1. MATLAB里的Toolboxes怎麼使用急求高手指點!!!
MATLAB工具箱介紹
有三十多個工具箱大致可分為兩類:功能型工具箱和領域型工具箱。
功能型工具箱主要用來擴充MATLAB的符號計算功能、圖形建模模擬功能、文字處理功能以及與硬體實時交互功能,能用於多種學科。
領域型工具箱是專業性很強的。如圖像處理工具箱(Image Processing Toolbox)、控制工具箱(Control Toolbox)、信號處理工具箱(Signal Processing Toolbox)等。下面,將MATLAB工具箱內所包含的主要內容做簡要介紹:
1) 圖像處理工具箱(Image Processing Toolbox)。
* 二維濾波器設計和濾波
* 圖像恢復增強
* 色彩、集合及形態操作
* 二維變換
* 圖像分析和統計
可由結構圖直接生成可應用的C語言源代碼。
2)控制系統工具箱(Control System Toolbox)。
魯連續系統設計和離散系統設計
* 狀態空間和傳遞函數
* 模型轉換
* 頻域響應:Bode圖、Nyquist圖、Nichols圖
* 時域響應:沖擊響應、階躍響應、斜波響應等
* 根軌跡、極點配置、LQG
3)財政金融工具箱(FinancialTooLbox)。
* 成本、利潤分析,市場靈敏度分析
* 業務量分析及優化
* 偏差分析
* 資金流量估算
* 財務報表
4)頻率域系統辨識工具箱(Frequency Domain System ldentification Toolbox
* 辨識具有未知延遲的連續和離散系統
* 計算幅值/相位、零點/極點的置信區間
* 設計周期激勵信號、最小峰值、最優能量諾等
5)模糊邏輯工具箱(Fuzzy Logic Toolbox)。
* 友好的交互設計界面
* 自適應神經—模糊學習、聚類以及Sugeno推理
* 支持SIMULINK動態模擬
* 可生成C語言源代碼用於實時應用
(6)高階譜分析工具箱(Higher—Order SpectralAnalysis Toolbox
* 高階譜估計
* 信號中非線性特徵的檢測和刻畫
* 延時估計
* 幅值和相位重構
* 陣列信號處理
* 諧波重構
(7) 通訊工具箱(Communication Toolbox)。
令提供100多個函數和150多個SIMULINK模塊用於通訊系統的模擬和分析
——信號編碼
——調制解調
——濾波器和均衡器設計
——通道模型
——同步
(8)線性矩陣不等式控制工具箱(LMI Control Toolbox)。
* LMI的基本用途
* 基於GUI的LMI編輯器
* LMI問題的有效解法
* LMI問題解決方案
(9)模型預測控制工具箱(ModelPredictive Control Toolbox
* 建模、辨識及驗證
* 支持MISO模型和MIMO模型
* 階躍響應和狀態空間模型
(10)u分析與綜合工具箱(u-Analysis and Synthesis Toolbox)
* u分析與綜合
* H2和H無窮大最優綜合
* 模型降階
* 連續和離散系統
* u分析與綜合理論
(11)神經網路工具箱(Neursl Network Toolbox)。
* BP,Hopfield,Kohonen、自組織、徑向基函數等網路
* 競爭、線性、Sigmoidal等傳遞函數
* 前饋、遞歸等網路結構
* 性能分析及應用
(12)優化工具箱(Optimization Toolbox)。
* 線性規劃和二次規劃
* 求函數的最大值和最小位
* 多目標優化
* 約束條件下的優化
* 非線性方程求解
(13)偏微分方程工具箱(Partial DifferentialEquation Toolbox)。
* 二維偏微分方程的圖形處理
* 幾何表示
* 自適應曲面繪制,
* 有限元方法
(14)魯棒控制工具箱(Robust Control Toolbox)。
* LQG/LTR最優綜合
* H2和H無窮大最優綜合
* 奇異值模型降階
* 譜分解和建模
(15)信號處理工具箱(signal Processing Toolbox)
* 數字和模擬濾波器設計、應用及模擬
* 譜分析和估計
* FFT,DCT等變換
* 參數化模型
(16)樣條工具箱(SPline Toolbox)。
* 分段多項式和B樣條
* 樣條的構造
* 曲線擬合及平滑
* 函數微分、積分
(17)統計工具箱(Statistics Toolbox)。
* 概率分布和隨機數生成
* 多變數分析
* 回歸分析
* 主元分析
* 假設檢驗
(18)符號數學工具箱(Symbolic Math Toolbox)。
* 符號表達式和符號矩陣的創建
* 符號微積分、線性代數、方程求解
* 因式分解、展開和簡化
* 符號函數的二維圖形
* 圖形化函數計算器
(19)系統辨識工具箱(SystEm Identification Toolbox)
* 狀態空間和傳遞函數模型
* 模型驗證
* MA,AR,ARMA等
* 基於模型的信號處理
* 譜分析
(20)小波工具箱(Wavelet Toolbox)。
* 基於小波的分析和綜合
* 圖形界面和命令行介面
* 連續和離散小波變換及小波包
* 一維、二維小波
* 自適應去噪和壓縮
2. 請問matlab和weka那個更加有效的用於聚類分析
matlab工具箱強大,編寫成方便,調試功能全面,個人感覺還是matlab比較適合。
3. MATLAB中模糊聚類工具箱怎麼找到怎麼用呢
你help fcm,我這有整理過的MATLAB自帶的K均值與模糊C均值程序,我可以發給你,能不能給版點分?
