『壹』 Kalman Filter 卡爾曼濾波調參的實用方法和經驗有哪些
Kalman Filter 卡爾曼濾波調參的實用方法和經驗有哪些
選用天然花崗岩檯面:
厚度:高溫台選用為50mm;天選用50mm;
特點:有較強的力學性能和耐熱性能;
最大承重為500公斤/平方米;
缺點:有輻射,對人身體健康有一定的危害性,(以檢測報告為數據依據);
生物用實驗台檯面:
3、1、選用1.2mm厚316#不銹鋼板,內襯復合板添充封閉.
特點:1、耐有機溶劑;2、抑制細菌、黴菌生長;3、抗污染、易清潔;
3、2、環氧樹脂檯面:
材料厚度為20mm、25mm供選擇;
特點:a、24小時耐強酸鹼腐蝕;b、具有較強的耐磨性、耐沖擊性、耐污染性、不彎曲;c、耐高溫可達600℃;
『貳』 求助.MATLAB卡爾曼濾波器工具箱里kalman
% INPUTS:
% y(:,t) - the observation at time t
% A - the system matrix
% C - the observation matrix
% Q - the system covariance
% R - the observation covariance
% init_x - the initial state (column) vector
% init_V - the initial state covariance
『叄』 matlab 卡爾曼濾波工具箱怎麼安裝
14-44889-04614-04275-46147-23559-43066-41714-23083-65272-04997-17469-27919-17226-59862-27901-53983-56217-20094-53460-62647-58166-24499-35558-19511-44882-53016-25658-61109-03776-34505-00776-15813-07183
『肆』 卡爾曼濾波及其實時應用怎麼樣,好不好
卡爾曼濾波可以說是萬能的,只要你有目標的運動知識,就可以使得你的觀測更加精確,目前目標跟蹤,圖像還原都用的kalman filter
『伍』 請比較一下卡爾曼濾波器與自適應濾波器的優劣
你可以兩種都試驗一下,
看那種好就是那種優,他們是針對不同的場合提出的,對自己適用的場合才是 最優的。沒有一種濾波器是最好的。
要不然我們沒有必要研究濾波器了,直接用那種所謂的萬能濾波器就可以了
當雜訊不是白雜訊,我倒建議你用H無窮濾波器做做看,也許可能比kalman濾波器還要好
『陸』 卡爾曼濾波器的缺點有哪些
卡爾曼濾波器的缺點是:當運動目標長時間被遮擋時會存在目標跟蹤丟失的情況 。
卡爾曼濾波(Kalman filtering)一種利用線性系統狀態方程,通過系統輸入輸出觀測數據,對系統狀態進行最優估計的演算法。由於觀測數據中包括系統中的雜訊和干擾的影響,所以最優估計也可看作是濾波過程。其性質如下:
①卡爾曼濾波是一個演算法,它適用於線性、離散和有限維系統。每一個有外部變數的自回歸移動平均系統(ARMAX)或可用有理傳遞函數表示的系統都可以轉換成用狀態空間表示的系統,從而能用卡爾曼濾波進行計算。
②任何一組觀測數據都無助於消除x(t)的確定性。增益K(t)也同樣地與觀測數據無關。
③當觀測數據和狀態聯合服從高斯分布時用卡爾曼遞歸公式計算得到的是高斯隨機變數的條件均值和條件方差,從而卡爾曼濾波公式給出了計算狀態的條件概率密度的更新過程線性最小方差估計,也就是最小方差估計。
