⑴ Python幾種主流框架比較
Django:Python界最全能的Web開發框架,各種功能完備,可維護性和開發速度都非常強大。常有人說Django慢,其實主要慢在Django
ORM與資料庫的交互上,所以是否選擇使用Django,取決於項目對資料庫交互性的要求以及各種優化。
而對於Django的同步特性導致吞吐量小的問題,其實可以通過Celery等解決,不算是什麼根本問題。Django代表的項目有:Instagram、guardian等。
Flask:屬於微框架的典範,也是Python代碼寫的最好的項目之一。Flask框架的靈活性很高,但也是一把雙刃劍,能用好Flask的,可以做成Pinterest,用不好就沒有什麼太大的作用了。Flask雖然屬於微框架,但也可以做成規模化的Flask,加上flask可以自由選擇自己的資料庫交互組件,再加上celery+redis等非同步特性以後,flask框架的性能非常不錯,之所以很多團隊選擇flask框架,主要原因就是對靈活性的要求。
Tornado:天生非同步,性能強悍,這是它的代名詞。對比Django而言,Tornado屬於較為原始的框架,諸多內容需要自己去處理。不過,隨著項目的不斷壯大,框架能夠提供的功能佔比越來越小,更多的內容需要團隊自己去實現,而大項目往往需要性能的保證,這時候Tornado就是非常不錯的選擇。代表項目:知乎等。
⑵ python用什麼開發工具f
1.有多個版本python的可以用pyscripter,現在是2.5.3了,缺點是容易崩潰!? 2.wingide是真心好用,目前是4.1.10了,缺點是收費! 3.eclipse+pydev也不錯,就是軟體比較龐大,反應慢點! 4.pycharm聽說也很好,目前是2.7了,它是基於Java的,缺點是收費兼軟體龐大反應慢! 5.textmate2、Sublime適應了的話也是很好很強大的! 5.vi、emacs、editplus?你能適應的話那就是萬能的了,反正我是沒有用這些。
⑶ 數據分析工具有哪些 python
IPython
IPython 是一個在多種編程語言之間進行交互計算的命令行 shell,最開始是用 python 開發的,提供增強的內省,富媒體,擴展的 shell
語法,tab 補全,豐富的歷史等功能。IPython 提供了如下特性:
更強的交互 shell(基於 Qt 的終端)
一個基於瀏覽器的記事本,支持代碼,純文本,數學公式,內置圖表和其他富媒體
支持交互數據可視化和圖形界面工具
靈活,可嵌入解釋器載入到任意一個自有工程里
簡單易用,用於並行計算的高性能工具
由數據分析總監,Galvanize 專家 Nir Kaldero 提供。
GraphLab Greate 是一個 Python 庫,由 C++ 引擎支持,可以快速構建大型高性能數據產品。
這有一些關於 GraphLab Greate 的特點:
可以在您的計算機上以交互的速度分析以 T 為計量單位的數據量。
在單一平台上可以分析表格數據、曲線、文字、圖像。
最新的機器學習演算法包括深度學習,進化樹和 factorization machines 理論。
可以用 Hadoop Yarn 或者 EC2 聚類在你的筆記本或者分布系統上運行同樣的代碼。
藉助於靈活的 API 函數專注於任務或者機器學習。
在雲上用預測服務便捷地配置數據產品。
為探索和產品監測創建可視化的數據。
由 Galvanize 數據科學家 Benjamin Skrainka 提供。
Pandas
pandas 是一個開源的軟體,它具有 BSD 的開源許可,為 Python
編程語言提供高性能,易用數據結構和數據分析工具。在數據改動和數據預處理方面,Python 早已名聲顯赫,但是在數據分析與建模方面,Python
是個短板。Pands 軟體就填補了這個空白,能讓你用 Python 方便地進行你所有數據的處理,而不用轉而選擇更主流的專業語言,例如 R 語言。
整合了勁爆的 IPyton 工具包和其他的庫,它在 Python 中進行數據分析的開發環境在處理性能,速度,和兼容方面都性能卓越。Pands
不會執行重要的建模函數超出線性回歸和面板回歸;對於這些,參考 statsmodel 統計建模工具和 scikit-learn 庫。為了把 Python
打造成頂級的統計建模分析環境,我們需要進一步努力,但是我們已經奮斗在這條路上了。
由 Galvanize 專家,數據科學家 Nir Kaldero 提供。
PuLP
線性編程是一種優化,其中一個對象函數被最大程度地限制了。PuLP 是一個用 Python
