導航:首頁 > 五金知識 > 地錨鑽快速入土電動工具

地錨鑽快速入土電動工具

發布時間:2021-11-10 12:47:10

❶ 什麼是地錨啊

地錨就是一種把需固定的物體固定在穩固的地面上。如電線桿的斜拉線的下端(地面以下)要拴在地下的「錨」上才不易拉出來。

地錨可分為錨樁、錨點、錨錠、拖拉坑,起重作業中常用地錨來固定拖拉繩、纜風繩、卷揚機、導向滑輪等,地錨一般用鋼絲繩、鋼管、鋼筋混凝土預製件、圓木等做埋件埋入地下做成。

安全技術要求:



1.起重吊裝使用的地錨,應嚴格按設計進行製作,並做好隱蔽工程記錄,使用時不準超載。

2.地錨坑宜挖成直角梯形狀,坡度與垂線的夾角以150度為宜。地錨深度根據現場綜合情況決定。

3.拖拉繩與水平面的夾角一般以30度以下為宜,地錨基坑出線點(即鋼絲繩穿過土層後露出地面處)前方坑深2.5倍范圍及基坑兩側2米以內,不得有地溝、電纜、地下管道等構築物以及臨時挖溝等。

4.地錨周圍不得積水。

5.地錨不允許沿埋件順向設置。

地錨可分為錨樁、錨點、錨錠、拖拉坑,起重作業中常用地錨來固定拖拉繩、纜風繩、卷揚機、導向滑輪等,地錨一般用鋼絲繩、鋼管、鋼筋混凝土預製件、圓木等做埋件埋入地下做成。

❷ 化工八大危險作業是指什麼

動火作業、受限空間作業、吊裝作業、盲板抽堵作業、動土作業、斷路作業、高處作業、臨時用電作業。

一、動火作業

動火作業是在禁火區進行焊接與切割作業及在易燃易爆場所使用噴燈、電鑽、砂輪等進行可能產生火焰、火花和熾熱表面的臨時性作業。

易燃易爆場所:主要指公司塗裝及噴砂場、油庫、氣站、危險化學品倉庫、材料庫、油品及油漆稀料、前處理劑等化學品儲存及使用場所、液化氣瓶儲存室、變配電室、相互禁忌作業可能引起火災的區域。

二、進入受限空間作業

受限空間是指工廠的各種設備內部(爐、塔釜、罐、倉、池、槽車、管道、煙道等)和城市(包括工廠)的隧道、下水道、溝、坑、井、池、涵洞、閥門間、污水處理設施等封閉、半封閉的設施及場所(船艙、地下隱蔽工程、密閉容器、長期不用的設施或通風不暢的場所等)。

以及農村儲存紅薯、土豆、各種蔬菜的井、窖等。通風不良的礦井也應視同受限空間。

三、臨時用電作業

凡屬永久性固定用電外,如因施工、檢修需要,加接線路、增設臨時施工變電器、接入電焊機、潛水泵、電動工具、通風機、照明燈具等一切臨時性負荷,通稱為臨時用電。

四、高處作業

凡在墜落高度基準面2m以上(含2m)有可能墜落的高處進行的作業均稱高處作業。

五、斷路作業

斷路作業:在企業生產區域內的交通道路上進行施工及吊裝吊運物體等影響正常交通的作業。

六.破土作業

破土作業:挖土、打樁、鑽探、坑探、地錨入土在0.5米以上;使用推土機、壓路機等施工機械進行填土或平整場地等可能對地下隱蔽設施產生影響的作業。

七、吊裝作業

吊裝作業:使用吊車或者起升機構對設備的安裝、就位的統稱。

八、盲板抽堵作業

盲板抽堵作業:當燃氣設備需要檢修時,就要求停氣,可靠切斷介質.由於介質是氣體,靠閥門完全切斷十分困難,這時侯就需要堵抽盲板。

(2)地錨鑽快速入土電動工具擴展閱讀:

有限空間安全作業規定

a)必須嚴格實行作業審批制度,嚴禁擅自進入有限空間作業。

b)必須做到「先通風、再檢測、後作業」,嚴禁通風、檢測不合格作業。

c)必須配備個人防中毒窒息等防護裝備,設置安全警示標識,嚴禁無防護監護措施作業。

d)必須對作業人員進行安全培訓,嚴禁教育培訓不合格上崗作業。

e)必須制定應急措施,現場配備應急裝備,嚴禁盲目施救。

臨時用電注意事項:

1.施工現場臨時用電必須有施工組織設計,並經審批。

2.裝、維修或拆除臨時用電工程,必須由電工完成,並做好記錄,電工必須有電工操作證。

3.纜必須使用五芯電纜線。電纜干線應採用埋地或架空敷設,嚴禁沿地面明設,並應避免機械損失和介質腐蝕。架空線必須設在專用電桿上,嚴禁架設在樹木、腳手架上。

4.力線路必須採用TN-S接零保護系統,保護零線的設置必須符合技術規范。

5.電箱必須符合「三級配電兩級保護」和「一機、一閘、一箱」的要求,同時必須裝設漏電保護器。

6.工現場臨時用電必須經過監理人員組織驗收,並由監理人員簽發准許使用意見。

❸ 安全作業管理制度中的8大危險作業指什麼

1、動火作業:能直接或間接產生明火的工藝設置以外的非常規作業,如使用電焊、氣焊割、噴燈、電鑽、砂輪等進行可能產生火焰、火花和熾熱表面的非常規作業。

2、受限空間作業:一切通風不良、容易造成有毒有害氣體積聚和缺氧的設備、設施和場所都叫受限空間(作業的空間有限),在受限空間的作業稱為受限空間作業。

3、吊裝作業:利用各種機具將重物吊起,並使重物發生位置和空間變化的作業過程。

4、盲板抽堵作業:在設備搶修或檢修過程中,設備、管道內存有物料及一定溫度、壓力情況時的盲板抽堵,或設備、管道內物料經吹掃、置換、清洗後的盲板抽堵。

5、動土作業:挖土、打樁、鑽探、坑探、地錨入土深度0.5m以上;使用推土機、壓路機等施工機械進行填土或平整場地等可能對地下隱蔽設施產生影響的作業。

6、斷路作業:在企業生產區域內的交通道路上進行施工及吊裝吊運物體等影響正常交通的作業。

7、高處作業:凡在墜落高度基準面2m以上(含2m)有可能墜落的高處進行的作業均稱高處作業。

8、設備檢維修作業。

❹ 地錨是什麼

一種地錨包括錨體,錨體設置在於地上鑽孔形成的錨孔中,沿錨孔的不同深度在錨體上設有多個錨定體,牽引線材以u字形回轉狀繞過錨定體上的閂,而牽引線材被張緊後其端部在錨孔孔口被固定,其特徵是在各錨定體之間設置增強構件。

❺ SPJ-型鑽機

SPJ-300型鑽機(圖2-81)是一種大口徑轉盤回轉式鑽機。它的特點是鑽進效率高,適用於鑽進鬆散的第四紀地層,也可鑽進基岩;機械的可拆性強,能將鑽機解體成部件(升降機、轉盤、變速箱等),便於運輸。特別適合於在交通不便的地區進行施工。

圖2-81 SPJ-300型鑽機

1—柴油機;2—泥漿泵;3—主機;4—鑽塔;5—游動滑車;6—水龍頭;7—機上鑽桿;8—轉盤;9—機架;10—萬向轉動軸

(一)SPJ-300型鑽機技術性能

SPJ-300型鑽機的主要技術性能見表2-35所示。

表2-35 SPJ-300型鑽機技術性能

(二)鑽機傳動系統

見圖2-82所示。動力機的動力經傳動裝置分成兩路,一路通過三角皮帶傳至泥漿泵(兩台),另一路經三角皮帶傳到摩擦離合器輸入變速箱,變速箱為三軸二級變速,可獲得三種不同轉速。在變速箱內的輸出軸上裝有牙嵌離合器。經牙嵌離合器,通過萬向軸傳遞於轉盤,使轉盤獲得正、反轉三種轉速。而另一牙嵌離合器,則將動力輸送至主卷揚機和副卷揚機,主卷揚機軸上裝有調節給進蝸桿(超越離合器),用於微調給進或人力提升;副卷揚機軸上裝有摩擦離合器,用於接合動力,控制副卷揚機的接合或分開。

圖2-82 SPJ-300型鑽機傳動系統

1—輸入軸(Ⅰ軸);2—中間軸(Ⅱ軸);3—輸出軸(Ⅲ軸);4,5—牙嵌離合器;6—調節給進蝸桿;7—副卷揚摩擦離合器;8—動力機;9—泥漿泵;10—變速箱;11—主卷揚機;12—副卷揚機;13—轉盤;14—摩擦離合器