『柒』 卡爾曼濾波的通俗解釋
簡單來說,卡爾曼濾波器是一個「optimal recursive data processing algorithm(最優化自回歸數據處理演算法)」。對於解決很大部分的問題,他是最優,效率最高甚至是最有用的。他的廣泛應用已經超過30年,包括機器人導航,控制,感測器數據融合甚至在軍事方面的雷達系統以及導彈追蹤等等。近來更被應用於計算機圖像處理,例如頭臉識別,圖像分割,圖像邊緣檢測等等。
卡爾曼濾波器的介紹 :
為了可以更加容易的理解卡爾曼濾波器,這里會應用形象的描述方法來講解,而不是像大多數參考書那樣羅列一大堆的數學公式和數學符號。但是,他的5條公式是其核心內容。結合現代的計算機,其實卡爾曼的程序相當的簡單,只要你理解了他的那5條公式。
在介紹他的5條公式之前,先讓我們來根據下面的例子一步一步的探索。
假設我們要研究的對象是一個房間的溫度。根據你的經驗判斷,這個房間的溫度是恆定的,也就是下一分鍾的溫度等於現在這一分鍾的溫度(假設我們用一分鍾來做時間單位)。假設你對你的經驗不是100%的相信,可能會有上下偏差幾度。我們把這些偏差看成是高斯白雜訊(White Gaussian Noise),也就是這些偏差跟前後時間是沒有關系的而且符合高斯分布(Gaussian Distribution)。另外,我們在房間里放一個溫度計,但是這個溫度計也不準確的,測量值會比實際值偏差。我們也把這些偏差看成是高斯白雜訊。
好了,現在對於某一分鍾我們有兩個有關於該房間的溫度值:你根據經驗的預測值(系統的預測值)和溫度計的值(測量值)。下面我們要用這兩個值結合他們各自的雜訊來估算出房間的實際溫度值。
假如我們要估算k時刻的實際溫度值。首先你要根據k-1時刻的溫度值,來預測k時刻的溫度。因為你相信溫度是恆定的,所以你會得到k時刻的溫度預測值是跟k-1時刻一樣的,假設是23度,同時該值的高斯雜訊的偏差是5度(5是這樣得到的:如果k-1時刻估算出的最優溫度值的偏差是3,你對自己預測的不確定度是4度,他們平方相加再開方,就是5)。然後,你從溫度計那裡得到了k時刻的溫度值,假設是25度,同時該值的偏差是4度。
由於我們用於估算k時刻的實際溫度有兩個溫度值,分別是23度和25度。究竟實際溫度是多少呢?相信自己還是相信溫度計呢?究竟相信誰多一點,我們可以用他們的協方差(covariance)來判斷。因為Kg=5^2/(5^2+4^2),所以Kg=0.61,我們可以估算出k時刻的實際溫度值是:23+0.61*(25-23)=24.22度。可以看出,因為溫度計的協方差(covariance)比較小(比較相信溫度計),所以估算出的最優溫度值偏向溫度計的值。
現在我們已經得到k時刻的最優溫度值了,下一步就是要進入k+1時刻,進行新的最優估算。到現在為止,好像還沒看到什麼自回歸的東西出現。對了,在進入k+1時刻之前,我們還要算出k時刻那個最優值(24.22度)的偏差。演算法如下:((1-Kg)*5^2)^0.5=3.12。這里的5就是上面的k時刻你預測的那個23度溫度值的偏差,得出的3.12就是進入k+1時刻以後k時刻估算出的最優溫度值的偏差(對應於上面的3)。
就是這樣,卡爾曼濾波器就不斷的把(協方差(covariance)遞歸,從而估算出最優的溫度值。他運行的很快,而且它只保留了上一時刻的協方差(covariance)。上面的Kg,就是卡爾曼增益(Kalman Gain)。他可以隨不同的時刻而改變他自己的值,是不是很神奇!