function ff1=jd(g,c)%三維矩陣權g為m*n*c大小的矩陣
g=double(g);
[m,n,v]=size(g);
data=reshape(g,[],size(g,3);
[center,U,obj_fcm]=fcm(double(data),c);
[maxU,index]=max(U,[],1);
ff=reshape(index,m,n);
figure,imshow(ff,[]);
4. 我在做文本數據挖掘,要用到聚類分析,想請問matlab、weka這兩款軟體哪一個更加適合文本聚類分析呢,謝謝
如果單指軟體本身,顯然是weka,至少有這方面的功能模塊。matlab本身是數值計算軟體,根本沒有這類功能。
另外這兩個軟體都可以添加功能庫,相對來說weka可加的庫只能是java的,步驟也麻煩。matlab的添加工具箱之類很簡單,引用也方便,但估計做這方面研究的很少拿matlab做,應該很難找相關資源。
如果專門搞這個的,應該找找其它軟體。
當然如果是做研究的,深入到具體演算法,那還都是數學問題,可以在matlab底下處理。
5. 為什麼Matlab神經網路裡面會有聚類分析,模式識別,還有fitting tools,神經網路和聚類、模式有區別嗎
我的理解是 神經網路可以 用於預測,模式識別,聚類,fitting tools是MATLAB自帶工具箱
模式識別與分類 都是基於原始數據通過學習訓練網路 來預測新的數據源,通過預測結果來確定屬於哪一類。
真正的聚類分析是給定初始點迭代通過計算類間距離確定屬於哪一類,譜系聚類和kmeans聚類。
而神經網路傾向於 有監督學習,已經給定樣本數據及所屬類別輸出為(0,1),(1,0),根據樣本數據進行訓練學習,再對新的數據進行計算輸出,通過輸出判斷類別。
6. matlab如何調用統計工具箱
調用統計特工具箱的做法:
①打開matlab;
②點擊左下角Start;
③進入Toolbox工具箱;
④選擇Statistics;
7. MATLAB神經網路的目錄
第1章 BP神經網路的數據分類——語音特徵信號分類1
本案例選取了民歌、古箏、搖滾和流行四類不同音樂,用BP神經網路實現對這四類音樂的有效分類。
第2章 BP神經網路的非線性系統建模——非線性函數擬合11
本章擬合的非線性函數為y=x21+x22。
第3章 遺傳演算法優化BP神經網路——非線性函數擬合21
根據遺傳演算法和BP神經網路理論,在MATLAB軟體中編程實現基於遺傳演算法優化的BP神經網路非線性系統擬合演算法。
第4章 神經網路遺傳演算法函數極值尋優——非線性函數極值尋優36
對於未知的非線性函數,僅通過函數的輸入輸出數據難以准確尋找函數極值。這類問題可以通過神經網路結合遺傳演算法求解,利用神經網路的非線性擬合能力和遺傳演算法的非線性尋優能力尋找函數極值。
第5章 基於BP_Adaboost的強分類器設計——公司財務預警建模45
BP_Adaboost模型即把BP神經網路作為弱分類器,反復訓練BP神經網路預測樣本輸出,通過Adaboost演算法得到多個BP神經網路弱分類器組成的強分類器。
第6章 PID神經元網路解耦控制演算法——多變數系統控制54
根據PID神經元網路控制器原理,在MATLAB中編程實現PID神經元網路控制多變數耦合系統。
第7章 RBF網路的回歸——非線性函數回歸的實現65
本例用RBF網路擬合未知函數,預先設定一個非線性函數,如式y=20+x21-10cos(2πx1)+x22-10cos(2πx2)所示,假定函數解析式不清楚的情況下,隨機產生x1,x2和由這兩個變數按上式得出的y。將x1,x2作為RBF網路的輸入數據,將y作為RBF網路的輸出數據,分別建立近似和精確RBF網路進行回歸分析,並評價網路擬合效果。
第8章 GRNN的數據預測——基於廣義回歸神經網路的貨運量預測73
根據貨運量影響因素的分析,分別取國內生產總值(GDP),工業總產值,鐵路運輸線路長度,復線里程比重,公路運輸線路長度,等級公路比重,鐵路貨車數量和民用載貨汽車數量8項指標因素作為網路輸入,以貨運總量,鐵路貨運量和公路貨運量3項指標因素作為網路輸出,構建GRNN,由於訓練數據較少,採取交叉驗證方法訓練GRNN神經網路,並用循環找出最佳的SPREAD。
第9章 離散Hopfield神經網路的聯想記憶——數字識別81