編寫的線性編程模型。它能產生線性文件,能調用高度優化的求解器,GLPK,COIN CLP/CBC,CPLEX,和GUROBI,來求解這些線性問題。
由 Galvanize 數據科學家 Isaac Laughlin 提供
Matplotlib
matplotlib 是基於 Python 的
2D(數據)繪圖庫,它產生(輸出)出版級質量的圖表,用於各種列印紙質的原件格式和跨平台的互動式環境。matplotlib 既可以用在 python 腳本,
python 和 ipython 的 shell 界面 (ala MATLAB? 或 Mathematica?),web 應用伺服器,和6類 GUI
工具箱。
matplotlib 嘗試使容易事情變得更容易,使困難事情變為可能。你只需要少量幾行代碼,就可以生成圖表,直方圖,能量光譜(power
spectra),柱狀圖,errorcharts,散點圖(scatterplots)等,。
為簡化數據繪圖,pyplot 提供一個類 MATLAB 的介面界面,尤其是它與 IPython
共同使用時。對於高級用戶,你可以完全定製包括線型,字體屬性,坐標屬性等,藉助面向對象介面界面,或項 MATLAB 用戶提供類似(MATLAB)的界面。
Galvanize 公司的首席科學官 Mike Tamir 供稿。
Scikit-Learn
Scikit-Learn 是一個簡單有效地數據挖掘和數據分析工具(庫)。關於最值得一提的是,它人人可用,重復用於多種語境。它基於
NumPy,SciPy 和 mathplotlib 等構建。Scikit 採用開源的 BSD 授權協議,同時也可用於商業。Scikit-Learn
具備如下特性:
分類(Classification) – 識別鑒定一個對象屬於哪一類別
回歸(Regression) – 預測對象關聯的連續值屬性
聚類(Clustering) – 類似對象自動分組集合
降維(Dimensionality Rection) – 減少需要考慮的隨機變數數量
模型選擇(Model Selection) –比較、驗證和選擇參數和模型
預處理(Preprocessing) – 特徵提取和規范化
Galvanize 公司數據科學講師,Isaac Laughlin提供
Spark
Spark 由一個驅動程序構成,它運行用戶的 main 函數並在聚類上執行多個並行操作。Spark
最吸引人的地方在於它提供的彈性分布數據集(RDD),那是一個按照聚類的節點進行分區的元素的集合,它可以在並行計算中使用。RDDs 可以從一個 Hadoop
文件系統中的文件(或者其他的 Hadoop 支持的文件系統的文件)來創建,或者是驅動程序中其他的已經存在的標量數據集合,把它進行變換。用戶也許想要 Spark
在內存中永久保存 RDD,來通過並行操作有效地對 RDD 進行復用。最終,RDDs 無法從節點中自動復原。
Spark 中第二個吸引人的地方在並行操作中變數的共享。默認情況下,當 Spark
在並行情況下運行一個函數作為一組不同節點上的任務時,它把每一個函數中用到的變數拷貝一份送到每一任務。有時,一個變數需要被許多任務和驅動程序共享。Spark
支持兩種方式的共享變數:廣播變數,它可以用來在所有的節點上緩存數據。另一種方式是累加器,這是一種只能用作執行加法的變數,例如在計數器中和加法運算中。
⑷ 模型優化器是一種基於python的工具,可將輸入的訓練模型從標准框架轉換為統一判斷對錯
⑸ python數據挖掘常用工具有哪幾種
python有強大的第三方庫,廣泛用於數據分析,數據挖掘、機器學習等領域,下面小編整理了python數據挖掘的一些常用庫,希望對各位小夥伴學習python數據挖掘有所幫助。
1. Numpy
能夠提供數組支持,進行矢量運算,並且高效地處理函數,線性代數處理等。提供真正的數組,比起python內置列表來說, Numpy速度更快。同時,Scipy、Matplotlib、Pandas等庫都是源於 Numpy。因為 Numpy內置函數處理數據速度與C語言同一級別,建議使用時盡量用內置函數。
2.Scipy
基於Numpy,能夠提供了真正的矩陣支持,以及大量基於矩陣的數值計算模塊,包括:插值運算,線性代數、圖像信號,快速傅里葉變換、優化處理、常微分方程求解等。
3. Pandas
源於NumPy,提供強大的數據讀寫功能,支持類似SQL的增刪改查,數據處理函數非常豐富,並且支持時間序列分析功能,靈活地對數據進行分析與探索,是python數據挖掘,必不可少的工具。
