A. matlab的神經網路工具箱怎麼用
1.神經網路
神經網路是單個並行處理元素的集合,我們從生物學神經系統得到啟發。在自然界,網路功能主要由神經節決定,我們可以通過改變連接點的權重來訓練神經網路完成特定的功能。
一般的神經網路都是可調節的,或者說可訓練的,這樣一個特定的輸入便可得到要求的輸出。如下圖所示。這里,網路根據輸出和目標的比較而調整,直到網路輸出和目標匹配。作為典型,許多輸入/目標對應的方法已被用在有監督模式中來訓練神經網路。
神經網路已經在各個領域中應用,以實現各種復雜的功能。這些領域包括:模式識別、鑒定、分類、語音、翻譯和控制系統。
如今神經網路能夠用來解決常規計算腿四岩越餼齙奈侍狻N頤侵饕ü飧齬ぞ呦淅唇⑹痙兜納窬縵低常⒂τ玫焦こ獺⒔鶉諍推淥導氏釒恐腥ァ?BR>一般普遍使用有監督訓練方法,但是也能夠通過無監督的訓練方法或者直接設計得到其他的神經網路。無監督網路可以被應用在數據組的辨別上。一些線形網路和Hopfield網路是直接設計的。總的來說,有各種各樣的設計和學習方法來增強用戶的選擇。
神經網路領域已經有50年的歷史了,但是實際的應用卻是在最近15年裡,如今神經網路仍快速發展著。因此,它顯然不同與控制系統和最優化系統領域,它們的術語、數學理論和設計過程都已牢固的建立和應用了好多年。我們沒有把神經網路工具箱僅看作一個能正常運行的建好的處理輪廓。我們寧願希望它能成為一個有用的工業、教育和研究工具,一個能夠幫助用戶找到什麼能夠做什麼不能做的工具,一個能夠幫助發展和拓寬神經網路領域的工具。因為這個領域和它的材料是如此新,這個工具箱將給我們解釋處理過程,講述怎樣運用它們,並且舉例說明它們的成功和失敗。我們相信要成功和滿意的使用這個工具箱,對範例和它們的應用的理解是很重要的,並且如果沒有這些說明那麼用戶的埋怨和質詢就會把我們淹沒。所以如果我們包括了大量的說明性材料,請保持耐心。我們希望這些材料能對你有幫助。
這個章節在開始使用神經網路工具箱時包括了一些注釋,它也描述了新的圖形用戶介面和新的運演算法則和體系結構,並且它解釋了工具箱為了使用模塊化網路對象描述而增強的機動性。最後這一章給出了一個神經網路實際應用的列表並增加了一個新的文本--神經網路設計。這本書介紹了神經網路的理論和它們的設計和應用,並給出了相當可觀的MATLAB和神經網路工具箱的使用。
2.准備工作
基本章節
第一章是神經網路的基本介紹,第二章包括了由工具箱指定的有關網路結構和符號的基本材料以及建立神經網路的一些基本函數,例如new、init、adapt和train。第三章以反向傳播網路為例講解了反向傳播網路的原理和應用的基本過程。
幫助和安裝
神經網路工具箱包含在nnet目錄中,鍵入help nnet可得到幫助主題。
工具箱包含了許多示例。每一個
B. 如何使用matlab擬合工具箱
1.打開CFTOOL工具箱。
在Matlab 6.5以上的環境下,在左下方有一個"Start"按鈕,如同Windows的開始菜單,點開它,在目錄"Toolboxes"下有一個"Curve Fitting",點開"Curve Fitting Tool",出現數據擬合工具界面,基本上所有的數據擬合和回歸分析都可以在這里進行。也可以在命令窗口中直接輸入」cftool」,打開工具箱。
2.輸入兩組向量x,y。
首先在Matlab的命令行輸入兩個向量,一個向量是你要的x坐標的各個數據,另外一個是你要的y坐標的各個數據。輸入以後假定叫x向量與y向量,可以在workspace裡面看見這兩個向量,要確保這兩個向量的元素數一致,如果不一致的話是不能在工具箱裡面進行擬合的。 例如在命令行里輸入下列數據: x = [196,186, 137, 136, 122, 122, 71, 71, 70, 33]; y = [0.012605; 0.013115; 0.016866; 0.014741; 0.022353; 0.019278; 0.041803; 0.038026; 0.038128; 0.088196];