根據Hopfield神經網路相關知識,設計一個具有聯想記憶功能的離散型Hopfield神經網路。要求該網路可以正確地識別0~9這10個數字,當數字被一定的雜訊干擾後,仍具有較好的識別效果。
第10章 離散Hopfield神經網路的分類——高校科研能力評價90
某機構對20所高校的科研能力進行了調研和評價,試根據調研結果中較為重要的11個評價指標的數據,並結合離散Hopfield神經網路的聯想記憶能力,建立離散Hopfield高校科研能力評價模型。
第11章 連續Hopfield神經網路的優化——旅行商問題優化計算100
現對於一個城市數量為10的TSP問題,要求設計一個可以對其進行組合優化的連續型Hopfield神經網路模型,利用該模型可以快速地找到最優(或近似最優)的一條路線。
第12章 SVM的數據分類預測——義大利葡萄酒種類識別112
將這178個樣本的50%做為訓練集,另50%做為測試集,用訓練集對SVM進行訓練可以得到分類模型,再用得到的模型對測試集進行類別標簽預測。
第13章 SVM的參數優化——如何更好的提升分類器的性能122
本章要解決的問題就是僅僅利用訓練集找到分類的最佳參數,不但能夠高准確率的預測訓練集而且要合理的預測測試集,使得測試集的分類准確率也維持在一個較高水平,即使得得到的SVM分類器的學習能力和推廣能力保持一個平衡,避免過學習和欠學習狀況發生。
第14章 SVM的回歸預測分析——上證指數開盤指數預測133
對上證指數從1990.12.20-2009.08.19每日的開盤數進行回歸分析。
第15章 SVM的信息粒化時序回歸預測——上證指數開盤指數變化趨勢和變化空間預測141
在這個案例裡面我們將利用SVM對進行模糊信息粒化後的上證每日的開盤指數進行變化趨勢和變化空間的預測。
若您對此書內容有任何疑問,可以憑在線交流卡登錄中文論壇與作者交流。
第16章 自組織競爭網路在模式分類中的應用——患者癌症發病預測153
本案例中給出了一個含有60個個體基因表達水平的樣本。每個樣本中測量了114個基因特徵,其中前20個樣本是癌症病人的基因表達水平的樣本(其中還可能有子類), 中間的20個樣本是正常人的基因表達信息樣本, 餘下的20個樣本是待檢測的樣本(未知它們是否正常)。以下將設法找出癌症與正常樣本在基因表達水平上的區別,建立競爭網路模型去預測待檢測樣本是癌症還是正常樣本。
第17章SOM神經網路的數據分類——柴油機故障診斷159
本案例中給出了一個含有8個故障樣本的數據集。每個故障樣本中有8個特徵,分別是前面提及過的:最大壓力(P1)、次最大壓力(P2)、波形幅度(P3)、上升沿寬度(P4)、波形寬度(P5)、最大餘波的寬度(P6)、波形的面積(P7)、起噴壓力(P8),使用SOM網路進行故障診斷。
第18章Elman神經網路的數據預測——電力負荷預測模型研究170
根據負荷的歷史數據,選定反饋神經網路的輸入、輸出節點,來反映電力系統負荷運行的內在規律,從而達到預測未來時段負荷的目的。
第19章 概率神經網路的分類預測——基於PNN的變壓器故障診斷176
本案例在對油中溶解氣體分析法進行深入分析後,以改良三比值法為基礎,建立基於概率神經網路的故障診斷模型。
第20章 神經網路變數篩選——基於BP的神經網路變數篩選183
本例將結合BP神經網路應用平均影響值(MIV,Mean Impact Value)方法來說明如何使用神經網路來篩選變數,找到對結果有較大影響的輸入項,繼而實現使用神經網路進行變數篩選。
第21章 LVQ神經網路的分類——乳腺腫瘤診斷188
威斯康星大學醫學院經過多年的收集和整理,建立了一個乳腺腫瘤病灶組織的細胞核顯微圖像資料庫。資料庫中包含了細胞核圖像的10個量化特徵(細胞核半徑、質地、周長、面積、光滑性、緊密度、凹陷度、凹陷點數、對稱度、斷裂度),這些特徵與腫瘤的性質有密切的關系。因此,需要建立一個確定的模型來描述資料庫中各個量化特徵與腫瘤性質的關系,從而可以根據細胞核顯微圖像的量化特徵診斷乳腺腫瘤是良性還是惡性。
第22章 LVQ神經網路的預測——人臉朝向識別198
現採集到一組人臉朝向不同角度時的圖像,圖像來自不同的10個人,每人5幅圖像,人臉的朝向分別為:左方、左前方、前方、右前方和右方。試創建一個LVQ神經網路,對任意給出的人臉圖像進行朝向預測和識別。
第23章 小波神經網路的時間序列預測——短時交通流量預測208
根據小波神經網路原理在MATLAB環境中編程實現基於小波神經網路的短時交通流量預測。