Pandas基本數據結構是Series和DataFrame。Series是序列,類似一維數組,DataFrame相當於一張二維表格,類似二維數組,DataFrame的每一列都是一個Series。
4.Matplotlib
數據可視化最常用,也是醉好用的工具之一,python中著名的繪圖庫,主要用於2維作圖,只需簡單幾行代碼可以生成各式的圖表,例如直方圖,條形圖,散點圖等,也可以進行簡單的3維繪圖。
4.Scikit-Learn
Scikit-Learn源於NumPy、Scipy和Matplotlib,是一 款功能強大的機器學習python庫,能夠提供完整的學習工具箱(數據處理,回歸,分類,聚類,預測,模型分析等),使用起來簡單。不足是沒有提供神經網路,以及深度學習等模型。
5.Keras
基於Theano的一款深度學習python庫,不僅能夠用來搭建普通神經網路,還能建各種深度學習模型,例如:自編碼器、循環神經網路、遞歸神經網路、卷積神經網路等,重要的是,運行速度幾塊,對搭建各種神經網路模型的步驟進行簡化,能夠允許普通用戶,輕松地搭建幾百個輸入節點的深層神經網路,定製程度也非常高。
6.Genism
Genism主要用來處理語言方面的任務,如文本相似度計算、LDA、Word2Vec等。
7.TensorFlow
google開源的數值計算框架,採用數據流圖的方式,可靈活搭建深度學習模型。
⑹ 分享!5種常用的Python工具
IDLE
在安裝Python時,默認也會安裝IDLE。這是最優秀的Python工具之一。它可以降低Python入門的門檻。它的主要功能包括Python Shell窗口(互動式解釋器)、自動補齊、高亮顯示語法以及基本的集成調試器。IDLE輕巧易用,方便學習。但是,它不適用於大型項目。許多程序員都將其作為最佳的Python工具。
Scikit-learn
Scikit-learn是數據科學最常使用的Python工具之一。這是一款為機器學習和數據科學而設計的Python工具。該工具主要用於處理分類、回歸、聚類、模型選擇以及預處理等任務。scikit-Learn最出色的功能是在測試數據集上執行基準測試時,表現出的驚人速度。因此,對於程序員和學生來說,Scikit-learn是最優秀的Python工具之一。
Theano
Theano是一款數據科學的Python工具,對於程序員和學生而言,這是一款非常可靠的工具。它是深度學習方面最好的Python工具,因此非常適合深度學習。Theano的設計主旨是用戶友好、模塊化、易於擴展,而且可以與Python配合使用。它能夠以最佳方式表達神經網路。Theano可以在TensorFlow和CNTK等流行的神經網路之上運行。
Selenium
Selenium是最佳的Python自動化工具之一。它適用於Python測試的自動化,常常用作Web應用程序的自動化框架。我們可以利用Selenium,通過許多編程語言(包括Java、C#、Python、ruby以及其他許多程序員和學生使用的語言)來編寫測試腳本。你還可以在Selenium中集成Junit和TestNG等工具,來管理測試用例並生成報告。
Test complete
Testcomplete是另一款非常出色的Python自動化工具。支持Web、移動和桌面自動化測試。更高級的應用需要獲得商業許可,而且它還可以幫助學生提高學業成績。Test complete還可以像機器人框架一樣執行關鍵字驅動的測試。它擁有最出色的錄制以及回放功能,非常實用。
關於分享!5種常用的Python工具,環球青藤小編就和大家分享到這里了,學習是永無止境的,學習一項技能更是受益終身,所以,只要肯努力學,什麼時候開始都不晚。如果您還想繼續了解關於python編程的學習方法及素材等內容,可以點擊本站其他文章學習。
⑺ 有沒有老師了解Python用於Meta分析的工具包
Python在科學計算領域,有兩個重要的擴展模塊:Numpy和Scipy。其中Numpy是一個用python實現的科學計算包。包括:
一個強大的N維數組對象Array;
比較成熟的(廣播)函數庫;
用於整合C/C++和Fortran代碼的工具包;
實用的線性代數、傅里葉變換和隨機數生成函數。
SciPy是一個開源的Python演算法庫和數學工具包,SciPy包含的模塊有最優化、線性代數、積分、插值、特殊函數、快速傅里葉變換、信號處理和圖像處理、常微分方程求解和其他科學與工程中常用的計算。其功能與軟體MATLAB、Scilab和GNU Octave類似。