1.摩擦離合器

離合器結構見圖2-83所示。離合器裝在三角皮帶輪內,為減少三角皮帶輪對變速箱輸入軸的徑向作用力,特將三角皮帶輪用兩盤滾珠軸承裝於減震套上,減震套用螺栓直接固定在變速箱體上。

圖2-83 摩擦離合器

1—減震套;2—三角皮帶輪;3—傳動軸套(被動摩擦壓盤);4—銷釘彈簧;5—內齒圈;6—主動摩擦壓片;7—被動摩擦片;8—壓緊盤;9—杠桿;10—滾子;11—壓緊滑塊;12—撥叉;13—杠桿支撐;14—定位銷

該離合器為常開干摩擦式。傳動軸套以花健與變速箱輸入軸(第一軸)裝合。主動摩擦片兩側鉚有石棉材料並具有外齒,與皮帶輪內齒相結合,被動摩擦片有內齒,與傳動軸套外齒嚙合,被動摩擦片裝於兩片主動摩擦片之間,主、被動摩擦片均可沿軸向移動。壓緊盤同樣有內齒與傳動軸套外齒嚙合。工作時壓緊滑塊向左移動,抬起杠桿使壓緊盤把主、被動摩擦片壓緊,於是傳動軸套接受皮帶輪的動力而旋轉,並傳遞於變速箱。相反當壓緊滑塊被拉向右移動時,在銷釘彈簧作用下,主、被動摩擦片分開,離合器切斷動力。

2.變速箱

見圖2-84a、圖2-84b、圖2-84c所示,箱內裝有三根軸,其中圖中軸6與軸20位於同一水平平面內,軸6為變速箱輸入軸,軸5則位於軸6和軸20的中間下端,三根軸端面互成三角形。

圖2-84 變速箱

a:1—變速手把;2—限位板;3,4—撥叉;5—第二軸;6—第一軸;7—變速操縱手柄;8,9,10,11,12—齒輪b:12—齒輪;13—牙嵌離合器外套;14—牙嵌離合器內套;15—錐齒輪;16—帶軸錐齒輪;17—雙向牙嵌離合器;18—錐齒輪;19—齒輪;20—第三軸;21—第一軸c:22—上箱體;23—下箱體;24,25—連接螺栓;26—轉盤牙嵌離合器操縱把手

變速箱軸6用兩盤滾珠軸承裝在箱殼上,軸的一端伸出箱體,與離合器連接,以接受動力。軸中部花鍵端裝有滑動齒輪和雙聯滑動齒輪,分別由兩個撥叉和一個變速手把控制。手把用限位板限位,限位板用螺釘固定於操作盒殼體上,其中開有限位槽,當手把處於限位板中間位置時,即為空檔。

軸20由一對圓錐滾子軸承支撐在箱體上,中部用滾動軸承安裝有兩個帶牙嵌的圓錐齒輪15和18,其間花鍵部分安裝有雙向牙嵌離合器,經撥叉操縱,動力可以分別帶動兩端圓錐齒輪轉動,因而萬向軸可以獲得正、反轉三種不同轉速。第三軸的另一端安裝有牙嵌離合器內套,它可以與牙嵌離合器外套嚙合,帶動軸頭齒輪將回轉力矩輸給主、副卷揚機。

3.轉盤

轉盤結構見圖2-85所示。轉盤大斜齒輪用兩個平錐安裝於轉台上,並用螺釘固定。轉台支撐於轉盤體的主軸承上,轉台中置有各為兩塊組成、內孔為方形的大、小方補心。

圖2-85 轉盤

1—小方補心;2—止動板;3—大方補心;4—撥柱;5—主軸承;6—鍵;7—轉台;8—大斜齒輪;9—小斜齒輪;10— 齒輪軸;11—圓錐齒輪軸;12—圓錐齒輪;13—擋圈;14—底座;15—支撐板;16—卡子;17—螺栓;18—大螺母;19—副軸承;20—轉盤體

方形主動鑽桿即插小方孔中。下軸承用螺母安裝於轉台下部,用以支撐由於斜齒輪傳動而產生的軸向推力。當上下軸承磨損後,可松一頭螺栓,轉動大螺母進行調整。轉盤體用四個螺栓固定於底座上。

轉盤動力由萬向軸輸入,萬向軸兩端法蘭盤分別和變速箱及轉盤連接。轉盤與萬向軸端連接處為一傳動箱。輸入動力經由傳動箱圓錐齒輪,豎軸和小斜齒輪,帶動大斜齒和轉台回轉。為了防止運動時小補心被甩出,在小補心與大補心之間裝有止動板。

在轉台上用螺栓固定有擰管用撥柱。在轉盤底座的滑道上有兩塊擰管支撐板,用以支撐鑽具質量和承受反扭矩,擰卸鑽具時,先從轉台上取出大、小補心,將擰管支撐板移至中間,用銷子銷牢;然後可用下墊叉卡住鑽具接頭的下部切口並置於支撐樑上,在轉台上則用上墊叉卡住鑽具接頭的上部切口並置於支撐樑上即可進行擰卸。擰卸管時,轉台旋轉帶動撥柱撞擊上墊叉的尾部,帶動墊叉旋轉進行擰卸鑽具。

轉盤中除上部主軸承用潤滑脂潤滑外,其餘軸承、齒輪均由齒輪箱中潤滑油潤滑和飛濺潤滑。

4.主卷揚機

主卷揚機為遊星式機構,其結構如圖2-86所示。

圖2-86 主卷揚機

1—提升盤;2—提升制帶;3—內齒圈;4—行星齒輪;5—行星支撐盤;6—中心齒輪;7—捲筒;8—卷揚機主軸;9—制動制帶;10—螺栓;11—傳動齒輪

卷揚機主軸左端裝有單向超越離合器。通過手輪操作可實現微調給進,或者當動力機發生故障時可作為人力提升用。

單向超越離合器是一種滾柱式定向離合器,它只能傳遞單向扭矩。在機械中用來防止逆轉及完成單向傳動。

單向超越離合器的結構見圖2-87所示,棘輪花鍵裝於卷揚主軸端部,蝸輪套在棘輪外面,蝸輪內圓與棘輪裝合時形成有六個斜槽,每個槽內裝有滾柱和彈簧。當卷揚機提升時,主軸回轉驅動棘輪作順時針快速旋轉,圖2-88b棘輪上的滾柱借摩擦力壓縮彈簧,滾柱壓向寬槽的空間,蝸輪與棘輪脫開接觸,蝸輪不轉動,而卷揚機則進行提升工作。

圖2-87 單向超越離合器

1—蝸桿;2—手輪;3—彈簧;4—蝸輪;5—棘輪;6—滾柱

當單向超越離合器用於微調給進時,應先脫開卷揚機的動力,卷揚機提升手把下壓制動提升盤。此時制動手把處於放鬆狀態。當需要控制給進力和給進速度時,轉動手輪使蝸輪作順時針轉動,滾柱在彈簧的壓力和蝸輪摩擦力的作用下,滾柱推向斜槽狹窄的楔角內,使蝸輪和棘輪相互卡緊,如圖2-88a所示;從而帶動棘輪及卷揚機主軸旋轉,迫緊捲筒轉動拉緊鋼繩,以達到調節給進力和給進速度的目的。當動力機發生故障時手輪同樣可實現人力提升鑽具的目的。卷揚機制動器為制帶式。

圖2-88 單向超越離合器工作原理示意圖

1—棘輪;2—彈簧;3—滾柱;4—蝸輪

5.副卷揚機

副卷揚傳動機構為摩擦式,見圖2-89所示。卷揚機動力由固定在卷揚機主軸左端的傳動齒輪輸入,通過平鍵帶動主軸回轉,主軸兩端用滾動軸承支撐在軸承座上,捲筒用兩盤滾動軸承安裝於主軸中部。摩擦離合器安裝在捲筒制圈的左側,用以驅動捲筒控制卷揚機結合或分開。

圖2-89 副卷揚機

1—傳動齒輪;2—鍵;3—軸承座;4—副卷揚機主軸;5—捲筒;6—離合器操縱手把;7—注油塞;8—制帶

捲筒左端的制圈上部裝有制帶式制動器,見圖2-90。制動器由腳踏板及連桿機構操縱。當需要較長時間制動時,可用手柄及爪卡腳踏板的擋銷鎖緊。

制帶的復位松開藉助彈簧和彈簧板,螺母用於調整制帶與制圈間隙均勻度。支撐捲筒的兩盤滾動軸承,由密封在捲筒內的機油潤滑:即卸去油塞向捲筒內加油,其餘軸承均用黃油潤滑。