第24章 模糊神經網路的預測演算法——嘉陵江水質評價218
根據模糊神經網路原理,在MATLAB中編程實現基於模糊神經網路的水質評價演算法。
第25章 廣義神經網路的聚類演算法——網路入侵聚類229
模糊聚類雖然能夠對數據聚類挖掘,但是由於網路入侵特徵數據維數較多,不同入侵類別間的數據差別較小,不少入侵模式不能被准確分類。本案例採用結合模糊聚類和廣義神經網路回歸的聚類演算法對入侵數據進行分類。
第26章 粒子群優化演算法的尋優演算法——非線性函數極值尋優236
根據PSO演算法原理,在MATLAB中編程實現基於PSO演算法的函數極值尋優演算法。
第27章 遺傳演算法優化計算——建模自變數降維243
在第21章中,建立模型時選用的每個樣本(即病例)數據包括10個量化特徵(細胞核半徑、質地、周長、面積、光滑性、緊密度、凹陷度、凹陷點數、對稱度、斷裂度)的平均值、10個量化特徵的標准差和10個量化特徵的最壞值(各特徵的3個最大數據的平均值)共30個數據。明顯,這30個輸入自變數相互之間存在一定的關系,並非相互獨立的,因此,為了縮短建模時間、提高建模精度,有必要將30個輸入自變數中起主要影響因素的自變數篩選出來參與最終的建模。
第28章 基於灰色神經網路的預測演算法研究——訂單需求預測258
根據灰色神經網路原理,在MATLAB中編程實現基於灰色神經網路的訂單需求預測。
第29章 基於Kohonen網路的聚類演算法——網路入侵聚類268
根據Kohonen網路原理,在MATLAB軟體中編程實現基於Kohonen網路的網路入侵分類演算法。
第30章 神經網路GUI的實現——基於GUI的神經網路擬合、模式識別、聚類277
為了便於使用MATLAB編程的新用戶,快速地利用神經網路解決實際問題,MATLAB提供了一個基於神經網路工具箱的圖形用戶界面。考慮到圖形用戶界面帶來的方便和神經網路在數據擬合、模式識別、聚類各個領域的應用,MATLAB R2009a提供了三種神經網路擬合工具箱(擬合工具箱/模式識別工具箱/聚類工具箱)。
8. 求MATLAB工具箱函數匯總
附錄Ⅰ 工具箱函數匯總
Ⅰ.1 統計工具箱函數
表Ⅰ-1 概率密度函數
函數名 對應分布的概率密度函數
betapdf 貝塔分布的概率密度函數
binopdf 二項分布的概率密度函數
chi2pdf 卡方分布的概率密度函數
exppdf 指數分布的概率密度函數
fpdf f分布的概率密度函數
gampdf 伽瑪分布的概率密度函數
geopdf 幾何分布的概率密度函數
hygepdf 超幾何分布的概率密度函數
normpdf 正態(高斯)分布的概率密度函數
lognpdf 對數正態分布的概率密度函數
nbinpdf 負二項分布的概率密度函數
ncfpdf 非中心f分布的概率密度函數
nctpdf 非中心t分布的概率密度函數
ncx2pdf 非中心卡方分布的概率密度函數
poisspdf 泊松分布的概率密度函數
raylpdf 雷利分布的概率密度函數
tpdf 學生氏t分布的概率密度函數
unidpdf 離散均勻分布的概率密度函數
unifpdf 連續均勻分布的概率密度函數
weibpdf 威布爾分布的概率密度函數
表Ⅰ-2 累加分布函數
函數名 對應分布的累加函數
betacdf 貝塔分布的累加函數
binocdf 二項分布的累加函數
chi2cdf 卡方分布的累加函數
expcdf 指數分布的累加函數
fcdf f分布的累加函數
gamcdf 伽瑪分布的累加函數
geocdf 幾何分布的累加函數
hygecdf 超幾何分布的累加函數
logncdf 對數正態分布的累加函數
nbincdf 負二項分布的累加函數
ncfcdf 非中心f分布的累加函數
nctcdf 非中心t分布的累加函數
ncx2cdf 非中心卡方分布的累加函數
normcdf 正態(高斯)分布的累加函數
poisscdf 泊松分布的累加函數
raylcdf 雷利分布的累加函數
tcdf 學生氏t分布的累加函數
unidcdf 離散均勻分布的累加函數
unifcdf 連續均勻分布的累加函數
weibcdf 威布爾分布的累加函數
表Ⅰ-3 累加分布函數的逆函數
函數名 對應分布的累加分布函數逆函數
betainv 貝塔分布的累加分布函數逆函數
binoinv 二項分布的累加分布函數逆函數
chi2inv 卡方分布的累加分布函數逆函數
expinv 指數分布的累加分布函數逆函數
finv f分布的累加分布函數逆函數