Numpy和Scipy常常結合著使用,Python大多數機器學習庫都依賴於這兩個模塊,繪圖和可視化依賴於matplotlib模塊,matplotlib的風格與matlab類似。Python機器學習庫非常多,而且大多數開源,主要有:
1.scikit-learn
scikit-learn是一個基於SciPy和Numpy的開源機器學習模塊,包括分類、回歸、聚類系列演算法,主要演算法有SVM、邏輯回歸、樸素貝葉斯、Kmeans、DBSCAN等,目前由INRI資助,偶爾Google也資助一點。
項目主頁:
https://pypi.python.org/pypi/scikit-learn/
http://scikit-learn.org/
https://github.com/scikit-learn/scikit-learn
2.NLTK
NLTK(Natural Language Toolkit)是Python的自然語言處理模塊,包括一系列的字元處理和語言統計模型。NLTK常用於學術研究和教學,應用的領域有語言學、認知科學、人工智慧、信息檢索、機器學習等。NLTK提供超過50個語料庫和詞典資源,文本處理庫包括分類、分詞、詞干提取、解析、語義推理。可穩定運行在Windows, Mac OS X和Linux平台上.
項目主頁:
http://sourceforge.net/projects/nltk/
https://pypi.python.org/pypi/nltk/
http://nltk.org/
3.Mlpy
Mlpy是基於NumPy/SciPy的Python機器學習模塊,它是Cython的擴展應用。包含的機器學習演算法有:
l回歸
least squares,ridge regression, least angle regression,elastic net, kernel ridge regression,support vector machines(SVM),partial least squares(PLS)
l分類
linear discriminant analysis(LDA), Basicperceptron, Elastic Net,logistic regression, (Kernel) Support Vector Machines (SVM), Diagonal Linear Discriminant Analysis (DLDA), Golub Classifier, Parzen-based, (kernel) Fisher Discriminant Classifier, k-nearest neighbor, Iterative RELIEF, Classification Tree, Maximum Likelihood Classifier
l聚類
hierarchical clustering, Memory-saving Hierarchical Clustering,k-means
l維度約減
(Kernel)Fisher discriminant analysis(FDA), Spectral Regression Discriminant Analysis (SRDA), (kernel)Principal component analysis(PCA)
項目主頁:
http://sourceforge.net/projects/mlpy
https://mlpy.fbk.eu/
4.Shogun
Shogun是一個開源的大規模機器學習工具箱。目前Shogun的機器學習功能分為幾個部分:feature表示,feature預處理,核函數表示,核函數標准化,距離表示,分類器表示,聚類方法,分布,性能評價方法,回歸方法,結構化輸出學習器。
SHOGUN的核心由C++實現,提供Matlab、R、Octave、Python介面。主要應用在linux平台上。
項目主頁:
http://www.shogun-toolbox.org/
5.MDP
The Molar toolkit for Data Processing (MDP),用於數據處理的模塊化工具包,一個Python數據處理框架。
從用戶的觀點,MDP是能夠被整合到數據處理序列和更復雜的前饋網路結構的一批監督學習和非監督學習演算法和其他數據處理單元。計算依照速度和內存需求而高效的執行。從科學開發者的觀點,MDP是一個模塊框架,它能夠被容易地擴展。新演算法的實現是容易且直觀的。新實現的單元然後被自動地與程序庫的其餘部件進行整合。MDP在神經科學的理論研究背景下被編寫,但是它已經被設計為在使用可訓練數據處理演算法的任何情況中都是有用的。其站在用戶一邊的簡單性,各種不同的隨時可用的演算法,及應用單元的可重用性,使得它也是一個有用的教學工具。