圖2-90 副卷揚機制動帶

1—腳踏板;2—軸銷;3—爪卡;4—手把;5—連桿;6—彈簧;7—調整螺母;8—彈簧板;9—螺母;10—吊釘

6.機架

由型鋼焊接而成,其上固定有主卷揚機、副卷揚機、變速箱以及它們的操縱機構與保護裝置,機架上還有兩個齒輪;可將變速箱動力分別傳遞給主、副卷揚機。機架底部有6個螺栓與鑽塔底座聯結。

7.傳動裝置

傳動裝置(圖2-91)是由柴油機底座、柴油機附屬操縱部分和其他傳動部件組成。傳動軸通過聯軸節與動力機相連。傳動軸上裝有4個三角皮帶輪。C型三角皮帶輪用於向鑽機變速箱離合器輸出動力;2個B型三角皮帶輪系供帶動小型發電機或作其他用。

圖2-91 傳動裝置

1—聯軸節;2—傳動軸;3—軸承座;4—螺栓;5—帶動鑽機的三角皮帶輪;6—帶動泥漿泵的三角皮帶輪;7—帶動照明發電機的三角皮帶輪;8—用於驅動其他裝置的三角皮帶輪357

(三)鑽機的安裝

在預定的孔口周圍平整一塊堅實的場地,其面積不小於54m2。然後根據各地樑上所標印記鋪設底座各梁。鋪設時,先鋪縱梁後鋪橫梁,先鋪大梁後鋪小梁。鋪好後,應檢查整個底座框架與孔口相互位置是否正確,底梁與地面之間是否有間隙,如有應填實;檢查底梁是否水平,如不水平應進行調平。

上述工作完畢,即開始塔身的地面安裝工作。安裝時,先將馬蹄座用螺釘固定在底樑上,而後將塔身銷牢在馬蹄座上,再將塔身與另一節塔身依次銷牢,最後將兩條塔腿與天車梁連在一起。進行上述安裝時,應將塔身各段墊平墊齊,使之成一直線。然後,將天車,掛輪分別用螺栓固定在天車架上,並將二層平台安裝在塔腿上。如孔淺,鑽具質量不大,可應用2×3滑輪系,天車上有3個滑輪,留1個滑輪備以後掛取土器用,掛輪即可不安裝。假如塔內只放鑽桿,則應使靠架與擇身垂直,活動靠架張開。如鑽桿卧放,則活動靠架應收攏,靠架應縛在塔腿上並與塔腿成45°的夾角。

安裝起塔架,將起塔架支座固定於底座上,並將其卧放,安裝完畢,即可旋入地錨,安裝綳繩。旋入地錨一般的深度為2m左右,遇砂土地層可更深一些,如遇特硬地層也應旋入1.5m以上。用於起塔架的地錨可略淺些。縛於塔身的4根綳繩中,前面2根既縛於地錨又縛於塔身,後面2根只縛於塔身,待塔立起後再系於地錨;3根用於起塔架的綳繩,也是前面1根兩端系牢,而後面2根只縛於起塔架。此後,即可安裝泥漿泵,柴油機及升降機。將柴油機、升降機在鑽塔底座上固定好,泥漿泵安裝於地面上,其位置以三角皮帶張緊適當為限度。然後豎起塔架。綳緊起塔架的綳繩,將主升降機鋼絲繩繞於捲筒,鋼絲繩的一端固定於滾筒上,另一端先穿過起塔架(圖2-92),而後繞過天車,並穿過游動滑車,最後用鋼絲繩卡固定於塔腳下面的基樑上。而後將游動滑車的「U」形環掛在起塔架的吊環上。

圖2-92 立鑽塔示意圖

起立鑽塔之前,必須檢查鑽機、動力機是否正常;地錨、繩卡、銷釘、螺釘等是否可靠;綳繩有無損壞。檢查完畢,即可發動柴油機,開動升降機,以低速立塔。立塔過程中,隨著塔身的升起,應注意讓螺母在塔身支撐滑道中滑行,至塔完全立直,滑行即終止。然後用螺釘及夾板將該螺母固定於滑道終點,並將塔身綳繩初步綳緊。此時,即可檢驗塔身的垂直度。如塔不垂直,可整體移動底座,或在馬蹄座與底座間加墊片。如有扭曲,可以在塔的兩腿上加補綳繩調節。最後將綳繩綳緊,摘下游動滑車,卸掉起塔架及其綳繩,進行纏繞副升降機鋼絲繩,安裝轉盤,鋪設台板,安裝防護罩等。上述工作完成後,即可准備開鑽。

(四)鑽機的維護保養

鑽機工作狀態的好壞及其使用壽命的長短,取決於對它熟練的操作、細心的維護和正確保養的狀況。

1.鑽機的班保養要求

1)經常保持機器的表面清潔,注意各部件的溫升情況,溫升超過40℃要停車檢查;

2)經常注意機械的運轉情況。檢查連接件和緊固件的螺絲,防護罩要安裝牢固。發現機械運轉的異常聲響,應引起注意並停車檢查;

3)按要求對各部件進行潤滑。經常檢查各轉動部位的潤滑情況,要消除各密封處的漏油現象。對齒輪箱中的潤滑油應作定期檢查。

2.主要部件的維護保養

(1)摩擦離合器

SPJ-300型鑽機的摩擦離合器是乾式離合器。它的維護保養主要是減輕摩擦片的磨損和防止油或水滲入離合器內。摩擦片脫開間隙為1.5m左右,彈簧失效的需要更換,若間隙過大時要進行調整。如發現摩擦片燒毀、老化、磨損或鉚釘松動等現象時,應及時更換。為減輕磨損,離合器在使用中要避免開關頻繁或在重負載下掛離合器,嚴禁離合器處於半開半合狀態工作。如有發熱、冒煙現象,應立即停車檢查。

(2)變速箱

SPJ-300型鑽機使用過程中,應定期檢查變速箱內的齒輪牙嵌離合器嚙合情況和磨損情況;檢查變速箱內機油的清潔程度;對變速箱操縱裝置的可靠性和平穩性均應隨時檢查,不符合要求之處,應及時修理或更換。

(3)升降機

升降機在使用中,制帶與制圈的間隙要適當(一般為1.5mm以內),保證松開時不摩擦,結合時不打滑。制帶要保持清潔,不能進入油或水,主升降機的蝸輪箱內應保持充足而清潔的錠子油。副升降機的鋼絲繩要保持干凈,排列整齊。

(4)轉盤

工作中應經常檢查轉盤的固定螺栓是否擰緊;要保持主副軸承的間隙,以清除沖擊載荷;應注意擰卸機件的牢固性,檢查是否損壞,防止出現故障;定期對齒輪箱潤滑油的質和量進行檢查。

(5)操作系統

鑽機操作系統應經常檢查、進行潤滑和除污,使各連接部分靈活。當拉桿彎曲、傾斜時,應及時調整。當閘把的活動軸磨損時,應及時拆換,以免因軸與軸孔的間隙過大而產生行程過大現象。

3.鑽機的潤滑

1)變速箱內採用機油潤滑,打完兩個孔更換一次潤滑油。但是,剛出廠第一次使用的新機,應在使用兩周後更換一次潤滑油。

2)主升降機的蝸輪蝸桿機構採用錠子油潤滑,副升降機的捲筒內兩盤滾動軸承採用機油潤滑。

3)轉盤除主軸承採用潤滑脂潤滑外,其餘軸承均採用機油潤滑。

4)開式齒輪和一切操縱系統和非轉動的摩擦面均採用機油間隙點滴潤滑。

❻ 螺旋板載荷試驗

螺旋板載荷試驗是由平板載荷試驗演變而來的一種非開挖型、能夠在賦存地下水和在地表下較大深度工作的輕便原位測試手段。該測試方法始於20世紀70年代初期,30多年來,螺旋板載荷試驗已經廣泛應用於世界各國的工程勘察中,最大工作深度已達30m。

螺旋板載荷試驗的工作原理是:通過機械或人力把地錨狀的螺旋形載荷試驗板,旋入到地下預定測試深度處,通過對螺旋承壓板逐級施加荷載,並測計地基土受壓後產生的垂向位移和所施加荷載的關系;並依此繪制地基土的應力—應變—時間關系曲線,進而求得不同深度處地基土的承載力特徵值、模量值、固結系數、土的濕陷量以及軟土的不排水抗剪強度等指標。

