⑴ KG是什麼意思
符號kg,千克為國際單位制中度量質量的基本單位,千克也是日常生活中最常使用的基本單位之一,1kg=2斤。
克 符號 g,相等於千分之一千克。一克的重量大約相於一立方厘米水在室溫的質量,大約有一個萬字夾的質量。
1噸=1,000,000克。
1公斤=1,000克。
1毫克=0.001克。
1微克=0.000 001克。

千克:
又作公斤,為國際基本質量單位,符號 kg。
1791年規定:1立方分米的純水在4℃時的質量 ,並用鉑銥合金製成原器,保存在巴黎,後稱國際千克原器。
2018年11月16日,第26屆國際計量大會(CGPM)經包括中國在內的各成員國表決,全票通過了關於「修訂國際單位制(SI)」的1號決議。根據決議,千克、安培、開爾文和摩爾等4個SI基本單位的定義將改由常數定義。
於2019年5月20日起正式生效。1千克將定義為「對應普朗克常數為6.62607015×10^-34J·s時的質量單位」。其原理是將移動質量1千克物體所需機械力換算成可用普朗克常數表達的電磁力,再通過質能轉換公式算出質量。
以上內容參考:網路-重量單位
⑵ 某同學在製作彈簧測力計時,找來了多種不同類型的彈簧
[編輯本段]彈簧
彈簧是一種利用彈性來工作的機械零件。一般用彈簧鋼製成。用以控制機件的運動、緩和沖擊或震動、貯蓄能量、測量力的大小等,廣泛用於機器、儀表中。按形狀分,主要有螺旋彈簧、渦卷彈簧、板彈簧等。
[編輯本段]其主要功能
①控制機械的運動,如內燃機中的閥門彈簧、離合器中的控制彈簧等。②吸收振動和沖擊能量,如汽車、火車車廂下的緩沖彈簧、聯軸器中的吸振彈簧等。③儲存及輸出能量作為動力,如鍾表彈簧、槍械中的彈簧等。④用作測力元件,如測力器、彈簧秤中的彈簧等。彈簧的載荷與變形之比稱為彈簧剛度,剛度越大,則彈簧越硬。
按受力性質,彈簧可分為拉伸彈簧、壓縮彈簧、扭轉彈簧和彎曲彈簧,按形狀可分為碟形彈簧、環形彈簧、板彈簧、螺旋彈簧、截錐渦卷彈簧以及扭桿彈簧等。普通圓柱彈簧由於製造簡單,且可根據受載情況製成各種型式,結構簡單,故應用最廣。彈簧的製造材料一般來說應具有高的彈性極限、疲勞極限、沖擊韌性及良好的熱處理性能等,常用的有碳素彈簧鋼、合金彈簧鋼、不銹彈簧鋼以及銅合金、鎳合金和橡膠等。彈簧的製造方法有冷卷法和熱卷法。彈簧絲直徑小於8毫米的一般用冷卷法,大於8毫米的用熱卷法。有些彈簧在製成後還要進行強壓或噴丸處理,可提高彈簧的承載能力。
彈簧是機械和電子行業中廣泛使用的一種彈性元件,彈簧在受載時能產生較大的彈性變形,把機械功或動能轉化為變形能,而卸載後彈簧的變形消失並回復原狀,將變形能轉化為機械功或動能。
[編輯本段]彈簧的類
按受力性質,彈簧可分為拉伸彈簧、壓縮彈簧、扭轉彈簧和彎曲彈簧;按形狀可分為碟形彈簧、環形彈簧、板彈簧、螺旋彈簧、截錐渦卷彈簧以及扭桿彈簧等。普通圓柱彈簧由於製造簡單,且可根據受載情況製成各種型式,結構簡單,故應用最廣。彈簧的製造材料一般來說應具有高的彈性極限、疲勞極限、沖擊韌性及良好的熱處理性能等,常用的有碳素彈簧鋼、合金彈簧鋼、不銹彈簧鋼以及銅合金、鎳合金和橡膠等。彈簧的製造方法有冷卷法和熱卷法。彈簧絲直徑小於8毫米的一般用冷卷法,大於8毫米的用熱卷法。有些彈簧在製成後還要進行強壓或噴丸處理,可提高彈簧的承載能力。
什麼是螺旋彈簧?
