① 求助,遺傳演算法工具箱總是提示輸入參數不足
你需要安裝matlab的遺傳演算法工具箱,那裡面有定義rep函數。
正常下載的matlab中沒有這個函數。
不信,你可以試試 help rep 看看有沒有說明,沒有說明,表示matlab中無此函數
② matlab遺傳演算法工具箱求解多元函數顯示輸入參數數目不足求解答,非常感謝
錯誤的主要原因是你寫的函數有問題。函數應該這樣來表示:
function y = Test1(x)
a=x(1);b=x(2);
y=a+b;
end
使用優化工具箱,選擇ga,運行可以得到如下結果
③ MATLAB遺傳演算法工具箱優化變數定義問題
你定義的目標函數有問題。應把h1、h2、h3看成一個變數組,即h=[h1,h2,h3],即
function y=Fitfun1(h)
y=25*h(1)+50*h(2)-10*h(3) %為了說回明問題,把函數表達答式寫成該形式
如還不能理解,最好把具體問題貼出來,包括其約束條件,以便我們幫助你。
④ 遺傳演算法工具箱的具體使用
matlab遺傳演算法工具箱函數及實例講解 核心函數:
(1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始種群的生成函數
【輸出參數】
pop--生成的初始種群
【輸入參數】
num--種群中的個體數目
bounds--代表變數的上下界的矩陣
eevalFN--適應度函數
eevalOps--傳遞給適應度函數的參數
options--選擇編碼形式(浮點編碼或是二進制編碼)[precision F_or_B],如
precision--變數進行二進制編碼時指定的精度
F_or_B--為1時選擇浮點編碼,否則為二進制編碼,由precision指定精度)
(2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,...
termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遺傳演算法函數
【輸出參數】
x--求得的最優解
endPop--最終得到的種群
bPop--最優種群的一個搜索軌跡
【輸入參數】
bounds--代表變數上下界的矩陣
evalFN--適應度函數
evalOps--傳遞給適應度函數的參數
startPop-初始種群
opts[epsilon prob_ops display]--opts(1:2)等同於initializega的options參數,第三個參數控制是否輸出,一般為0。如[1e-6 1 0]
termFN--終止函數的名稱,如['maxGenTerm']
termOps--傳遞個終止函數的參數,如[100]
selectFN--選擇函數的名稱,如['normGeomSelect']
selectOps--傳遞個選擇函數的參數,如[0.08]
xOverFNs--交叉函數名稱表,以空格分開,如['arithXover heuristicXover simpleXover']
xOverOps--傳遞給交叉函數的參數表,如[2 0;2 3;2 0]
mutFNs--變異函數表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation']
mutOps--傳遞給交叉函數的參數表,如[4 0 0;6 100 3;4 100 3;4 0 0]
【問題】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9
【分析】選擇二進制編碼,種群中的個體數目為10,二進制編碼長度為20,交叉概率為0.95,變異概率為0.08
【程序清單】
%編寫目標函數
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x+10*sin(5*x)+7*cos(4*x);
%把上述函數存儲為fitness.m文件並放在工作目錄下
initPop=initializega(10,[0 9],'fitness');%生成初始種群,大小為10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遺傳迭代
運算借過為:x =
7.8562 24.8553(當x為7.8562時,f(x)取最大值24.8553)
註:遺傳演算法一般用來取得近似最優解,而不是最優解。
遺傳演算法實例2
【問題】在-5<=Xi<=5,i=1,2區間內,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。
【分析】種群大小10,最大代數1000,變異率0.1,交叉率0.3
【程序清單】
%源函數的matlab代碼
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;
%適應度函數的matlab代碼
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遺傳演算法的matlab代碼
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')
註:前兩個文件存儲為m文件並放在工作目錄下,運行結果為
p =
0.0000 -0.0000 0.0055
大家可以直接繪出f(x)的圖形來大概看看f(x)的最值是多少,也可是使用優化函數來驗證。matlab命令行執行命令:
fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])
⑤ matlab遺傳演算法工具箱函數的參數問題
可能的原因是:
1.gatbx工具箱下的crtbp函數的文件名為crtbp.m,大小寫不統一所以出現了warning,需要把把專它改為屬小寫的crtbp.m;
2.gatbx屬於第三方工具箱,matlab自身對它是沒有說明的,所以搜不到這些遺傳演算法的指令。
⑥ 使用MATLAB遺傳演算法工具箱如何設置參數使得收斂速度加快
fitness function要自己設計的 比如y=sinx 也要編成一個m文件啊……
⑦ matlab遺傳演算法工具箱優化結果數值
ga就是在窮舉不可能完成時,用一種方式找到最優解
ga工具的完整形式如下表示
[X,FVAL,EXITFLAG,OUTPUT,POPULATION,SCORES] =
GA(FITNESSFCN,NVARS,A,b,Aeq,beq,lb,ub,NONLCON,options)
X是最優自變數
FVAL是求得的最優值
其他以此是推出標志,結構體,終止時的總群,終止時種群函數值
後半部分以此是目標函數,目標函數自變數個數
A和b是線性約束不等式AX〈b
Aeq和beq是一對線性等式約束,AeqX=beq
lb是X值下限,ub是X值下限
NONLCON是非線性約束函數 options是運行方式。這兩個可以寫函數自己完成,也可默認
函數默認計算最小值,計算最大值要加負號
⑧ 用遺傳演算法工具箱求解一個多目標優化問題,現在需要一個matlab程序,求高人指點
用遺傳演算法工具箱求解一個多目標優化問題的步驟:
1、根據題意,建立自定專義目標函數,ga_fun1(x)
2、在命令窗屬口中,輸入
>> optimtool %調用遺傳演算法工具箱
3、在遺傳演算法工具箱界面中,分別對Fitnessfunction框內輸入@ga_fun1();A框內輸入[1,1,1];b框內輸入16;Aeq框內輸入[];beq框內輸入[];Lower框內輸入[0,0,0];Upper框內輸入[];
4、單擊Start。得到x=4.508 y=2.513 z=1.912值。