一、螺旋板載荷試驗裝置組成

螺旋板載荷試驗裝置有如下幾個主要部分(圖2-8):

(1)荷載源——①地面荷載源:有液壓千斤頂、頂座、傳力桿、應力/應變自動補償伺服系統等;②地下荷載源:由壓桿內的水壓力活塞向螺旋承壓板施加荷載;

(2)反力系統:由4個大直徑反力地錨、地錨接桿、反力橫梁組成;

(3)沉降觀測裝置:由2個小直徑地錨、沉降支架、千分表等組成;

圖2-8 螺旋板載荷試驗儀示意圖

1—傳力桿;2—測計系統地錨;3—沉降支板;4—千分表;5—千斤頂;6—反力工字梁;7—反力地錨;8—測計系統橫梁;9—螺旋承壓板

(4)測壓系統:對地面荷載源,通過安裝在螺旋板上的應變式電阻感測器,和地面上的數字測力儀確定螺旋板上所受荷載源施加的荷載值;對地下荷載源,可通過施加的水壓力獲得施加的荷載值;一些螺旋承壓板頭還可以兼備測試試驗深度內地基土孔隙水壓力的功能;

(5)螺旋承壓板:既是測試時鑽進的鑽頭,又是到達試驗深度後向地基土施加荷載的承壓板。根據場地特點不同,分別有適於軟土、硬土幾種螺旋承壓板型:①ϕ113mm,螺旋承壓板面積100cm2,螺距25mm;②ϕ159.58mm,螺旋承壓板面積200cm2,螺距40mm;③ϕ195.44mm,螺旋承壓板面積300cm2;④ϕ252.23mm,螺旋承壓板面積500cm2,螺距65mm;⑤ϕ298.55,螺旋承壓板面積700cm2;與平板載荷試驗不同的是,螺旋承壓板在旋入試驗深度過程中,由於螺旋板順螺紋方向產生的切土效應,對測點地基土產生擾動,影響到測量的准確性。為此,需要對螺旋板的螺距、螺旋板材料厚度進行必要的限制,一般是取螺旋板直徑與螺距之比值為4~5;螺旋板直徑與板厚之比值為25為宜。

二、螺旋板載荷儀的安裝與調試

螺旋承壓板型號較多,這里簡要介紹螺旋承壓板的常見安裝與調試過程。

1.准備工作

最主要的是對螺旋板探頭進行標定:①絕緣測試:將探頭批量放入壓力不小15個大氣壓力的水容器中觀察1天,其絕緣性能不發生變化;②將螺旋板探頭置於率定架上,觀察加荷與讀數的線性關系,並寫出率定報告備查。

2.現場安裝

(1)要求在平整的場地上先標好測試孔位、反力地錨及測量支架地錨孔位。若雨季施工,應搭設臨時防雨設施;

(2)安裝地錨和螺旋板的順序為:旋入4 根反力地錨→旋入沉降支架的2 根地錨→將螺旋板旋到預定測試深度(信號電纜隨同旋入)。要特別注意:螺旋板頭入土時,應按每轉一圈下入一個完整螺距進行操作,即:旋入過程是每一旋次必須完成一整圈不間歇的旋入螺旋板,並盡量減少對土的擾動→安裝反力橫梁和測計系統橫梁→調整好傳力桿頂部至反力橫梁的間距(使其恰好能安裝液壓千斤頂及相配套頂頭、頂座等)→安裝千斤頂→安裝測計儀器、儀表並調整到合適位置(電子測量儀器需要預熱,以保持性能穩定)。

3.測試方法

試驗一般順高程由上而下依次進行,完成一個點的深度測試後加接傳力桿,將螺旋承壓板旋入下一試驗深度,進行新的試驗。一般測點間距根據土層變化決定,大多以1m為常規間距;遇薄層時,也不應小於0.75m;如遇有軟夾層,應事先設計好各測點深度。當土質均勻且層厚較大時,測點間距可取2~3m。

螺旋板載荷試驗方法有兩種,即應力法和應變法。

(1)應力法:用荷載等級控制沉降與時間關系的方法。①相對穩定法,也叫慢速法每級荷載施加後,間隔5min、5min、10min、10min、15min、15min測讀一次沉降,以後間隔30min 測讀一次沉降,當連續兩小時內每小時沉降量都小於0.1mm時,可認為沉降已達相對穩定標准,即可施加下一級荷載;②等速加荷法,也叫快速法 根據土體情況和當地已有測試經驗,採取分級施加荷載,每級荷載都保持固定時間間隔(5min~2h,由土的狀態決定),每級荷載增量取預估極限承載力的1/10,直至達到極限承載力或土體破壞。

(2)應變法:試驗以等沉降速率控制載入速率。試驗中,當達到試驗設計的沉降量時,就可施加下一級荷載。此法主要適用於在荷載作用下以塑性變形為主的粘性軟土、淤泥(質)土等。沉降速率一般控制在0.25~2.0mm/min,對海相高靈敏度飽和淤泥質土、軟塑狀軟粘性土,沉降速度選擇在0.25~0.5mm/min為宜;一般粘性土、粘性軟土可取0.5~2.0mm/min。如此逐級加荷,直至土體破壞。

應力法、應變法的適用范圍:

測定地基土的承載力特徵值可選用應力法,它適於土質相對較硬或以彈性變形為主的土體,而應變法則適於土質相對較軟或以塑性變形為主的土體;測定和計算地基土的變形模量、固結系數時,必須選用慢速法才能達到計算精度;測定地基土不排水抗剪強度和不排水模量時,可採用應變法。

三、試驗成果及其應用

由於假定在螺旋板載荷試驗條件下並不考慮土體擾動對P—S曲線所產生的干擾,故對螺旋板載荷試驗所產生的數據不必修正。根據試驗數據和使用目的,可繪制相應類型的曲線,如:P—S曲線、

曲線、lgS—lgt曲線、S—lgt曲線等。

在P—S曲線上,我們可以找到3個特徵點:Pz(螺旋板面以上地基土的自重壓力);P0(地基土的比例極限壓力);Pu(地基土的極限荷載),如圖2-9所示。

1.用螺旋板載荷試驗確定地基承載力

方法一:在S—P曲線上找到比例極限荷載P0,觀察P0點與極限荷載Pu的位置關系,決定是否取P0為地基承載力特徵值fak,方法同平板載荷試驗。

方法二:作P—S/D曲線,在P—S/D曲線上,用S/D=0.02對應的荷載為地基承載力,D為螺旋板直徑,如圖2-10所示。

圖2-9 螺旋板載荷試驗P—S曲線的特徵點

圖2-10 用相對法確定螺旋板載荷試驗中的地基承載力

2.計算地基土的變形模量

按照《岩土工程勘察規范》(GB 50021—2001)要求,地基土的變形模量E0(MPa)由下式計算:

土體原位測試與工程勘察

式中:D為承壓板直徑或邊長(m);P為P—S曲線線性段的壓力(kPa);S為與P對應的沉降量(mm);ω為與試驗深度和土類有關的系數,可按表2-9選用。

表2-9 深度載荷試驗計算系數ω取值表

註:D/Z為承壓板直徑和承壓板底面深度之比。

除規范方法外,近年來國際上還廣泛使用挪威工學院Jilmar Janbu教授提出的排水模量E和不排水模量Eu的演算法:

(1)用沉降穩定法(慢速法)可求地基土的排水模量E:

土體原位測試與工程勘察

式中:S100、P 分別為最終沉降量(mm)和與之對應的固結荷載(kPa);D為螺旋板直徑(mm)。

(2)用等速加荷法(快速法)可求土的不排水變形模量Eu(MPa):

土體原位測試與工程勘察

式中:ΔP/ΔS為P—S曲線初始直線段的斜率;K為螺旋板沉降系數;R為螺旋板半徑(mm)。

根據Selvarai和Nicholas建議,K的取值范圍是:K=0.6~0.75;其值代表螺旋板葉片與地基土的粘結程度,如下圖所示。

土體原位測試與工程勘察

3.求徑向排水固結系數

圖2-11 用作圖法求地基土固結度達到90%所需的時間t90

按試驗數據繪制螺旋板載荷試驗的S—

曲線(圖2-11),取曲線前端直線段作延長線AB與時間軸相交於B點,並定義 B點以前時間為X,在時間軸找處1.31X點C,再作AC直線與

曲線相交於D,則D在時間軸上的正投影點E為地基土固結度達到90%所需的時間t90,由公式(2-27)可計算出地基土的徑向排水固結系數Ch

土體原位測試與工程勘察

式中:T90為地基土固結度達到90%的時間因子,公式中的T90取值為0.335;t90為地基土固結度達到90%的時間(min),按圖2-11給定方法確定;R為螺旋板半徑(mm)。