螺旋彈簧即扭轉彈簧,是承受扭轉變形的彈簧,它的工作部分也是密繞成螺旋形。扭轉彈簧的端部結構是加工成各種形狀的扭臂,而不是勾環。扭轉彈簧常用於機械中的平衡機構,在汽車、機床、電器等工業生產中廣泛應用。
什麼是拉伸彈簧?
拉伸彈簧是承受軸向拉力的螺旋彈簧,拉伸彈簧一般都用圓截面材料製造。在不承受負荷時,拉伸彈簧的圈與圈之間一般都是並緊的沒有間隙。
什麼是壓縮彈簧?
壓縮彈簧是承受向壓力的螺旋彈簧,它所用的材料截面多為圓形,也有用矩形和多股鋼縈卷制的,彈簧一般為等節距的,壓縮彈簧的形狀有:圓柱形、圓錐形、中凸形和中凹形以及少量的非圓形等,壓縮彈簧的圈與圈之間有一定的間隙,當受到外載荷時彈簧收縮變形,儲存變形能。
什麼是扭力彈簧? 扭力彈簧利用杠桿原理,通過對材質柔軟、韌度較大的彈性材料的扭曲或旋轉,使之具有極大的機械能。
[編輯本段]彈簧各部分名稱:
(1)彈簧絲直徑d:製造彈簧的鋼絲直徑。
(2)彈簧外徑D:彈簧的最大外徑。
(3)彈簧內徑D1:彈簧的最小外徑。
(4)彈簧中徑D2:彈簧的平均直徑。它們的計算公式為:D2=(D+D1)÷2=D1+d=D-d
(5)t:除支撐圈外,彈簧相鄰兩圈對應點在中徑上的軸向距離成為節距,用t表示。
(6)有效圈數n:彈簧能保持相同節距的圈數。
(7)支撐圈數n2:為了使彈簧在工作時受力均勻,保證軸線垂直端面、製造時,常將彈簧兩端並緊。並緊的圈數僅起支撐作用,稱為支撐圈。一般有1.5T、2T、2.5T,常用的是2T。
(8)總圈數n1: 有效圈數與支撐圈的和。即n1=n+n2.
(9)自由高H0:彈簧在未受外力作用下的高度。由下式計算:H0=nt+(n2-0.5)d=nt+1.5d (n2=2時)
(10)彈簧展開長度L:繞制彈簧時所需鋼絲的長度。L≈n1 (ЛD2)2+n2 (壓簧) L=ЛD2 n+鉤部展開長度(拉簧)
(11)螺旋方向:有左右旋之分,常用右旋,圖紙沒註明的一般用右旋。
(12) 彈簧旋繞比;中徑D與 鋼絲直徑d之比
[編輯本段]彈簧的規定畫法
(1)在平行螺旋彈簧線的視圖上,各圈的輪廓線畫成直線。
(2)有效圈數在4圈以上的彈簧,可只畫出其兩端1~2圈(不含支撐圈)。中間用通過彈簧鋼絲中心的點畫線連起來。
(3)在圖樣上,當彈簧的旋向不作規定時,螺旋彈簧一律畫成右旋,左旋彈簧也畫成右旋,但要註明「左」字。
[編輯本段]彈簧的應用
大多數材料都有不同程度的彈性,如果將其彎曲,便會以很大的力量恢復其原形。在人類歷史上,一定很早就注意到樹苗和幼樹的樹枝有很大的撓性,因為許多原始文化利用這一特性,在特製的門後或籠子後楔上一根棍,或者用活結套在一根桿上向下拉;一旦松開張力,這根棍或桿就會往回彈。他們就用這種辦法來捕捉飛禽走獸。實際上,弓就是按這種方式利用幼樹彈性的彈簧;先向後拉弓,然後撒手,讓其回彈。中世紀時,這種想法開始出現在機械上,如紡織機、車床、鑽機、磨面機和鋸。操作者用手或腳踏板給出下壓沖程,將工作機械往下拉,這時用繩索固定在機械上的一根桿彈回,產生往復運動。