項目主頁:
http://mdp-toolkit.sourceforge.net/
https://pypi.python.org/pypi/MDP/
⑻ Python科學計算常用的工具包有哪些
1、 NumPy
NumPy幾乎是一個無法迴避的科學計算工具包,最常用的也許是它的N維數組對象,其他還包括一些成熟的函數庫,用於整合C/C++和Fortran代碼的工具包,線性代數、傅里葉變換和隨機數生成函數等。NumPy提供了兩種基本的對象:ndarray(N-dimensional array object)和 ufunc(universal function object)。ndarray是存儲單一數據類型的多維數組,而ufunc則是能夠對數組進行處理的函數。
2、SciPy:Scientific Computing Tools for Python
“SciPy是一個開源的Python演算法庫和數學工具包,SciPy包含的模塊有最優化、線性代數、積分、插值、特殊函數、快速傅里葉變換、信號處理和圖像處理、常微分方程求解和其他科學與工程中常用的計算。其功能與軟體MATLAB、Scilab和GNU Octave類似。 Numpy和Scipy常常結合著使用,Python大多數機器學習庫都依賴於這兩個模塊。”—-引用自“Python機器學習庫”
3、 Matplotlib
matplotlib 是python最著名的繪圖庫,它提供了一整套和matlab相似的命令API,十分適合互動式地進行制圖。而且也可以方便地將它作為繪圖控制項,嵌入GUI應用程序中。Matplotlib可以配合ipython shell使用,提供不亞於Matlab的繪圖體驗,總之用過了都說好。
關於Python科學計算常用的工具包有哪些,環球青藤小編就和大家分享到這里了,學習是永無止境的,學習一項技能更是受益終身,所以,只要肯努力學,什麼時候開始都不晚。如果您還想繼續了解關於python編程的學習方法及素材等內容,可以點擊本站其他文章學習。
⑼ python初學者工具用什麼工具好呢
Python開發軟體可根據其用途不同分為兩種,一種是Python代碼編輯器,一種是Python集成開發工具,兩者的配合使用可以極大的提高Python開發人員的編程效率,以下是常用的幾款Python代碼編輯器和Python集成開發工具。
一、Python代碼編輯器
1. Sublime Text
Sublime Text是一款非常流行的代碼編輯器,支持Python代碼編輯,同時兼容所有平台,並且豐富的插件擴展了語法和編輯功能,迅捷小巧,具有良好的兼容性,很受編程人士的喜愛!
2. Vim
Vim和Vi是一種模型編輯器,它將文本查看從文本編輯中分離,VIM在原始VI之上做了諸多改進,包括可擴展模型和就地代碼構建,VIMScripts可用於各種Python開發任務!
3. Atom
Atom被稱為「21世紀可破解的文本編輯器」,可以兼容所有平台,擁有時尚的界面、文件系統瀏覽器和擴展插件市場,使用Electron構建,其運行時安裝的擴展插件可支持Python語言!
4. GNU Emacs
GNU Emacs是一款終身免費且兼容任何平台的代碼編輯器,使用強大的Lisp編程語言進行定製,並為Python開發提供各種定製腳本,是一款可擴展、可定製、自動記錄、實時顯示的編輯器,一直縈繞在UNIX周圍。
5. Visual Studio Code
Visual Studio Code是一款兼容Linux、Mac OS X和Windows 平台的全功能代碼編輯器,可擴展並且可以對幾乎所有任務進行配置,對於Python的支持可以在Visual Studio Code中安裝插件,只需快速點擊按鈕即可成功安裝,且可自動識別Python安裝和庫。
二、Python集成開發環境
1. PyCharm
PyCharm是唯一一款專門面向Python的全功能集成開發環境,同樣擁有付費版和免費開源版,PyCharm不論是在Windows、 Mac OS X系統中,還是在Linux系統中都支持快速安裝和使用。
PyCharm直接支持Python開發環境,打開一個新的文件然後就可以開始編寫代碼,也可以在PyCharm中直接運行和調試Python程序,它還支持源碼管理和項目,並且其擁有眾多便利和支持社區,能夠快速掌握學習使用!