4.計算地基土的不排水抗剪強度Cu

對飽水地基土,可用公式(2-28)計算:

土體原位測試與工程勘察

式中:Pu為飽水地基土在等速加荷法(快速法)條件下求得的極限荷載值;其系數(9~11.35)代表地基土的軟硬程度,可根據土樣條件適當確定該值的大小(見下頁圖)。

對硬粘性土,Kay&Parry推薦用公式(2-29)計算:

土體原位測試與工程勘察

土體原位測試與工程勘察

式中:Pu為飽水地基土在等速加荷法(快速法)條件下求得的極限荷載值;Pz為螺旋板載荷試驗深度以上的地基土自重荷載。

❼ GB30871-2014中提到的動土作業定義是什麼

動土作業簡單講就是,挖土、打樁、地錨入土深度0.5米以上;地面堆放負重在50kg/㎡以上;使用推土機、壓路機等施工機械進行填土或平整場地的作業。

❽ 動土作業的動土作業安全要求

1、 動土作業必需辦理《動土安全作業證》,沒有《動土安全作業證》不準動土作業。
動土安全作業證 申請部門: 施工單位: 作業地點: 作業起止時間: 月 日 時至上 月 日 時 動土范圍、內容、方式(包括深度、面積,並附簡圖): 項目負責人: 動土安全措施(包括圍欄、警告標志、夜間警告燈等): 施工負責人: 施工地段負責人意見: 有關水、電、汽、工藝、設備、消防安全部門意見: 總圖負責人意見: 機動部門審批意見: 機動部門負責人: 2、動土作業前,項目負責人應對施工人員進行安全教育;施工負責人對安全措施進行現場交底,並督促落實。
3、動土作業施工現場應根據需要設置護欄、蓋板和警告標志,夜間應懸掛紅燈示警;施工結束後要及時回填土,並恢復地面設施。
4、動土作業必須按《動土安全作業證》的內容進行,對審批手續不全、安全措施不落實的,施工人員有權拒絕作業。
5、嚴禁塗改、轉借《動土安全作業證》,不得擅自變更動土作業內容、擴大作業范圍或轉移作業地點。
6、動土中如暴露出電纜、管線以及不能辨認的物品時,應立即停止作業,妥善加以保護,報告動土審批單位處理,採取措施後方可繼續動土作業。
7、動土臨近地下隱蔽設施時,應輕輕挖掘,禁止使用鐵棒、鐵鎬或抓鬥等機械工具。
8、挖掘坑、槽、井、溝等作業,應遵守下列規定:
(1)挖掘土方應自上而下進行,不準採用挖底腳的辦法挖掘,挖出的土石不準堵塞下水道和陰井。
(2)在挖較深的坑、槽、井、溝時,嚴禁在土壁上挖洞攀登。作業時必須戴安全帽。坑、槽、井、溝上端邊沿不準人員站立、行走。
(3)要視土壤性質、濕度和挖掘深度設置安全邊坡或固壁支架。挖出的泥土堆放處所和堆放的材料至少要距坑、槽、井、溝邊沿0.8米,高度不得超過1.5米。對坑、槽、井、溝邊坡或固壁支撐架應隨時檢查,特別是雨雪後和解凍時期,如發現邊坡有裂縫、松疏或支撐有折斷、走位等異常危險徵兆,應立即停止工作,並採取措施。
(4) 作業時應注意對有毒有害物質的檢測,保持通風良好。發現有毒有害氣體時,應採取措施後,方可施工。
(5) 在坑、槽、井、溝的邊緣,不能安放機械、鋪設軌道及通行車輛。如必須時,要採取有效的固壁措施。
(6)在拆除固壁支撐時,應從下而上進行。更換支撐時,應先裝新的,後拆舊的。
(7) 所有人員不準在坑、槽、井、溝內休息。
(8) 上下交叉作業應戴安全帽,多人同時挖土應相距在2米以上,防止工具傷人。作業人員發現異常時,應立即撤離作業現場。
(9)在化工危險場所動土時,要與有關操作人員建立聯系,當化工生產發生突然排放有害物質時,化工操作人員應立即通知動土作業人員停止作業,迅速撤離現場。
(10)作業前必須檢查工具、現場支護是否牢固、完好,發現問題應及時處理。
(11)動土作業涉及斷路時,必須按HG 23016的規定辦理《斷路安全作業證》。

❾ 靜力基樁載荷試驗

樁基工程屬隱蔽工程,樁基質量直接關繫到建築物安全,出現問題後的加固及處理難度大,因而,樁基檢測是樁基工程施工中的一個重要的環節。

基樁檢測大致可分為三種方法:

1.直接法

承載力檢測包括:單樁豎向抗壓(拔)靜載試驗和單樁水平靜載試驗。單樁豎向抗壓(拔)靜載試驗,用來確定單樁豎向抗壓(拔)極限承載力,判定工程樁豎向抗壓(拔)承載力是否滿足設計要求,同時可以在樁身或樁底埋設測量應力(應變)感測器,以測定樁側、樁端阻力;也可以通過埋設位移測量桿,測定樁身各截面位移量。單樁水平靜載試驗,除用來確定單樁水平臨界和極限承載力、判定工程樁水平承載力是否滿足設計要求外,還主要用於淺層地基土,求算其水平抗力系數,以便分析工程樁在水平荷載作用下的受力特性;當樁身埋設有應變測量感測器時,也可測量相應荷載作用下的樁身應力,並由此計算樁身彎矩。

2.半直接法

以樁的動態測量為主,在現場原型試驗基礎上,基於一些理論假設和工程實踐經驗,並加以綜合分析才能最終獲得檢測項目結果的檢測方法。主要包括以下兩種:

(1)低應變法。在樁頂面實施低能量的瞬態或穩態激振,使樁在彈性范圍內做彈性振動,並由此產生應力波的縱向傳播;同時利用波動和振動理論對樁身的完整性做出評價的一種檢測方法。有:反射波法、機械阻抗法、水電效應法等。

(2)高應變法。通過在樁頂實施重錘敲擊,使樁產生的動位移量級接近常規的靜載試樁的沉降量級,以便使樁周土阻力充分發揮,通過測量和計算,判定單樁豎向抗壓承載力是否滿足設計要求及對樁身完整性做出評價的一種檢測方法。有:錘擊貫入試樁法、波動方程法和靜動法等。其中,波動方程法是我國目前常用的高應變檢測方法。但這些方法在某些方面仍有較大的局限性,尚不能完全代替靜載試驗而作為確定單樁豎向抗壓極限承載力的設計依據。

3.間接法

依據直接法已取得的試驗成果,結合土的物理力學試驗或原位測試數據,通過統計分析,以一定的計算模式給出經驗公式或半理論、半經驗公式的估算方法。如根據地質勘察資料進行單樁承載力與變形的估算。由於地質條件和環境條件的復雜性,及其對邊界條件判斷有很大的不確定性,所以,本法只適用於工程初步設計的估算。

一、基樁在靜力載荷試驗中的典型破壞模式及其標准曲線特徵

在樁的靜力載荷試驗中,在相同的荷載條件下,由於不同的地質條件、施工工藝,可能表現出不同的破壞模式,如:在樁的豎向抗壓靜力載荷試驗中常見到以下幾種典型的荷載—位移(Q—S)曲線(圖2-14)。它們各自有著不同的含義。

圖2-14中的圖b、圖c樁端持力層為密實度和強度都較高的土層(如密實砂層、卵石層等),而樁周土為相對軟弱土層,此時端阻所佔比例大,Q—S曲線曲線呈緩變型,極限荷載下樁端呈整體剪切破壞或局部剪切破壞;圖a樁端與樁身為同類型的一般土層,端阻力不大,Q—S曲線呈陡降型,樁端呈刺入沖剪破壞;如軟弱土層中的摩擦樁的沖剪破壞,或者端承樁(尤其是長度較大的嵌岩樁)在極限荷載下由於樁身材料強度的破壞或樁身受壓彎曲產生的破壞;圖d、圖e樁端有虛土或沉渣,該部位樁端土的初始強度低,壓縮性高,當樁頂荷載達一定值後,樁底部土被壓密,強度提高,Q—S曲線呈台階狀;樁身特定缺陷也可表現為雙峰型Q—S曲線(如接樁時接頭開裂的預制樁、有水平裂縫的灌注樁等在一定試驗荷載作用下逐漸閉合)。