彈性材料的抗扭性不壓於它的抗撓性。希臘帝國時期 (大概是公元前4世紀)發明了用搓成的腱繩或毛繩拉緊的扭簧,用以代替簡單的彈簧來加強石弩和拋石機的威力。這時人們開始認識到,金屬比木頭、角質或任何這類有機物質的彈性更大。菲洛 (其寫作年代約為公元前200年)把它作為一項新發現來進行介紹。他估計讀者是難以置信的。凱爾特人和西班牙人的劍的彈性,引起了他的亞歷山大城的前輩的注意。為了弄清楚劍為什麼有彈性,他們進行了許多實驗。結果他的師傅克特西比發明了拋石機,拋石機的彈簧是用彎曲的青銅板作成的——實際上是最早的片簧;菲洛本人又進一步改進了這些拋石機。富有創造性的克特西比在發明這種拋石機後,又想出了另一種拋石機—一它利用汽缸內空氣在受壓的情況下產生的彈性工作。
在很久以後人們才想到:如果壓縮一根螺旋桿,而不是彎曲一根直桿,那麼金屬彈簧儲存的能量就會更大。據伯魯涅列斯基的小傳記載,他製作過一口鬧鍾,其中使用了若干代彈簧。最近有人指出,在附有一些奇特的螺旋彈簧鍾表圖的15世紀末葉的一本機械手冊中有這架鬧鍾的圖樣。這類彈簧也用於現代的捕鼠器。帶圈簧 (水平壓縮而不是垂直壓縮的彈簧)的鍾表,在1460年左右肯定已開始使用了,但基本上是皇室的奢侈品,大約又過了1個世紀,帶彈簧的鍾表才成為中產階級人士的標志。
控制流動方向的閥門
由於閥門只讓水或其他流體(如空氣)沿一個方向流動,幾乎可以肯定地說,它最先是作為需要這種運動的早期工具——風箱的一個部件出現的。阿格里科拉在研究文藝復興時期的冶金學的文章中說,鍛鐵爐風箱有一個比風眼稍長和稍寬的薄板,「薄板上覆蓋著山羊皮,是用皮帶捆在板上的,毛邊一側沖地面」。放置的方式是:當風箱鼓起來時,薄板打開;當風箱收縮時,薄板關閉。」瓣閥肯定遠比阿格里科拉的時代為早,同楔形板風箱一樣古老。但它問世的具體年代卻很難確定,因為瓣閥這個術語來自古老的皮袋型風箱 (在這種風箱中,操作的人可以用腳或手將風眼堵住)。顯然,最早的模型大約是希臘王朝時代的青銅燈,但在羅馬後期的詩人奧素尼烏斯之前還沒有人提到過青銅燈的閥門。奧索尼烏斯把陸上快咽氣的魚的鰓。比作在掬木腔內往復運動時通過孔眼交替進風和擋風的羊毛閥。
可以說,機械上使用閥門的歷史起始於克特西比的壓力泵。維脫勞維斯和赫羅對壓力泵作了詳細的說明,他們說:「靈巧地安在管道口內的環形薄片,不會讓壓入容器的東西再往回跑。」看來克特西比壓力泵的原始瓣閥呈長筒形,那時已用來搞屋頂通風。後來改用矩形閥,但名稱仍保持不變。已經修復了幾台羅馬壓力泵,其閥門已嚴重腐蝕,但還是可以辨認出來。赫倫在講到用雙氣缸壓力泵作滅火器時,還介紹了一種原始的跳動活門,一些在三根彎柱上滑上滑下的小圓盤。克特西比的水力機件有用來控制空氣進入管道的滑閥。除此以外,在文藝復興時期前,所有的泵和風箱閥都是瓣閥 (或鉸形閥)。
達·芬奇發明的一種錐形跳動舌門,無疑是拉梅利的機械發明手冊
(1588)中所畫的那些舌門的來源。跟拉梅利同時代的阿勒奧蒂,在自動木偶戲中採用了一種蝴蝶閥來控制管道內的水流。但是,從赫倫的時代直到發明蒸汽機,這些跳動舌門沒有一種得到廣泛應用,各種閥門也沒有什麼變化。蒸汽機(需要對流入和流出順序進行更精確的控制)導致了跟發動機的運轉有關的精密閥門的出現,這些閥門包括紐科門設計的釋放積蓄在氣缸中的空氣的「噴氣閥」、默多克的滑閥(1799)和使雙動發動機的活塞保持平衡的平衡閥。
空氣泵
德國馬德堡市市長蓋里克對科學家和哲學家關於形成真空的可能性的爭論很感興趣。作為一個受過專門教育的工程師,他決定通過實驗來解決這個問題。公元1650年,他製造出了第一台空氣泵——像一台手工操作的水泵,但有製造精密的零件,不透氣。這台空氣泵是成功的。他指出,在一個抽盡了空氣的容器內,聽不到鍾響,蠟燭不燃燒,動物也會悶死。