3.數據的選取。
打開曲線擬合共工具界面,點擊最左邊的"Data..."按鈕,出現一個Data對話框,在Data Sets頁面里,在X Data選項中選取x向量,Y Data選項中選取y向量,如果兩個向量的元素數相同,那麼Create data set按鈕就激活了,此時點擊它,生成一個數據組,顯示在下方Data Sets列表框中。關閉Data對話框。此時Curve Fitting Tool窗口中顯示出這一數據組的散點分布圖。
4.曲線擬合(冪函數power)。
點擊Fitting...按鈕,出現Fitting對話框,Fitting對話框分為兩部分,上面為Fit Editor,下面為Table of Fits,有時候窗口界面比較小,Fit Editor部分會被收起來,只要把Table of Fits上方的橫條往下拉就可以看見Fit Editor。在Fit Editor裡面點擊New Fit按鈕,此時其下方的各個選框被激活,在Data Set選框中選中剛才建立的x-y數據組,然後在Type of fit選框中選取擬合或回歸類型,各個類型的擬合或回歸相應的分別是: Custom Equations 用戶自定義函數 Expotential e指數函數 Fourier 傅立葉函數,含有三角函數 Gaussian 正態分布函數,高斯函數 Interpolant 插值函數,含有線性函數,移動平均等類型的擬合 Polynomial 多項式函數 Power 冪函數 Rational 有理函數(不太清楚,沒有怎麼用過) Smooth Spline (光滑插值或者光滑擬合,不太清楚) Sum of sin functions正弦函數類
在這個Type of fit選框中選擇好合適的類型,並選好合適的函數形式。於是點擊Apply按鈕,就開始進行擬合或者回歸了。此時在Curve Fitting Tool窗口上就會出現一個擬合的曲線。這就是所要的結果。 在上面的例子中,選擇sum of sin functions中的第一個函數形式,點擊Apply按鈕,就可以看見擬合得到的正弦曲線。
C. matlab神經網路工具箱問題
線性神經網路的構建:
net=newlin(PR,S,ID,LR)
PR--Rx2階矩陣,R個輸入元素的最小最大矩陣
S---輸出層神經元個數
ID--輸入延遲向量,默認值為[0]
IR--學習率,默認值為0.01
net = newlin([-1 1;-1 1],1); 表示設計的是一個雙輸入單輸出線性神經網路
P = [1 2 2 3; 2 1 3 1];表示輸入樣本有四個,每一列就是一個輸入樣本
又比如假設我們期望的輸出為 T=[1 2 3 4],則一個簡單的神經網路如下:
>>net = newlin([-1 1;-1 1],1);%創建初始網路
P=[1 2 2 3; 2 1 3 1]%輸入
T=[1 2 3 4]%期望的輸出
net=newlind(P,T);%用輸入和期望訓練網路
Y=sim(net,P)%模擬,可以看到模擬結果Y和期望輸出T的接近程度
P =
1 2 2 3
2 1 3 1
T =
1 2 3 4
Y =
0.8889 2.1667 3.0556 3.8889
樓主可以從《matlab神經網路與應用(第二版)》董長虹 開始入門神經網路的matlab實現
參考資料:《matlab神經網路與應用(第二版)》
D. matlab 裡面數據擬合工具箱使用
不是matlab安裝的問題,這個問題我也遇到過,遍求解答無果之後,終於自己摸索出來專了。是這樣的,不要屬用GUI中的data按鈕來新建數據集,而要在matlab命令窗口中,輸入命令:cftool(a,b),其中a,b就是你要設置的x、y坐標的向量。這樣出來散點圖,之後再在cftool工具箱的GUI中點fitting按鈕,選擇曲線擬合