下面就要言歸正傳,討論真正工程系統上的卡爾曼。
卡爾曼濾波器演算法 :
在這一部分,我們就來描述源於Dr Kalman 的卡爾曼濾波器。下面的描述,會涉及一些基本的概念知識,包括概率(Probability),隨機變數(Random Variable),高斯或正態分配(Gaussian Distribution)還有State-space Model等等。但對於卡爾曼濾波器的詳細證明,這里不能一一描述。
首先,我們先要引入一個離散控制過程的系統。該系統可用一個線性隨機微分方程(Linear Stochastic Difference equation)來描述:
X(k)=A X(k-1)+B U(k)+W(k)
再加上系統的測量值:
Z(k)=H X(k)+V(k)
上兩式子中,X(k)是k時刻的系統狀態,U(k)是k時刻對系統的控制量。A和B是系統參數,對於多模型系統,他們為矩陣。Z(k)是k時刻的測量值,H是測量系統的參數,對於多測量系統,H為矩陣。W(k)和V(k)分別表示過程和測量的雜訊。他們被假設成高斯白雜訊(White Gaussian Noise),他們的協方差(covariance)分別是Q,R(這里我們假設他們不隨系統狀態變化而變化)。
對於滿足上面的條件(線性隨機微分系統,過程和測量都是高斯白雜訊),卡爾曼濾波器是最優的信息處理器。下面我們結合他們的協方差來估算系統的最優化輸出(類似上一節那個溫度的例子)。
首先我們要利用系統的過程模型,來預測下一狀態的系統。假設現在的系統狀態是k,根據系統的模型,可以基於系統的上一狀態而預測出現在狀態:
X(k|k-1)=A X(k-1|k-1)+B U(k) ……….. (1)
式(1)中,X(k|k-1)是利用上一狀態預測的結果,X(k-1|k-1)是上一狀態最優的結果,U(k)為現在狀態的控制量,如果沒有控制量,它可以為0。
到現在為止,我們的系統結果已經更新了,可是,對應於X(k|k-1)的協方差還沒更新。我們用P表示協方差(covariance):
P(k|k-1)=A P(k-1|k-1) A』+Q ……… (2)
式(2)中,P(k|k-1)是X(k|k-1)對應的協方差,P(k-1|k-1)是X(k-1|k-1)對應的協方差,A』表示A的轉置矩陣,Q是系統過程的協方差。式子1,2就是卡爾曼濾波器5個公式當中的前兩個,也就是對系統的預測。
現在我們有了現在狀態的預測結果,然後我們再收集現在狀態的測量值。結合預測值和測量值,我們可以得到現在狀態(k)的最優化估算值X(k|k):
X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) ……… (3)
其中Kg為卡爾曼增益(Kalman Gain):
Kg(k)= P(k|k-1) H』 / (H P(k|k-1) H』 + R) ……… (4)
到現在為止,我們已經得到了k狀態下最優的估算值X(k|k)。但是為了要令卡爾曼濾波器不斷的運行下去直到系統過程結束,我們還要更新k狀態下X(k|k)的協方差:
P(k|k)=(I-Kg(k) H)P(k|k-1) ……… (5)
其中I 為1的矩陣,對於單模型單測量,I=1。當系統進入k+1狀態時,P(k|k)就是式子(2)的P(k-1|k-1)。這樣,演算法就可以自回歸的運算下去。
卡爾曼濾波器的原理基本描述了,式子1,2,3,4和5就是他的5 個基本公式。根據這5個公式,可以很容易用計算機編程實現。
在上面的例子中,過程誤差和測量誤差設定為4是為了討論的方便。實際中,溫度的變化速度以及溫度計的測量誤差都沒有這么大。
假設如下一個系統: 房間內連續兩個時刻溫度差值的標准差為0.02度 溫度計的測量值誤差的標准差為0.5度 房間溫度的真實值為24度 對溫度的初始估計值為23.5度,誤差的方差為1 MatLab模擬的代碼如下:
% Kalman filter example of temperature measurement in Matlab
% This M code is modified from Xuchen Yao's matlab on 2013/4/18
%房間當前溫度真實值為24度,認為下一時刻與當前時刻溫度相同,誤差為0.02度(即認為連續的兩個時刻最多變化0.02度)。
%溫度計的測量誤差為0.5度。
%開始時,房間溫度的估計為23.5度,誤差為1度。
% Kalman filter example demo in Matlab
% This M code is modified from Andrew D. Straw's Python
% implementation of Kalman filter algorithm.