他的大規模的演示是十分壯觀的。有一次實驗是當著皇帝斐迪南三世的面在其宮廷前面的空曠處進行的。在這個實驗中,在直徑12英尺的兩個半球的周邊凸緣上塗上潤滑脂,將兩個半球的凸緣嵌合,然後將球內空氣抽盡。將8匹馬分成兩組拉拴在每個半球上的鋼索也未能將其分開,可是放進空氣後,它們就分開了。在公元1654年的另一次實驗,是將一個立式開口圓筒活塞下面抽成真空,用50人拉拴在活塞上的繩子,他們反而被活塞拉動了。人們就是用這種方法來使活塞做功的;活塞的下面必須始終有一個真空。
但是,沒有空氣泵能形成真空嗎?經過許多年之後,人們發現用蒸汽可以解決這個問題。公元1698年,托馬斯·薩弗里第一個利用蒸汽排水,使蒸汽通入密閉容器,然後在容器上噴冷水,使其中的蒸汽冷凝,從而產生真空。他利用這種真空從礦井抽水,又利用鍋爐蒸汽將容器中的水排空。這個循環過程反復進行。
薩弗里的設備被稱為「礦工之友」。它沒有任何活塞或活動零件,也不是一台發動機,而只是一台泵而已。
在此以前的1690年,法國的丹尼斯·帕平已經製造出了一個模型設備,一個直徑2.5英寸的活塞剛好能放進汽缸里。在汽缸內盛少量的水,他就能夠通過連續地將水加熱和冷卻的辦法,證明汽缸冷卻時在活塞下面形成真空。雖然這種設備沒有得到實際應用,但卻是第一台利用冷凝蒸汽推動活塞和做功的設備。
公元 1712年,將居里克、帕平和薩弗里的上述3項成就結合在一起,達特默思的托馬斯·紐科門製成了一台實用的蒸汽機。
胡克發明了萬向節
公元1676年,被譽為「英國的達·芬奇」的羅伯特·胡克發表了他關於
「太陽鏡」的演說。這是一台採用反射鏡系統安全地觀測太陽的儀器。這台儀器是用他新奇的萬向節進行操縱的。萬向節是一種萬能儀器……用來通過任何不規則的彎曲軌道產生環形運動。雖然胡克比較詳細地講過這種新儀器的製造方法,並且含糊地指出,這種儀器可能在各方面獲得應用,但他自己只想用它來進行天文觀測,或用在時鍾和日規的設計中,故在當時沒有引起多少人注意。
胡克是個才華橫溢的人,他在系統提出物理學、化學和地質學方面的革命性理論之餘,在倫敦咖啡館內同思想相近的朋友們無休止地討論之餘,抽空兒搞了二十幾項發明。他的日記通常略為提及某些新設想是如何在他的高度活躍的頭腦中逐步醞釀成形的。英國皇家學會會議記錄,記載了那些使他最新的發現得以馳名的實驗。
但是,日記並沒有講他在萬向節上花費了許多時間;他也不曾想學會演示萬向節。就這種機器而言,發明完全屬於他個人看來是勿容置疑的。但是,在動力傳輸方面,在19世紀的運輸革命之前,和許多其他的發明一樣,並不需要一個具有向各個方向傳動的自由接頭。
瓦拉發明了調速器
瓦特在1789年發明的蒸汽機中使用的離心調速器,在當時引起的轟動不是太大;瓦特重視動力系統,只把調速器看成是蒸汽機上的一個附件。然而它是第一台通過改變燃料輸入量而有效地控制速度的裝置,是使一台機器能進行自動調節的一切反饋裝置的鼻祖,在發明史上的地位已確定無疑。瓦特的調速器是由一對離心擺組成,最遠處與蒸汽機的旋轉飛輪相連,直接連在一個套筒上,套筒又與汽缸的進汽閥連接。當飛輪轉動較快時,兩個球體就向外擺動,使套筒下降;當速度減慢時,球體就隨之下垂,迫使套筒上升。汽閥可開大開小,以維持均勻的速度。