圖2-14 相同荷載條件、不同的地質條件和施工工藝導致的基樁不同破壞模式和力學特性

Q—單樁樁頂所受豎向荷載值(kN);S—在豎向荷載作用下,基樁的沉降量(mm);Z—地表以下深度(m);Qsu—單樁側阻極限值(kN);Qpu—單樁端阻極限值(kN)

典型的Q—S曲線應具有以下4個特徵(圖2-15):

(1)比例界限Qp(又稱第一拐點),是Q—S曲線上起始的近似直線段終點所對應的荷載;

(2)屈服荷載Qy,是曲線上曲率最大點所對應的荷載;

(3)極限荷載Qu,是曲線上某一極限位移Su所對應的荷載,也稱為工程上的極限荷載;

(4)破壞荷載Qf,是曲線的切線接近平行於S軸時所對應的荷載,是樁基失穩時的荷載。

在豎向拉、拔荷載作用下,常見的單樁破壞形式是沿樁-土界面間的剪切破壞。樁被拔出或者呈復合剪切面破壞,樁的下部沿樁-土界面破壞,而上部靠近地面附近,出現錐形剪切破壞,且錐形土體會同下面土體脫離並與樁身一起上移(圖2-22)。當樁身材料抗拉強度不足(或配筋不足)時,也可能出現樁身被拉斷現象。不同樁型的豎向抗拔力區別較大,如:為提高抗拔樁的豎向抗拔力,可採用人工擴底或機械擴底等施工方法,在樁端形成擴大頭,以發揮樁底部的擴頭抗拔阻力等。

水平荷載作用下的單樁,其工作性能主要體現在樁與土的相互作用上,當樁產生水平位移時,促使樁周土也產生相應的變形,產生的土抗力會阻止樁水平變形的進一步發展。在樁受荷初期,由靠近地面的地基土提供土抗力,土的變形處於彈性階段;隨荷載增大,樁水平變形量增加,表層土變形量隨之增大,地基土開始出現塑性屈服,土抗力逐漸由深部土層提供,且土體塑性區自上而下逐漸擴大,最大彎矩斷面隨之下移;當樁本身的截面抗矩無法承擔外部荷載產生的彎矩或樁側土強度時,樁身截面受拉而產生側開裂(折斷)破壞。

圖2-15 典型的Q—S曲線及其力學特徵點

二、單樁靜載荷試驗的適用范圍

在工程樁正式施工前,在地質條件具有代表性的場地上先施工幾根樁進行靜載試驗,以確定設計參數的合理性和施工工藝的可行性(需要時,也可在樁身埋設測量樁身應力、應變、位移、樁底反力的感測器或位移桿,以測定樁分層側阻力和端阻力)。若試樁直徑和樁長均較大,可採用中、小直徑樁模擬大直徑樁進行靜載荷試驗,以減少試驗成本。國家標准《建築地基基礎設計規范》(GB 50007—2002)規定:為保證樁基設計的可靠性,除地基基礎設計等級為丙級的建築物,可採用靜力觸探及標貫試驗參數來確定單樁豎向承載力特徵值外,其他建築物的單樁豎向承載力特徵值均應通過單樁豎向靜載荷試驗確定,且同一條件下的試樁數量,不宜少於總樁數的1%,且不應少於3根;為設計提供依據的靜載試驗應載入至破壞,試驗應進行到能判定單樁極限承載力為止。對於以樁身強度控制承載力的端承樁,可按設計要求的載入量進行試驗。檢測數量在同一條件下不應少於3根,且不宜少於總樁數的1%;當工程樁總數在50根以內時,不應少於2根。

為確保實際單樁豎向極限承載力標准值達到設計要求,應根據工程重要性、地質條件、設計要求及工程施工情況進行單樁靜載荷試驗。下列情況之一的樁基工程,應在施工前採用靜載試驗對工程樁單樁豎向承載力進行檢測:

(1)設計等級為甲級、乙級的建築樁基;

(2)地質條件復雜、施工質量可靠性低的建築樁基;

(3)本地區採用的新樁型或新工藝。

三、單樁抗壓靜載荷試驗方法

試驗方法主要有:壓重載荷台靜載試驗法;錨樁反力靜載試驗法;Osterberg法(國內稱自平衡法,見第九節)。

載荷台靜載試驗法(圖2-16,圖2-17)的測試裝置主要包括:加荷及反力裝置、樁頂沉降觀測裝置。荷載可由千斤頂、砂包、鋼筋混凝土構件、大型水箱、磚、鋼錠等壓重物提供,千斤頂的反力由錨樁及反力橫梁承擔,量測樁頂沉降的儀表有千分表或精密水準儀,千分表安裝在基準樑上,樁頂則相應設置沉降觀測標點。

錨樁橫梁反力裝置(俗稱錨樁法,圖2-16)是大直徑灌注樁靜載試驗最常用的載入反力系統,由試樁、錨樁、主梁、次梁、拉桿、錨籠(或掛板)、千斤頂等組成。錨樁、反力梁裝置提供的反力不應小於預估最大試驗荷載的1.2~1.5倍。當採用工程樁作錨樁時,錨樁數量不得少於4根;當試驗載入值較大時,有時需要6根甚至更多的錨樁。具體錨樁數量要通過驗算各錨樁的抗拔力來確定。錨樁的具體布置形式既要考慮現有試驗設備能力,也要考慮錨樁的抗拔力。

圖2-16 單樁抗壓靜力載荷試驗

當採用堆載時應遵守以下規定:

(1)堆載加於地基的壓應力,不宜超過地基承載力特徵值;

(2)堆載的限值可根據其對試樁和對基準樁的影響確定;

(3)堆載量大時,宜利用樁(可利用工程樁)作為堆載的支點;

(4)試驗反力裝置的最大抗拔或承重能力,應滿足試驗載入的要求。

當試樁的最大載入量超過錨樁的抗拔能力時,可採用錨樁壓重聯合反力裝置,在主梁和副樑上堆重或懸掛一定重物,由錨樁和重物共同承受千斤頂載入反力,以滿足試驗荷載要求。還可採用其他形式的反力裝置,如適用於較小直徑試樁的地錨反力裝置。採用地錨反力裝置應注意基準樁、錨桿、試驗樁之間的間距應符合規范規定(表2-10);對岩面淺的嵌岩樁,可利用岩錨提供反力;對於靜壓樁工程,可利用靜力壓樁機的自重作為反力進行靜載試驗,但不能直接利用靜力壓樁機的載入裝置,而應架設合適的主梁,採用千斤頂載入,基準樁的設置應符合規范。

圖2-17 國內、外單樁抗壓靜力載荷試驗現場工作圖

表2-10 試樁、錨樁(或壓重平台支墩邊)和基準樁之間的中心距離

註:1.D為試樁、錨樁或地錨的設計直徑或邊寬,取其較大者;2.如試樁或錨樁為擴底樁或多支盤樁時,試樁與錨樁的中心距不應小於2倍擴大端直徑;3.括弧內數值可用於工程樁驗收檢測時,多排樁設計樁中心距離小於4D的情況;4.軟土場地壓重平台堆載重量較大時,宜增加支墩邊與基準樁中心和試樁中心之間的距離、觀測基準樁的豎向位移。

沉降測量宜採用位移感測器或大量程千分表,對於機械式大量程(50mm)千分表,全程示值誤差和回程誤差分別應不超過40 μm和8 μm,相當於滿量程測量誤差不大於0.1%FS,分辨力優於或等於0.01mm。

試驗過程中,樁頭部位往往承受較高的豎向荷載和偏心荷載,為保證不因樁頭破壞而終止試驗,一般應對樁頭進行處理。其處理方法及解決方法是:

對預制方樁和預應力管樁,如果未進行截樁處理、樁頭質量正常且單樁設計承載力合理時,可不進行處理;對預應力管樁、尤其是進行了截樁處理的預應力管樁,可採用樁頭向下填芯處理,填芯高度一般為1~2m,也可在填芯時放置鋼筋(籠),以增加樁頭強度;填芯用的混凝土宜按C25~C30配製。

圖2-18 樁帽結構示意圖

還可以製作鋼卡箍或用鋼筋混凝土樁帽,套在樁頭上進行保護。樁帽(圖2-18)製作使用的具體方法如下:

混凝土樁樁頭處理:應先鑿掉樁頂部的鬆散破碎層和低強度混凝土,露出主筋後,沖洗干凈樁頭再澆注樁帽,並應符合下列規定:.