% The original code is from the link in references
% Below is the Python version's comments:
% Kalman filter example demo in Python
% A Python implementation of the example given in pages 11-15 of An
% Introction to the Kalman Filter by Greg Welch and Gary Bishop,
% University of North Carolina at Chapel Hill, Department of Computer
% Science, TR 95-041,
% by Andrew D. Straw
% by Xuchen Yao
% by Lin Wu
clear all;
close all;
% intial parameters
n_iter = 100; %計算連續n_iter個時刻
sz = [n_iter, 1]; % size of array. n_iter行,1列
x = 24; % 溫度的真實值
Q = 4e-4; % 過程方差, 反應連續兩個時刻溫度方差。更改查看效果
R = 0.25; % 測量方差,反應溫度計的測量精度。更改查看效果
z = x + sqrt(R)*randn(sz); % z是溫度計的測量結果,在真實值的基礎上加上了方差為0.25的高斯雜訊。
% 對數組進行初始化
xhat=zeros(sz); % 對溫度的後驗估計。即在k時刻,結合溫度計當前測量值與k-1時刻先驗估計,得到的最終估計值
P=zeros(sz); % 後驗估計的方差
xhatminus=zeros(sz); % 溫度的先驗估計。即在k-1時刻,對k時刻溫度做出的估計
Pminus=zeros(sz); % 先驗估計的方差
K=zeros(sz); % 卡爾曼增益,反應了溫度計測量結果與過程模型(即當前時刻與下一時刻溫度相同這一模型)的可信程度
% intial guesses
xhat(1) = 23.5; %溫度初始估計值為23.5度
P(1) =1; %誤差方差為1
for k = 2:n_iter
% 時間更新(預測)
xhatminus(k) = xhat(k-1); %用上一時刻的最優估計值來作為對當前時刻的溫度的預測
Pminus(k) = P(k-1)+Q; %預測的方差為上一時刻溫度最優估計值的方差與過程方差之和
% 測量更新(校正)
K(k) = Pminus(k)/( Pminus(k)+R ); %計算卡爾曼增益
xhat(k) = xhatminus(k)+K(k)*(z(k)-xhatminus(k)); %結合當前時刻溫度計的測量值,對上一時刻的預測進行校正,得到校正後的最優估計。該估計具有最小均方差
P(k) = (1-K(k))*Pminus(k); %計算最終估計值的方差
end
FontSize=14;
LineWidth=3;
figure();
plot(z,'k+'); %畫出溫度計的測量值 hold on;
plot(xhat,'b-','LineWidth',LineWidth) %畫出最優估計值
hold on;
plot(x*ones(sz),'g-','LineWidth',LineWidth); %畫出真實值
legend('溫度計的測量結果', '後驗估計', '真實值');
xl=xlabel('時間(分鍾)');
yl=ylabel('溫度');
set(xl,'fontsize',FontSize);
set(yl,'fontsize',FontSize);
hold off;
set(gca,'FontSize',FontSize);
figure();
valid_iter = [2:n_iter]; % Pminus not valid at step 1
plot(valid_iter,P([valid_iter]),'LineWidth',LineWidth); %畫出最優估計值的方差
legend('後驗估計的誤差估計');
xl=xlabel('時間(分鍾)');
yl=ylabel('℃^2');
set(xl,'fontsize',FontSize);
set(yl,'fontsize',FontSize);
set(gca,'FontSize',FontSize);
『捌』 卡爾曼濾波器是硬體還是軟體,能用程序實現嗎
你好,卡爾曼濾波是屬於現代濾波技術的手段,它不同於經典濾波,沒有帶通,低通,高通之分。
經典濾波器是建立在信號和雜訊頻率分離的基礎上,通過將雜訊所在頻率區域幅值衰減來達到提高信噪比,於是針對不同的頻率段就產生了低通,高通,帶通等濾波器之分
而現代濾波器,則不是建立在頻率領域,而是通過隨機過程的數學手段,通過對雜訊和信號的統計特性做一定的假定,然後通過合適的數學方式,來提供信噪比。譬如KALMAN濾波器中,總會假定狀態雜訊和測量雜訊是不相關的。 在weiner濾波器中還必須假定信號是平穩的。等等。總之各有所用。要針對不同的問題採用不同的濾波器。譬如,要濾除工頻50HZ的影響,哪顯然不宜採用KALMAN濾波器,可以採用限波器就可以了
『玖』 kalman filter卡爾曼濾波調參的實用方法和經驗有哪些
EKF是對非線性系統模型(方程)進行的線性化近似,以利用KF演算法進行濾波估計。而UKF是對狀態的概率統計近似,即設計少量的σ點,由σ點經由非線性函數的傳播,計算出隨機向量一、二階統計特性的傳播,對於高斯雜訊的假設,UKF能夠達到三階估計精度,而EKF只能達到二階精度,但其演算法仍然是利用KF的演算法。
現在國內外的文獻大都是對UKF演算法的改進和應用進行論述,但對演算法的穩定性等沒有系統的論述。我了解得沈陽自動化所做的這方面的工作很多。
『拾』 卡爾曼濾波器有什麼作用
卡爾曼濾波器是一種由卡爾曼提出的用於時變線性系統的遞歸濾波器。這個系統可用於包含正交狀態變數的微分方程模型來描述,這種濾波器是將過去的測量估計誤差合並到新的測量誤差中來估計將來的誤差。