瓦特調速器的歷史,也許可追溯到中世紀和文藝復興時期機器上有時用來代替飛輪的球—鏈裝置或球—桿裝置。然而這些裝置只發揮飛輪的功能,通過貯存能量、使鑽床或曲柄產生較有規律的運動來帶動工具越過「死點」;它們不能控制速度或功率輸入,最多隻是對調速器的造型有所啟發。直到力學發展了,人們知道了鍾擺的性能,懂得了離心力後,才有人想到利用球—桿組合裝置來進行控制。
磨坊工人經常碰到的一個問題是無法利用強風力。因為當軸旋轉很快時,磨石容易向上移動,擴大兩塊磨石之間的距離,以至夾在兩塊磨石當中的穀粒不能完全磨碎。人們靠手將兩塊磨石拉緊,使它們之間保持適當的距離。直到1787年,托馬斯·米德才想出一種方法,將兩個擺分開掛在驅動磨石的正齒輪上,通過鏈條和萬向節提升和調節拉桿。另一對擺與風車翼板相連,這樣就使後者隨速度的變化而張合。磨坊工人只要改變翼板承受的風力,就能調節旋轉軸的速度。兩年後,斯蒂芬·胡珀用齒條和扇形齒輪代替鏈條,設計了一台可以同它匹敵的機器,取得了專利權。
⑶ 電磁閥和氣缸怎麼連接起來
氣缸、電磁閥、三聯件是氣路中最基本的三個元件。
雙作用氣缸,是需要選擇兩位五通的電磁閥。連接這些元件需要用到氣動接頭,PU管(具體選什麼型號的.是需要根據氣缸或者電磁閥上的螺紋孔來決定)
電磁閥上有五個螺紋孔,一側有三個,另一側有兩個。三個孔那一側中間那個大一點的,是進氣孔,進氣孔接上三聯件(注意三聯件是有方向的)旁邊兩個是排氣孔,排氣孔只需要裝上消聲器即可。
另外一邊那兩個孔,就是工作孔,這兩個孔是接氣缸的前後端蓋上兩個孔,這樣基本上就組裝起來了。保持持繼的氣流,經調壓閥一般調整4-5MPA的壓力即可通過給電磁閥通電,斷電,來控制氣缸的活塞做往復運動。

(3)上海凱爾特閥門質量怎麼樣擴展閱讀:
氣動電磁閥原理:氣動電磁閥里有密閉的腔,在的不同位置開有通孔,氣動電磁閥的每個孔都通向不同的氣管,腔中間是閥,兩面是兩塊電磁鐵,哪面的磁鐵線圈通電閥體就會被吸引到哪邊;
氣動電磁閥通過控制閥體的移動來檔住或漏出不同的排氣的孔,而進氣孔是常開的,高壓氣體就會進入不同的排氣管,然後通過氣動電磁閥的氣壓來推動氣缸的活塞,這樣通過控制氣動電磁閥的電磁鐵的電流就控制了整個電磁閥的機械運動。
氣動電磁閥的運行原理
我們說的氣動電磁閥工作位置(電磁閥開或關),其實指的就是氣動電磁閥的閥芯的位置。閥芯在線圈不通電時處在A位置,在線圈通電時處在B位 置。當氣動電磁閥的閥芯處在不同的位置時,對閥體上的各介面起到或是接通或是關閉的作用。
例如,二位電磁閥是指電磁閥的閥芯有兩個不同的工作位置(開或關), 對氣動電磁閥而言就是電磁閥帶電狀態和失電狀態;對其所控制的閥門來說就是閥門的開和關。二通、三通電磁閥,是指氣動電磁閥的閥體上有兩個、三個通道口。
二位二通電磁閥具有一進一出的二個通道,是最常見的氣動電磁閥;二位三通電磁閥,則是一進二出的三個通道,其中的兩出通道分別是對應連接為常開和常閉。同 樣,三通、四通、五通也都是指閥體上的流體通道數。
汽缸常見故障:
汽缸是鑄造而成的,汽缸出廠後都要經過時效處理,使汽缸在住鑄造過程中所產生的內應力完全消除。如果時效時間短,那麼加工好的汽缸在以後的運行中還會變形。
汽缸在運行時受力的情況很復雜,除了受汽缸內外氣體的壓力差和裝在其中的各零部件的重量等靜載荷外,還要承受蒸汽流出靜葉時對靜止部分的反作用力,以及各種連接管道冷熱狀態下對汽缸的作用力,在這些力的相互作用下,汽缸易發生塑性變形造成泄漏。