gaminv 伽瑪分布的累加分布函數逆函數
geoinv 幾何分布的累加分布函數逆函數
hygeinv 超幾何分布的累加分布函數逆函數
logninv 對數正態分布的累加分布函數逆函數
nbininv 負二項分布的累加分布函數逆函數
ncfinv 非中心f分布的累加分布函數逆函數
nctinv 非中心t分布的累加分布函數逆函數
ncx2inv 非中心卡方分布的累加分布函數逆函數
icdf
norminv 正態(高斯)分布的累加分布函數逆函數
poissinv 泊松分布的累加分布函數逆函數
raylinv 雷利分布的累加分布函數逆函數
tinv 學生氏t分布的累加分布函數逆函數
unidinv 離散均勻分布的累加分布函數逆函數
unifinv 連續均勻分布的累加分布函數逆函數
weibinv 威布爾分布的累加分布函數逆函數
表Ⅰ-4 隨機數生成器函數
函 數 對應分布的隨機數生成器
betarnd 貝塔分布的隨機數生成器
binornd 二項分布的隨機數生成器
chi2rnd 卡方分布的隨機數生成器
exprnd 指數分布的隨機數生成器
frnd f分布的隨機數生成器
gamrnd 伽瑪分布的隨機數生成器
geornd 幾何分布的隨機數生成器
hygernd 超幾何分布的隨機數生成器
lognrnd 對數正態分布的隨機數生成器
nbinrnd 負二項分布的隨機數生成器
ncfrnd 非中心f分布的隨機數生成器
nctrnd 非中心t分布的隨機數生成器
ncx2rnd 非中心卡方分布的隨機數生成器
normrnd 正態(高斯)分布的隨機數生成器
poissrnd 泊松分布的隨機數生成器
raylrnd 瑞利分布的隨機數生成器
trnd 學生氏t分布的隨機數生成器
unidrnd 離散均勻分布的隨機數生成器
unifrnd 連續均勻分布的隨機數生成器
weibrnd 威布爾分布的隨機數生成器
表Ⅰ-5 分布函數的統計量函數
函數名 對應分布的統計量
betastat 貝塔分布函數的統計量
binostat 二項分布函數的統計量
chi2stat 卡方分布函數的統計量
expstat 指數分布函數的統計量
fstat f分布函數的統計量
gamstat 伽瑪分布函數的統計量
geostat 幾何分布函數的統計量
hygestat 超幾何分布函數的統計量
lognstat 對數正態分布函數的統計量
nbinstat 負二項分布函數的統計量
ncfstat 非中心f分布函數的統計量
nctstat 非中心t分布函數的統計量
ncx2stat 非中心卡方分布函數的統計量
normstat 正態(高斯)分布函數的統計量
poisstat 泊松分布函數的統計量
續表
函數名 對應分布的統計量
raylstat 瑞利分布函數的統計量
tstat 學生氏t分布函數的統計量
unidstat 離散均勻分布函數的統計量
unifstat 連續均勻分布函數的統計量
weibstat 威布爾分布函數的統計量
表Ⅰ-6 參數估計函數
函 數 名 對應分布的參數估計
betafit 貝塔分布的參數估計
betalike 貝塔對數似然函數的參數估計
binofit 二項分布的參數估計
expfit 指數分布的參數估計
gamfit 伽瑪分布的參數估計
gamlike 伽瑪似然函數的參數估計
mle 極大似然估計的參數估計
normlike 正態對數似然函數的參數估計
normfit 正態分布的參數估計
poissfit 泊松分布的參數估計
unifit 均勻分布的參數估計
weibfit 威布爾分布的參數估計
weiblike 威布爾對數似然函數的參數估計
表Ⅰ-7 統計量描述函數
函 數 描 述
bootstrap 任何函數的自助統計量
corrcoef 相關系數
cov 協方差
crosstab 列聯表
geomean 幾何均值
grpstats 分組統計量
harmmean 調和均值
iqr 內四分極值
kurtosis 峰度
mad 中值絕對差
mean 均值
median 中值
moment 樣本模量
nanmax 包含缺失值的樣本的最大值
續表
函 數 描 述
Nanmean 包含缺失值的樣本的均值
nanmedian 包含缺失值的樣本的中值
nanmin 包含缺失值的樣本的最小值
nanstd 包含缺失值的樣本的標准差
nansum 包含缺失值的樣本的和
prctile 百分位數
range 極值
