出可為任意值。以上三個函數是BP網路中最常用到的函數,但是如果需要的話你也可以創建其他可微的轉移函數。
2. 在BP網路中,轉移函數可求導是非常重要的,tansig、logsig和purelin都有對應的導函數dtansig、dlogsig和dpurelin。為了得到更多轉移函數的導函數,可以帶字元"deriv"的轉移函數:tansig('deriv')
Ⅳ bp神經網路matlab工具箱里每次是重新算還是迭代
每次都是重新建立網路,重新設置隨機初始權值,重新訓練,所以每次的內訓練結果都不相同。而且樣本容每次代入的順序可能也是不一樣的,所以訓練的過程也不同。如果你是做模擬,可以多進行幾次,選較好一些的結果。
BP(Back Propagation)神經網路是1986年由Rumelhart和McCelland為首的科學家小組提出,是一種按誤差逆傳播演算法訓練的多層前饋網路,是目前應用最廣泛的神經網路模型之一。BP網路能學習和存貯大量的輸入-輸出模式映射關系,而無需事前揭示描述這種映射關系的數學方程。它的學習規則是使用最速下降法,通過反向傳播來不斷調整網路的權值和閾值,使網路的誤差平方和最小。BP神經網路模型拓撲結構包括輸入層(input)、隱層(hidden layer)和輸出層(output layer)。
Ⅳ matlab中bp神經網路的工具箱怎麼用,不要matlab程序,就工具箱怎麼實現問題的解決
matlab中神經網路的工具箱:輸入nntool,就會彈出一個對話框,然後你就可以根據彈出框的指示來操作。
Ⅵ 1.如何用MATLAB神經網路工具箱創建BP神經網路模型具體有哪些步驟請高手舉實例詳細解釋下 2.如何把輸
%人臉識別模型,臉部模型自己找吧。
function mytest()
clc;
images=[ ];
M_train=3;%表示人臉
N_train=5;%表示方向
sample=[];
pixel_value=[];
sample_number=0;
for j=1:N_train
for i=1:M_train
str=strcat('Images\',num2str(i),'_',num2str(j),'.bmp'); %讀取圖像,連接字元串形成圖像的文件名。
img= imread(str);
[rows cols]= size(img);%獲得圖像的行和列值。
img_edge=edge(img,'Sobel');
%由於在分割圖片中我們可以看到這個人臉的眼睛部分也就是位於分割後的第二行中,位置變化比較大,而且眼睛邊緣檢測效果很好
sub_rows=floor(rows/6);%最接近的最小整數,分成6行
sub_cols=floor(cols/8);%最接近的最小整數,分成8列
sample_num=M_train*N_train;%前5個是第一幅人臉的5個角度
sample_number=sample_number+1;
for subblock_i=1:8 %因為這還在i,j的循環中,所以不可以用i
block_num=subblock_i;
pixel_value(sample_number,block_num)=0;
for ii=sub_rows:(2*sub_rows)
for jj=(subblock_i-1)*sub_cols+1:subblock_i*sub_cols
pixel_value(sample_number,block_num)=pixel_value(sample_number,block_num)+img_edge(ii,jj);
end
end
end
end
end
%將特徵值轉換為小於1的值
max_pixel_value=max(pixel_value);
max_pixel_value_1=max(max_pixel_value);
for i=1:3
mid_value=10^i;
if(((max_pixel_value_1/mid_value)>1)&&((max_pixel_value_1/mid_value)<10))
multiple_num=1/mid_value;
pixel_value=pixel_value*multiple_num;
break;
end
end
% T 為目標矢量
t=zeros(3,sample_number);
%因為有五類,所以至少用3個數表示,5介於2的2次方和2的3次方之間
for i=1:sample_number
% if((mod(i,5)==1)||(mod(i,5)==4)||(mod(i,5)==0))
if(i<=3)||((i>9)&&(i<=12))||((i>12)&&(i<=15))
t(1,i)=1;
end
%if((mod(i,5)==2)||(mod(i,5)==4))
if((i>3)&&(i<=6))||((i>9)&&(i<=12))
t(2,i)=1;
end
%if((mod(i,5)==3)||(mod(i,5)==0))
if((i>6)&&(i<=9))||((i>12)&&(i<=15))
t(3,i)=1;
end
end
% NEWFF——生成一個新的前向神經網路
% TRAIN——對 BP 神經網路進行訓練
% SIM——對 BP 神經網路進行模擬
% 定義訓練樣本
% P 為輸入矢量
P=pixel_value'
% T 為目標矢量
T=t
size(P)
size(T)
% size(P)
% size(T)
% 創建一個新的前向神經網路
net_1=newff(minmax(P),[10,3],{'tansig','purelin'},'traingdm')
% 當前輸入層權值和閾值
inputWeights=net_1.IW{1,1}
inputbias=net_1.b{1}
% 當前網路層權值和閾值
layerWeights=net_1.LW{2,1}
layerbias=net_1.b{2}
% 設置訓練參數
net_1.trainParam.show = 50;
net_1.trainParam.lr = 0.05;
net_1.trainParam.mc = 0.9;
net_1.trainParam.epochs = 10000;
net_1.trainParam.goal = 1e-3;
% 調用 TRAINGDM 演算法訓練 BP 網路
[net_1,tr]=train(net_1,P,T);
% 對 BP 網路進行模擬
A = sim(net_1,P);
% 計算模擬誤差
E = T - A;
MSE=mse(E)
x=[0.14 0 1 1 0 1 1 1.2]';
sim(net_1,x)
Ⅶ bp神經網路演算法 在matlab中的實現
BP神經網路是最基本、最常用的神經網路,Matlab有專用函數來建立、訓練它,主要就是newff()、train()、sim()這三個函數,當然其他如歸一化函數mapminmax()、其他net的參數設定(lr、goal等)設置好,就可以通過對歷史數據的學習進行預測。附件是一個最基本的預測實例,本來是電力負荷預測的實例,但具有通用性,你仔細看看就明白了。
Ⅷ matlab BP神經網路 performance 圖這五條線的詳細解釋
橫縱坐標不用說了,圖上三條有顏色的實線分別是:BP訓練過程的MSE指標在每一代中的表現,BP交叉驗證過程的MSE指標在每一代中的表現,BP測試過程的MSE指標在每一代中的表現。尤其你要注意那條TEST紅線,那是你的BP計算/訓練結果。
BEST虛線說明BP網路訓練到第八代的時候BP訓練結果最理想。
GOAL虛線是你編程或者直接用的MATLAB的ANN工具箱去訓練這個BP時,設置的網路訓練停止目標(之一)。
Ⅸ 如何用MATLAB的神經網路工具箱實現三層BP網路
使用神經網路工具箱可以非常簡便地實現網路建立和訓練,實例代碼如下:
%%BP演算法
functionOut=bpnet(p,t,p_test)
%p,t為樣本需要提前組織好
globalS1
net=newff(minmax(p),[S1,8],{'tansig','purelin'},'trainlm');%trainlm訓練函數最有效
%net=newff(P,T,31,{'tansig','purelin'},'trainlm');%新版用法
net.trainParam.epochs=1000;
net.trainParam.goal=0.00001;
net.trainParam.lr=0.01;
net.trainParam.showWindow=false;%阻止訓練窗口的彈出
net.trainParam.showCommandLine=false;%阻止訓練窗口的彈出
net=train(net,p,t);
Out=sim(net,p_test);
end
上面的代碼不完整,完整的帶訓練樣本數據的程序見附件。