汽缸的負荷增減過快,特別是快速的啟動、停機和工況變化時溫度變化大、暖缸的方式不正確、停機檢修時打開保溫層過早等,在汽缸中和法蘭上產生很大的熱應力和熱變形。
汽缸在機械加工的過程中或經過補焊後產生了應力,但沒有對汽缸進行回火處理加以消除,致使汽缸存在較大的殘余應力,在運行中產生永久的變形。
在安裝或檢修的過程中,由於檢修工藝和檢修技術的原因,使內缸、汽缸隔板、隔板套及汽封套的膨脹間隙不合適,或是掛耳壓板的膨脹間隙不合適,運行後產生巨大的膨脹力使汽缸變形。
使用的汽缸密封劑質量不好、雜質過多或是型號不對;汽缸密封劑內若有堅硬的雜質顆粒就會使密封面難以緊密的結合。
汽缸螺栓的緊力不足或是螺栓的材質不合格。汽缸結合面的嚴密性主要靠螺栓的緊力來實現的。機組的起停或是增減負荷時產生的熱應力和高溫會造成螺栓的應力鬆弛,如果應力不足,螺栓的預緊力就會逐漸減小。
如果汽缸的螺栓材質不好,螺栓在長時間的運行當中,在熱應力和汽缸膨脹力的作用下被拉長,發生塑性變形或斷裂,緊力就會不足,使汽缸發生泄漏的現象。
汽缸螺栓緊固的順序不正確。一般的汽缸螺栓在緊固時是從中間向兩邊同時緊固,也就是從垂弧最大處或是受力變形最大的地方緊固,這樣就會把變形最大的處的間隙向汽缸前後的自由端轉移,最後間隙漸漸消失。
如果是從兩邊向中間緊,間隙就會集中於中部,汽缸結合面形成弓型間隙,引起蒸汽泄漏。
⑷ 彈簧壓縮反彈問題
直接回答你的問題就是質心速度為(m1v1+m2v2)/(m1+m2)
這個題的話,A離開牆壁後系統水平方向不受力,質心速度不變了就,而A在彈簧強要被拉長而產生拉力時離開牆壁。
注意,系統動能與質心速度不直接相關,彈簧勢能完全釋放時AB的速度也不相等
通俗的講(就是講法不嚴格,過程是這樣的),系統動能(對地)等於質心對地的動能加上各質點相對質心運動的動能
⑸ 閥門型號W41T和W44、45T有什麼不同,不銹鋼和銅的代號是什麼
上海索源閥門:W代表閥體和密圈材質一樣,密封材料由閥體直接加工而成。44t 45t是不同的銅合金,有細微的性能差異,基本上是一樣的。
⑹ 自來水閥門廠家哪家好
鄭州市鄭蝶閥門有限公司、上海冠龍閥門,天津塘沽瓦特斯閥門有限公司,湖北洪城機械
價格低的有鐵嶺閥門,安徽有幾家,溫州等
⑺ 鄭州中進閥門主要代理的國外品牌有哪些
鄭州中進止回閥 系列產品:鄭州中進止回閥、德國鄭州中進止回閥、英國鄭州中進止回閥、日本鄭州中進止回閥、美國鄭州中進止回閥。對夾式止回閥H71、H72、H74、H76、H78、H79、法蘭式止回閥H44、H41、H42、H45、HQ44、HQ45、HH46、HH47、HH48、HH49、H48。內螺紋止回閥H11、H12、H14。旋啟式止回閥H44H、升降式止回閥H41H、立式止回閥H42H/N、角式止回閥H63Y/H83Y。高壓止回閥、自密封止回閥、高溫止回閥、Y型止回閥H65Y、高溫高壓止回閥。對夾超薄型止回閥H74、對夾升降式止回閥H71、H72、對夾雙瓣蝶式止回閥H76、H78、H79。消聲止回閥HC41X、靜音止回閥HC42、DRVZ。橡膠瓣止回閥HX44X、SFCV。蝶式止回閥、微阻緩閉止回閥HH44、HH46、HH48、HH49。球形止回閥HQ41X、HQ44X、HQ45X。天燃氣止回閥、液化石油氣止回閥H41/42N。保溫止回閥BH44H、BH41H。截止止回多功能閥H48H。襯膠止回閥H44J/H41J/H40J、襯氟止回閥H41F/H44F/H42F/H40F。塑料止回閥H41F/H44F/H61F-6S。燃氣限流閥H145。支耳式止回閥。鑄鐵止回閥、黃銅止回閥、鑄鋼止回閥、鍛鋼止回閥、不銹鋼止回閥、鉻鉬鋼止回閥、鉻鉬釩鋼止回閥。底閥H42H、水上式底閥、拍門等系列產品。