skewness 偏度
std 標准差
tabulate 頻數表
trimmean 截尾均值
var 方差
表Ⅰ-8 統計圖形函數
函 數 描 述
boxplot 箱形圖
cdfplot 指數累加分布函數圖
errorbar 誤差條圖
fsurfht 函數的交互等值線圖
gline 畫線
gname 交互標注圖中的點
gplotmatrix 散點圖矩陣
gscatter 由第三個變數分組的兩個變數的散點圖
lsline 在散點圖中添加最小二乘擬合線
normplot 正態概率圖
pareto 帕累托圖
qqplot Q-Q圖
rcoplot 殘差個案次序圖
refcurve 參考多項式曲線
refline 參考線
surfht 數據網格的交互等值線圖
weibplot 威布爾圖
表Ⅰ-9 統計過程式控制制函數
函 數 描 述
capable 性能指標
capaplot 性能圖
ewmaplot 指數加權移動平均圖
續表
函 數 描 述
histfit 添加正態曲線的直方圖
normspec 在指定的區間上繪正態密度
schart S圖
xbarplot x條圖
表Ⅰ-10 聚類分析函數
函 數 描 述
cluster 根據linkage函數的輸出創建聚類
clusterdata 根據給定數據創建聚類
cophenet Cophenet相關系數
dendrogram 創建冰柱圖
inconsistent 聚類樹的不連續值
linkage 系統聚類信息
pdist 觀測量之間的配對距離
squareform 距離平方矩陣
zscore Z分數
表Ⅰ-11 線性模型函數
函 數 描 述
anova1 單因子方差分析
anova2 雙因子方差分析
anovan 多因子方差分析
aoctool 協方差分析交互工具
mmyvar 擬變數編碼
friedman Friedman檢驗
glmfit 一般線性模型擬合
kruskalwallis Kruskalwallis檢驗
leverage 中心化杠桿值
lscov 已知協方差矩陣的最小二乘估計
manova1 單因素多元方差分析
manovacluster 多元聚類並用冰柱圖表示
multcompare 多元比較
多項式評價及誤差區間估計
polyfit 最小二乘多項式擬合
polyval 多項式函數的預測值
polyconf 殘差個案次序圖
regress 多元線性回歸
regstats 回歸統計量診斷
續表
函 數 描 述
Ridge 嶺回歸
rstool 多維響應面可視化
robustfit 穩健回歸模型擬合
stepwise 逐步回歸
x2fx 用於設計矩陣的因子設置矩陣
表Ⅰ-12 非線性回歸函數
函 數 描 述
nlinfit 非線性最小二乘數據擬合(牛頓法)
nlintool 非線性模型擬合的互動式圖形工具
nlparci 參數的置信區間
nlpredci 預測值的置信區間
nnls 非負最小二乘
表Ⅰ-13 試驗設計函數
函 數 描 述
cordexch D-優化設計(列交換演算法)
daugment 遞增D-優化設計
dcovary 固定協方差的D-優化設計
ff2n 二水平完全析因設計
fracfact 二水平部分析因設計
fullfact 混合水平的完全析因設計
hadamard Hadamard矩陣(正交數組)
rowexch D-優化設計(行交換演算法)
表Ⅰ-14 主成分分析函數
函 數 描 述
barttest Barttest檢驗
pcacov 源於協方差矩陣的主成分
pcares 源於主成分的方差
princomp 根據原始數據進行主成分分析
表Ⅰ-15 多元統計函數
函 數 描 述
classify 聚類分析
mahal 馬氏距離
manova1 單因素多元方差分析
manovacluster 多元聚類分析
表Ⅰ-16 假設檢驗函數
函 數 描 述
ranksum 秩和檢驗
signrank 符號秩檢驗
signtest 符號檢驗
ttest 單樣本t檢驗
ttest2 雙樣本t檢驗
ztest z檢驗
表Ⅰ-17 分布檢驗函數
函 數 描 述
jbtest 正態性的Jarque-Bera檢驗
kstest 單樣本Kolmogorov-Smirnov檢驗
kstest2 雙樣本Kolmogorov-Smirnov檢驗
lillietest 正態性的Lilliefors檢驗
表Ⅰ-18 非參數函數
函 數 描 述