2. Eclipse + PyDev
PyDev是Eclipse集成開發環境的一個插件,支持Python調試、代碼補全和互動式Python控制台等,在Eclipse中安裝PyDev非常便捷,只需從Eclipse中選擇「Help」點擊「Eclipse Marketplace」然後搜索PyDev,點擊安裝,必要的時候重啟Eclipse即可,對於資深Eclipse開發者來說,PyDev可以很輕松上手!
3. Visual Studio
Visual Studio是一款全功能集成開發平台,提供了免費版和付費版,可以支持各種平台的開發,且附帶了自己的擴展插件市場。在Visual Studio中可進行Python編程,並且支持Python智能感知、調試和其他工具,值得注意的是Visual Studio不支持Linux平台!
4. Spyder
Spyder是一款為了數據科學工作流做了優化的開源Python集成開發環境,它是附在Anaconda軟體包管理器發行版中的,Spyder擁有大部分集成開發環境該具備的功能,如強大語法高亮功能的代碼編輯器、Python代碼補全以及集成文件瀏覽器,其還具有其他Python編輯環境中所不具備的變數瀏覽器功能,十分適合使用Python的數據科學家們。
5. Thonny
Thonny是針對新手的一款集成開發環境,適用於全部主流平台,默認情況下,Thonny會和自帶捆綁的Python版本一起安裝,十分方便新手使用!
⑽ python數據挖掘工具有哪些
1. Numpy
可以供給數組支撐,進行矢量運算,而且高效地處理函數,線性代數處理等。供給真實的數組,比起python內置列表來說, Numpy速度更快。一起,Scipy、Matplotlib、Pandas等庫都是源於 Numpy。由於 Numpy內置函數處理數據速度與C語言同一等級,建議使用時盡量用內置函數。
2.Scipy
根據Numpy,可以供給了真實的矩陣支撐,以及大量根據矩陣的數值計算模塊,包含:插值運算,線性代數、圖畫信號,快速傅里葉變換、優化處理、常微分方程求解等。
3. Pandas
源於NumPy,供給強壯的數據讀寫功用,支撐相似SQL的增刪改查,數據處理函數十分豐富,而且支撐時間序列剖析功用,靈敏地對數據進行剖析與探索,是python數據發掘,必不可少的東西。
Pandas根本數據結構是Series和DataFrame。Series是序列,相似一維數組,DataFrame相當於一張二維表格,相似二維數組,DataFrame的每一列都是一個Series。
4.Matplotlib
數據可視化最常用,也是醉好用的東西之一,python中聞名的繪圖庫,首要用於2維作圖,只需簡單幾行代碼可以生成各式的圖表,例如直方圖,條形圖,散點圖等,也可以進行簡單的3維繪圖。
5.Scikit-Learn
Scikit-Learn源於NumPy、Scipy和Matplotlib,是一 款功用強壯的機器學習python庫,可以供給完整的學習東西箱(數據處理,回歸,分類,聚類,猜測,模型剖析等),使用起來簡單。缺乏是沒有供給神經網路,以及深度學習等模型。
6.Keras
根據Theano的一款深度學習python庫,不僅可以用來建立普通神經網路,還能建各種深度學習模型,例如:自編碼器、循環神經網路、遞歸神經網路、卷積神經網路等,重要的是,運轉速度幾塊,對建立各種神經網路模型的過程進行簡化,可以答應普通用戶,輕松地建立幾百個輸入節點的深層神經網路,定製程度也十分高。
關於 python數據挖掘工具有哪些,環球青藤小編就和大家分享到這里了,學習是沒有盡頭的,學習一項技能更是受益終身,因此,只要肯努力學,什麼時候開始都不晚。如若你還想繼續了解關於python編程的素材及學習方法等內容,可以點擊本站其他文章學習。