(1)樁帽頂面應水平、平整,樁帽中軸線與原樁身上部的中軸線嚴格對中,樁帽面積應大於或等於原樁身截面積,樁帽截面形狀可為圓形或方形;

(2)樁帽主筋應全部直通至樁帽混凝土保護層之下,如原樁身露出主筋長度不夠時,應通過焊接加長主筋;各主筋應在同一高度上,樁帽主筋應與原樁身主筋按規定焊接;

(3)距樁頂1倍樁徑范圍內,宜用3~5mm厚的鋼板圍裹,或距樁頂1.5倍樁徑范圍內設置箍筋,間距不宜大於150mm。樁帽應設置水平鋼筋網片3~5層,間距80~150mm。以增加其整體強度;

(4)樁帽混凝土強度等級宜比樁身混凝土提高1~2級,且不得低於C30。

單樁靜載荷試驗開始時間的規定:預制樁打入地基後,如為砂土,需7d後進行;如為粘性土,需視土的強度恢復情況而定,一般不得少於15d;對於飽和軟粘性土,不得少於25d;灌注樁應在樁身混凝土達到設計強度後,才能進行。

四、單樁靜力載荷試驗過程及其成果

在所有試驗設備安裝完畢之後,應進行一次全面檢查。先對試樁施加一較小的荷載進行預壓,目的是消除整個量測系統和被檢樁本身由於安裝、樁頭處理等人為因素造成的間隙而引起的非樁身沉降;排除千斤頂和管路中之空氣;檢查管路接頭、閥門等是否漏液等。一切正常後再卸載歸零,待千分表讀數穩定後記錄千分表初始讀數並做記錄,便可開始進行正式載入試驗。

樁的靜載試驗一般採用維持荷載法。我國靜載試驗的傳統做法是採用慢速維持荷載法,但在工程樁驗收檢測中,也允許採用快速維持荷載法。1985年ISSMFE(International Society for Soil Mechanics and Foundation Engineering,國際土壤力學與基礎工程學會)根據世界各國的靜載試驗有關規定,在推薦的試驗方法中,建議快速維持荷載法載入為每小時一級,穩定標准為0.1mm/20min。常用試驗記錄表格見表2-11。根據所進行的測試內容不同(抗壓、抗拉、水平載荷試驗),規范也對維持荷載法的具體方法作了相應規定。

下面介紹幾種常見的單樁抗壓靜載荷承載力試驗方法。

單樁抗壓靜載荷承載力試驗方法:

(1)慢速維持荷載法:具體做法是,按一定要求將荷載分級加到試樁上,每級荷載維持不變直到樁頂下沉量達到某一規定的相對穩定標准(每小時的沉降不超過0.1mm,並連續出現2次),然後繼續加下一級荷載。當達到規定的終止試驗條件時,停止加荷,再分級卸荷直到零載,試驗周期3~7d。

表2-11 單樁抗壓靜載荷試驗記錄表

(2)快速維持荷載法:試驗載入不要求每級的下沉量達到相對穩定,而以等時間間隔、連續載入。終止載入條件為:出現可判定極限荷載的陡降段或樁頂產生不停下沉,無法繼續載入。

(3)等貫入速率法:試驗以保持樁頂等速貫入土中,連續載入,按荷載-下沉量曲線確定極限荷載。

(4)循環載入卸載試驗法:有的在慢速維持荷載中,在部分荷載區間進行載入卸載循環,有的在每一級荷載達到穩定後,重復載入卸載循環;也有以快速維持荷載法為基礎對每一級荷載進行重復載入卸載循環。

1.慢速維持荷載法

按下列規定進行載入卸載和豎向變形觀測:

(1)載入分級:載入應該分級進行,採用逐級等量載入。分級荷載量宜為最大載入量或預估極限承載力的1/10,其中第一級可取分級荷載的2倍。修訂後的《建築地基基礎設計規范》(GB 50007—2002)規定載入分級不應小於8級。分級荷載宜為預估極限承載力的1/8~1/10;《建築樁基技術規范》(JGJ 94—94)規定,分級荷載為預估極限承載力的1/10~1/15。顯然,不同規范、不同行業標准對分級荷載的取值規定是不同的。

其他的特殊規定和要求:①樁底支承在堅硬岩(土)層上,樁的沉降量很小時,最大載入量不應小於設計荷載的2倍。②濕陷性黃土地區單樁豎向承載力靜載荷浸水試驗的載入有著特殊要求:

在進行單樁豎向承載力靜載荷浸水試驗加荷前,應確認該地基是否充分浸水。要求載入前和載入至單樁豎向承載力的預估值後,向試坑內晝夜浸水,以使樁身周圍和樁底端持力層內的土均達到飽和狀態。否則,單樁豎向靜載荷試驗測得的承載力偏大,且不安全。

(2)變形觀測:每級載入後,間隔5min、10min、15min各測讀一次,以後每隔15min測讀一次,累計1h後每隔30min測讀一次,並記錄樁身外露部分裂縫開裂情況。

(3)卸載觀測:每級卸載值為載入值的2倍。卸載時,每級荷載維持1h,按第15min、30min、60min測讀樁頂沉降量後,即可卸下一級荷載;卸載至零後,應測讀樁頂殘余沉降量,維持時間為3h,測讀時間為第15min、30min,以後每隔30min測讀一次。

(4)變形相對穩定標准:連續2h每小時內的變形值都不超過0.1mm,認為已達到相對穩定,可加下一級荷載。

(5)終止載入條件:當出現下列情況之一時,即可終止載入:①當荷載—沉降(Q—S)曲線上有可判定極限承載力的陡降段,且樁頂總沉降量超過40mm;②用快速法時,在某級荷載作用下,樁頂沉降量大於前一級荷載作用下沉降量的5倍;③用慢速法時,在某級荷載作用下,樁頂沉降量大於前一級荷載作用下沉降量的2倍(即:ΔSn+1/ΔSn≥2;ΔSn為第n級荷載的沉降增量;ΔSn+1為第n+1級荷載的沉降增量)且經24h尚未達到穩定;④已達到反力裝置的最大載入量;⑤已達到設計要求的最大載入量;⑥當荷載—沉降曲線呈緩變型時,可載入至樁頂總沉降量60~80mm,特殊情況下可根據具體要求載入至樁頂累計沉降量超過80mm。非嵌岩的長(超長)樁和大直徑(擴底)樁的Q—S曲線,一般呈緩變型。由於非嵌岩的長(超長)樁的長細比大、樁身較柔,彈性壓縮量大,樁頂沉降較大時,樁端位移還很小;而大直徑(擴底)樁雖樁端位移較大,但尚不足以使端阻力充分發揮,在樁頂沉降達到40mm時,樁端阻力一般不能充分發揮。國際上普遍認為:當沉降量達到樁徑的10%時,才可能達到破壞荷載;⑦當工程樁作錨樁時,錨樁上拔量已達到允許值;⑧ 樁頂荷載為樁受拉鋼筋總極限承載力的0.9倍時。

2.快速維持荷載法

按下列規定進行觀測:

(1)每級荷載施加後,按第5min、15min、30min測讀樁頂沉降量,以後每隔15min測讀一次;

(2)試樁沉降相對穩定標准:載入時每級荷載維持時間不少於1h,最後以15min時間間隔的樁頂沉降增量小於相鄰15min時間間隔的樁頂沉降增量;

(3)當樁頂沉降速率達到相對穩定標准時,再施加下一級荷載;

(4)卸載時,每級荷載維持15min,在第5min、15min測讀樁頂沉降量後,即可卸下一級荷載;卸載至零後,應測讀樁頂殘余沉降量,測讀時間為第5min、10min、15min、30min,以後每隔30min測讀一次,總維持時間為2h。

五、單樁豎向極限承載力確定方法

(1)作荷載—沉降(Q—S)曲線、S—lgt曲線和其他輔助分析所需的曲線;

(2)當陡降段明顯時,取相應於陡降段起點的荷載值為單樁豎向極限承載力;

(3)如果在某級荷載作用下,樁頂沉降量大於前一級荷載作用下沉降量的2倍,且經24h尚未達到穩定標准,單樁豎向抗壓極限承載力值取前一級荷載值;

(4)Q—S曲線呈緩變型時,取樁頂總沉降量S=40mm所對應的荷載值為單樁豎向極限承載力,當樁長大於40m時,宜考慮樁身的彈性壓縮。根據沉降量確定極限承載力的基本原則是,盡可能挖掘樁的極限承載力而又保證有足夠的安全儲備。對直徑D大於或等於800mm的樁,可取Q—S曲線上S=0.05 D對應的荷載值;