friedman Friedman檢驗
kruskalwallis Kruskalwallis檢驗
ranksum 秩和檢驗
signrank 符號秩檢驗
signtest 符號檢驗
表Ⅰ-19 文件輸入輸出函數
函 數 描 述
caseread 讀取個案名
casewrite 寫個案名到文件
tblread 以表格形式讀數據
tblwrite 以表格形式寫數據到文件
tdfread 從表格間隔形式的文件中讀取文本或數值數據
表Ⅰ-20 演示函數
函 數 描 述
aoctool 協方差分析的互動式圖形工具
disttool 探察概率分布函數的GUI工具
glmdemo 一般線性模型演示
randtool 隨機數生成工具
polytool 多項式擬合工具
rsmdemo 響應擬合工具
robustdemo 穩健回歸擬合工具
Ⅰ.2 優化工具箱函數
表Ⅰ-21 最小化函數表
函 數 描 述
fgoalattain 多目標達到問題
fminbnd 有邊界的標量非線性最小化
fmincon 有約束的非線性最小化
fminimax 最大最小化
fminsearch, fminunc 無約束非線性最小化
fseminf 半無限問題
linprog 線性課題
quadprog 二次課題
表Ⅰ-22 方程求解函數表
函 數 描 述
\ 線性方程求解
fsolve 非線性方程求解
fzero 標量非線性方程求解
表Ⅰ-23 最小二乘函數表
函 數 描 述
\ 線性最小二乘
lsqlin 有約束線性最小二乘
lsqcurvefit 非線性曲線擬合
lsqnonlin 非線性最小二乘
lsqnonneg 非負線性最小二乘
表Ⅰ-24 實用函數表
函 數 描 述
optimset 設置參數
optimget 獲取參數
表Ⅰ-25 大型方法的演示函數表
函 數 描 述
circustent 馬戲團帳篷問題—二次課題
molecule 用無約束非線性最小化進行分子組成求解
optdeblur 用有邊界線性最小二乘法進行圖形處理
表Ⅰ-26 中型方法的演示函數表
函 數 描 述
bandemo 香蕉函數的最小化
dfildemo 過濾器設計的有限精度
goaldemo 目標達到舉例
optdemo 演示過程菜單
tutdemo 教程演示
Ⅰ.3 樣條工具箱函數
表Ⅰ-27 三次樣條函數
函 數 描 述
csapi 插值生成三次樣條函數
csape 生成給定約束條件下的三次樣條函數
csaps 平滑生成三次樣條函數
cscvn 生成一條內插參數的三次樣條曲線
getcurve 動態生成三次樣條曲線
表Ⅰ-28 分段多項式樣條函數
函 數 描 述
pplst 顯示關於生成分段多項式樣條曲線的M文件
ppmak 生成分段多項式樣條函數
ppual 計算在給定點處的分段多項式樣條函數值
表Ⅰ-29 B樣條函數
函 數 描 述
splst 顯示生成B樣條函數的M文件
spmak 生成B樣條函數
spcrv 生成均勻劃分的B樣條函數
spapi 插值生成B樣條函數
spap2 用最小二乘法擬合生成B樣條函數
spaps 對生成的B樣條曲線進行光滑處理
spcol 生成B樣條函數的配置矩陣
表Ⅰ-30 有理樣條函數
函 數 描 述
rpmak 生成有理樣條函數
rsmak 生成有理樣條函數
表Ⅰ-31 操作樣條函數
函 數 描 述
fnval 計算在給定點處的樣條函數值
fmbrk 返回樣條函數的某一部分(如斷點或系數等)
fncmb 對樣條函數進行算術運算
fn2fm 把一種形式的樣條函數轉化成另一種形式的樣條函數
fnder 求樣條函數的微分(即求導數)
fndir 求樣條函數的方向導數
fnint 求樣條函數的積分
fnjmp 在間斷點處求函數值
fnplt 畫樣條曲線圖
fnrfn 在樣條曲線中插入斷點。
fntlr 生成tarylor系數或taylor多項式
表Ⅰ-32 樣條曲線端點和節點處理函數
函 數 描 述
augknt 在已知節點數組中添加一個或多個節點
aveknt 求出節點數組元素的平均值
brk2knt 增加斷點數組中元素的重次
knt2brk 從節點數組中求得節點及其重次
knt2mlt 從節點數組中求得節點及其重次
sorted 求出節點數組points的元素在節點數組meshpoints中屬於第幾個分量
aptknt 求出用於生成樣條曲線的節點數組
表Ⅰ-33 樣條曲線端點和節點處理函數
函 數 描 述