E. 一個關於BP神經網路的問題,matlab中神經網路工具箱的初始權值和閥值是
訓練BP神經網路所採取的隨機初始參數確實是隨機的,在訓練過程中這些參數和權值都會朝著同一個大方向進行修正。例如你用BP神經網路來擬合曲線,找到輸入值與輸出值之間的線性規律,那麼在訓練的過程中這個擬合的曲線會不斷的調整其參數和權值直到滿足幾個預設條件之一時訓練停止。雖然這個訓練出來的結果有時候會有一定誤差,但都在可以接受的范圍內。
縮小誤差的一個方法是需要預先設置初始參數,雖然每次依然會得到不一樣的模型(只要參數是隨機修正的),但不同模型之間的差距會很小。另外可以反復訓練,找到一個自己覺得滿意的模型(可以是測試通過率最高,可以是平均結果誤差值最小)。
至於你說別人怎麼檢查你的論文結果,基本上都是通過你的演算法來重建模型,而且還不一定都用matlab來做,即便是用同樣的代碼都會出現不同的結果,何況是不同的語言呢?其實驗算結果最重要的是看測試時的通過率,例如在對一組新的數據進行測試(或預測)時,通過率達到95%,別人用其他的方式重建了你的模型也得到這樣的通過率,那麼你的演算法就是可行的。注意,在計算機專業的論文裡面大家看重的不是代碼,而是演算法。
補充一點:只要你訓練好了一個神經網路可以把這個神經網路以struct形式保存,這樣這個網路可以被反復使用,且每次對同一組測試數據的預測結果都會一樣。你也可以當做是檢測論文可行性的工具。
F. matlab 神經網路工具箱可以擬合帶虛數變數嗎
方法/步驟
1
單擊Apps,在搜索框中輸入neu,下方出現了所有神經網路工具箱。neural net fitting 是我們要使用的神經網路擬合工具箱。
2
在如下界面中點擊next
單擊load example data set,得到我們需要的測試數據。
單擊import
單擊next
單擊next
數字「10」表示有10個隱含層。單擊next。
單擊train,開始訓練。
訓練過程跳出的小窗口。
訓練結果。其中MSE表示均方差,R 表示相關系數。單擊next。
這里可以調整神經網路,也可以再次訓練。單擊next。
在這里,可以保存結果。如果不需要,直接finish。
G. matlab神經網路工具箱分別怎麼用
1單擊Apps,在搜索框中輸入neu,下方出現了所有神經網路工具箱。neural net fitting 是我們要使用的神經網路擬合工具箱。 2 在下界面中點擊next 3 單擊load example data set,得到我們需要的測試數據。
H. 如何使用matlab中的工具箱
1、首先給出對應的擬合數據:>> x=1:100;>> y=2*x;一條直線。
I. matlab怎麼打開神經網路工具箱
1單擊Apps,在搜索框中輸入neu,下方出現了所有神經網路工具箱。neural net fitting 是我們要使回用的神答經網路擬合工具箱。
2
在下界面中點擊next
3
單擊load example data set,得到我們需要的測試數據。
4
單擊import
5
單擊next
6
單擊next
7
數字「10」表示有10個隱含層。單擊next。
8
單擊train,開始訓練。
9
訓練過程跳出的小窗口。
10
訓練結果。其中MSE表示均方差,R 表示相關系數。單擊next。
11
這里可以調整神經網路,也可以再次訓練。單擊next。
12
在這里,可以保存結果。如果不需要,直接finish。
J. Matlab擬合工具箱
您好,這樣的:一、
單一變數的曲線逼近
matlab有一個功能強大的曲線擬合回工具箱
cftool
,使用方便,能實現多種答類型的線性、非線
性曲線擬合。下面結合我使用的
matlab
r2007b
來簡單介紹如何使用這個工具箱。
假設我們要擬合的函數形式是
y=a*x...