(5)單樁豎向抗壓極限承載力,取S—lgt曲線尾部出現明顯向下彎曲的前一級荷載值;

(6)如果因為已達載入反力裝置或設計要求的最大載入量,或錨樁上拔量已超出允許值而終止載入時,若樁的總沉降量不大,樁的豎向抗壓極限承載力取值為不小於實際最大試驗荷載值;

(7)參加統計的試樁,當滿足其極差不超過平均值的30%時,可取其平均值作為單樁豎向極限承載力。極差超過平均值的30%時,宜增加試樁數量並分析離差過大的原因,並結合工程具體情況,確定極限承載力(對樁數為3根及3根以下的柱下樁台,取最小值);

(8)以外推法求樁的豎向抗壓極限承載力:在許多情況下,樁的靜載試驗載入往往達不到極限荷載而終止試驗;對工程樁的試驗也不允許將樁壓至極限破壞狀態,這給判定樁的極限承載力造成一定困難。根據研究和大量經驗對比,已經建立了一些擬合數學模型和應用實測Q—S曲線的作圖方法,用來推測終止試驗後的Q—S曲線,並確定樁的極限承載力。

1.作圖法

在Q—S曲線段上,選取曲率變化較大的一段曲線,在該曲線段兩側取兩點(如圖2-19中M1,M6),把這2點對應的樁頂沉降等分成若干相等的沉降量ΔS(一般不少於四等分),過各等分點作Q軸平行線與Q— S曲線相交得點M2、M3、M4……,過上述各交點作S軸的平行線與Q軸相交,得P1、P2、P3、P4……,過上述各點作與Q軸成45 度的斜線P1A、P2B、P3C、P4D……,P1A 與 M2P2的上延長線交於A點、P2B與M3P3的上延長線交於B點、P3C與M4P4的上延長線交於C點……,作一條過上述各點的直線AG,上述各點大致落在一條直線上,該直線與Q軸的交點F對應的Q值,即為單樁豎向抗壓極限承載值Qu,如圖2-19所示。

圖2-19 作圖法求單樁豎向抗壓極限承載值Qu

2.雙曲線法

雙曲線法又稱斜率倒數法。假設樁的靜載試驗Q—S曲線為一雙曲線,其方程可寫成:

土體原位測試與工程勘察

式中:M,C為待定參數。其確定方法是:在Q—S曲線的已知段選取兩個點(Q1,S1),(Q2,S2),按式(2-32)、式(2-33)求得待定參數M,C為:

土體原位測試與工程勘察

土體原位測試與工程勘察

3.最小二乘法

用最小二乘法對實測Q—S數據進行擬合,則有:

土體原位測試與工程勘察

土體原位測試與工程勘察

土體原位測試與工程勘察

式中:Si為樁測點處樁身沉降量(mm);Qi為測點處的樁身軸力(kPa)。

在數學意義上,樁的極限承載力值Qf為:

土體原位測試與工程勘察

工程中,樁的極限承載力值Qu為:

土體原位測試與工程勘察

也可取沉降量等於40mm所對應的荷載做為樁的極限承載力值:

土體原位測試與工程勘察

4.指數方乘法

假設Q—S曲線為指數曲線時,則有如下的方程式:Q=Qu(1-e-αs),經數學變換後得:

土體原位測試與工程勘察

式中:Q為樁所受軸向靜荷載(kPa);Qu同上;α為擬合系數,取值詳見國家標准 GB/T19496-2004《鑽心檢測離心高強混凝土抗壓強度試驗方法》。

圖2-20 用指數方乘法求樁的極限承載力值

S-lg(1-Q/Qu)為一直線,根據Qu可能的大概范圍,可假設若干個Qu,再根據靜載試驗結果(Qi,Si),計算出lg(1-Q/Qu),用S-lg(1 Q/Qu)法可以繪出若干根指數曲線。若Qu小於真實值時,曲線向上彎曲;若Qu大於真實值時,曲線向下彎曲。在上彎與下彎曲線之間必可得一根近似直線,對應於該近似直線的Qu,即為樁的極限荷載(圖2-20)。

六、單樁豎向抗壓承載力特徵值Ra的確定

無論載入速率的快慢,應按參加統計的試樁數取試驗值的平均值,並要求其極差不得超過平均值的30%。取此平均值的一半作為單樁豎向抗壓承載力特徵值Ra

《建築地基基礎設計規范》(GB 50007—2002)規定,單樁豎向抗壓承載力特徵值Ra為單樁豎向抗壓極限承載力統計值的1/2(即:單樁豎向抗壓極限承載力統計值除以安全系數2)。

七、多年凍土地基單樁豎向靜載荷試驗

多年凍土中試樁施工後,應待凍土地溫恢復正常後再進行載荷試驗。試驗樁宜經過一個冬期後再進行試驗。試樁時間宜選在夏末、冬初,地溫出現最高值的一段時間內進行。

單樁靜載荷試驗視試驗條件和試驗要求不同,可選用:慢速維持荷載法或快速維持荷載法進行試驗:

A.採用慢速維持荷載法時,應符合下列要求:

載入級數不應少於6級,第一級荷載應為預估極限荷載的1/4倍,以後各級荷載可為極限荷載的0.15倍,累計試驗荷載不得小於設計荷載的2倍;

在某級荷載作用下,樁在最後24h內的下沉量不大於0.5mm時,應視為下沉已穩定,方可施加下一級荷載;在某級荷載作用下,連續10d達不到穩定時,應視為樁-地基系統已遭破壞,可終止載入;

試驗的測讀時間,應符合下列規定:

a)沉降:載入前讀一次,載入後讀一次,此後每2h讀一次。在高載下,當樁下沉加快時,觀測次數應增加,縮短間隔時間;

b)地溫:每24h觀測一次。

卸載時的每級荷載值為載入值的兩倍。卸載後應立即測讀樁的變位,此後每2h測讀一次,每級荷載的延續時間為12h,卸載期間應照常觀測地溫。

B.採用快速維持荷載法時,應符合下列要求:

快速加荷時每級荷載的間隔時間,應視樁周凍土類型和凍土條件確定,一般不得小於24h,且每級荷載的間隔時間應相等;

載入的級數一般不得少於6~7級,荷載級差可採用預估極限荷載的0.15倍。當樁在某級荷載作用下產生迅速下沉時,或樁頭總下沉量超過40mm時,即可終止試驗;

快速載入時,樁頂下沉和地溫的觀測要求,應與上述慢速載入時相同。

C.多年凍土地基單樁豎向極限承載力的確定,應符合下列規定:

慢速載入時,破壞荷載的前一級荷載,即為樁的極限荷載;

快速載入時,找出每級荷載下樁的穩定下沉速度(即穩定蠕變速率),並繪制樁的流變曲線圖(圖2-21),曲線延長線與橫坐標的交點F應作為樁的極限長期承載力。

圖2-21 樁的流變曲線示意圖

多年凍土地基單樁豎向靜載荷試驗設計值的取值,應符合下列規定:

慢速載入時,應按參加統計的試樁數,取試驗值的平均值,並要求其極差不得超過平均值的30%,取此平均值的一半作為單樁承載力的設計值。

快速載入時,應按參加統計的試樁數取試驗值的平均值,並要求其極差不得超過平均值的30%,取此平均值的一半作為單樁承載力的設計值。

閱讀全文

與地錨鑽快速入土電動工具相關的資料

熱點內容
加氣閥門緊 瀏覽:660
移動通訊器材包括哪些 瀏覽:157
地暖氣片5閥門 瀏覽:211
電工電子綜合實驗裝置能做什麼實驗 瀏覽:886
水電自動裝置檢修工txt下載 瀏覽:875
自動滅火裝置組件 瀏覽:145
超聲波清洗機還可以洗什麼 瀏覽:928
平台印刷機傳動裝置的設計 瀏覽:809
萬向傳動裝置一般由什麼和什麼組成 瀏覽:549
清洗光學鏡片設備有哪些 瀏覽:978
如何知道電動車電機軸承 瀏覽:396
內7外26高8什麼軸承 瀏覽:812
迷你小冷藏櫃不製冷怎麼修 瀏覽:555
如何在路由器上查看上網設備 瀏覽:611
練聲音的器材有哪些 瀏覽:718
肇慶車床五金件 瀏覽:645
閥門氣缸是什麼原因 瀏覽:277
飛機傳動裝置包括發動機嗎 瀏覽:809
圓柱軸承安裝後如何調整 瀏覽:565
天正暖通閥門標注樣式怎麼修改 瀏覽:948