newknt 對分段多項式樣條函數進行重分布
optknt 求出用於內插的最優節點數組
chbpnt 求出用於生成樣條曲線的合適節點數組
表Ⅰ-34 解線性方程組的函數
函 數 描 述
slvblk 解對角占優的線性方程組
bkbrk 描述分塊對角矩陣的詳細情況
表Ⅰ-35 樣條GUI函數
函 數 描 述
bspligui 在節點處生成B樣條曲線
splinetool 用一系列方法生成各種樣條曲線
Ⅰ.4 偏微分方程數值解工具箱函數
表Ⅰ-36 偏微分方程求解演算法函數
函 數 描 述
adaptmesh 生成自適應網格並求解PDE問題
assema 組合面積的整體貢獻
assemb 組合邊界條件的貢獻
assempde 組合剛度矩陣和PDE問題的右端項
hyperbolic 求解雙曲線PDE問題
parabolic 求解拋物線型PDE問題
pdeeig 求解特徵值PDE問題
pdenonlin 求解非線性PDE問題
poisolv 在矩形網格上對泊松方程進行快速求解
表Ⅰ-37 用戶界面演算法函數
函 數 描 述
pdecirc 繪圓
pdeellip 繪橢圓
pdemdlcv 將PDE工具箱1.0模型的M文件轉換為PDE工具箱1.0.2版本的格式
pdepoly 繪多邊形
pderect 繪矩形
pdetool PDE工具箱圖形用戶集成界面(GUI)
表Ⅰ-38 幾何演算法函數
函 數 描 述
csgchk 核對幾何描述矩陣的有效性
csgdel 刪除最小子域之間的界線
decsg 將建設性實體幾何模型分解為最小子域
initmesh 創建初始三角形網格
jigglemesh 微調三角形網格的內部點
pdearcl 在參數表示和圓弧長度之間進行內插
poimesh 在矩形幾何圖形上生成規則網格
refinemesh 加密一個三角形網格
wbound 寫邊界條件指定文件
wgeom 寫幾何指定函數
表Ⅰ-39 繪圖函數
函 數 描 述
pdecont 繪等值線圖
pdegplot 繪制PDE幾何圖
pdemesh 繪PDE三角形網格
pdeplot 一般PDE工具箱繪圖函數
pdesurf 繪三維表面圖
表Ⅰ-40 實用函數
函 數 描 述
Dst idst 離散化sin轉換
pdeadgsc 使用相對容限臨界值選擇三角形
pdeadworst 選擇相對於最壞值的三角形
pdecgrad PDE解的變動
pdeent 與給定三角形集合相鄰的三角形的指數
pdegrad PDE解的梯度
pdeintrp 從節點數據至三角形中點數據進行內插
pdejmps 對於自適應網格進行誤差估計
pdeprtni 從三角形中點數據向節點數據進行內插
pdesde 子域集合中點的指數
pdesdp 子域集合邊緣的指數
pdesdt 子域集合三角形的指數
pdesmech 計算結構力學張量函數
pdetrg 三角形幾何數據
pdetriq 三角型質量度量
續表
函 數 描 述
Poiasma 用於泊松方程快速求解器的邊界點矩陣
poicalc 矩形網格上泊松方程的快速求解器
poiindex 經過規范排序的矩形網格的點的指數
sptarn 求解廣義稀疏特徵值問題
tri2grid 從PDE三角形網格到矩形網格進行內插
表Ⅰ-41 自定義演算法函數
函 數 描 述
pdebound 邊界條件M文件
pdegeom 幾何模型M文件
表Ⅰ-42 演示函數
函 數 描 述
pdedemo1 單位圓盤上泊松方程的精確解
pdedemo2 求解Helmholtz方程,研究反射波
pdedemo3 求解最小表面問題
pdedemo4 用子域分解求解PDE問題
pdedemo5 求拋物線型問題(熱傳導方程)
pdedemo6 求雙曲線型PDE問題(波動方程)
pdedemo7 點源的自適應求解
pdedemo8 在矩形網格上求解泊松方程
9. matlab聚類工具箱在哪裡
在matlab環境中首先運行install.m,將工具箱所在路徑添加至matlab就可以找到了。
10. 如何用matlab聚類工具箱處理自己的數據集
我把K-mediods的matlab代碼貼出來,你好好學習一下 function label = kmedoids( data,k,start_data ) % kmedoids k中心點演算法函數 % data 待聚類的數據集,每一行是一個樣本數據點 % k 聚類個數 % start_data 聚類初始中心值,每一行為一個中心點