鄭州中進止回閥 止回閥結構圖 止回閥標准 止回閥詳細資料 止回閥型號 止回閥作/應用 止回閥尺寸 止回閥價格表 止回閥工作原理 止回閥安裝示意圖 止回閥規格 止回閥內部結構圖
閥體材質:鑄鐵、鑄鋼、不銹鋼、鍛鋼、鉻鉬鋼、鉻鉬釩鋼、黃銅,密封面材質:H、J、F46、Y、W、T、G。工作壓力1.6-32MPA,工作溫度-40°C- 550°C。閥門口徑 DN15-DN1000。連接方式:法蘭、焊接、內螺紋、對夾。傳動方式:自動、適用介質:水、油品、氣體、蒸汽、酸類。 製造標准:國標、美標、日標、德標。
止回閥按結構劃分,可分為升降式止回閥、旋啟式止回閥和蝶式止回閥三種。升降式止回閥可分為立式和卧式兩種。旋啟式止回閥分為單瓣式、雙瓣式和多瓣式三種。蝶式止回閥為直通式、以上幾種止回閥在連接形式上可分為螺紋連接、法蘭連接和焊接三種。
止回閥的安裝應注意以下事頂:1、在管線中不要使止回閥承受重量,大型的止回閥應獨立支撐,使之不受管系產生的壓力的影響。2、安裝時注意介質流動的方向應與閥體所票**方向一致。3、升降式垂直瓣止回閥應安裝在垂直管道上。4、升降式水平瓣止回閥應安裝在水平管道上。
中進止回閥已廣泛應用於各種石油、化工、液化氣、鍋爐蒸汽系統、礦產、給排水、食品、制葯、發電、城建、市政、等部門,以及居民日常生活中。中進產品暢銷全國各地,優質的質量,高效的服務,深得用戶的信賴和廣泛的贊譽。
⑻ 夏天到了,小明家安上了一個紗門,這樣既通風又防蚊蟲飛進教室內,可這又給人進進
[編輯本段]彈簧
彈簧是一種利用彈性來工作的機械零件。一般用彈簧鋼製成。用以控制機件的運動、緩和沖擊或震動、貯蓄能量、測量力的大小等,廣泛用於機器、儀表中。按形狀分,主要有螺旋彈簧、渦卷彈簧、板彈簧等。
[編輯本段]其主要功能
①控制機械的運動,如內燃機中的閥門彈簧、離合器中的控制彈簧等。②吸收振動和沖擊能量,如汽車、火車車廂下的緩沖彈簧、聯軸器中的吸振彈簧等。③儲存及輸出能量作為動力,如鍾表彈簧、槍械中的彈簧等。④用作測力元件,如測力器、彈簧秤中的彈簧等。彈簧的載荷與變形之比稱為彈簧剛度,剛度越大,則彈簧越硬。
按受力性質,彈簧可分為拉伸彈簧、壓縮彈簧、扭轉彈簧和彎曲彈簧,按形狀可分為碟形彈簧、環形彈簧、板彈簧、螺旋彈簧、截錐渦卷彈簧以及扭桿彈簧等。普通圓柱彈簧由於製造簡單,且可根據受載情況製成各種型式,結構簡單,故應用最廣。彈簧的製造材料一般來說應具有高的彈性極限、疲勞極限、沖擊韌性及良好的熱處理性能等,常用的有碳素彈簧鋼、合金彈簧鋼、不銹彈簧鋼以及銅合金、鎳合金和橡膠等。彈簧的製造方法有冷卷法和熱卷法。彈簧絲直徑小於8毫米的一般用冷卷法,大於8毫米的用熱卷法。有些彈簧在製成後還要進行強壓或噴丸處理,可提高彈簧的承載能力。
彈簧是機械和電子行業中廣泛使用的一種彈性元件,彈簧在受載時能產生較大的彈性變形,把機械功或動能轉化為變形能,而卸載後彈簧的變形消失並回復原狀,將變形能轉化為機械功或動能。
[編輯本段]彈簧的類
按受力性質,彈簧可分為拉伸彈簧、壓縮彈簧、扭轉彈簧和彎曲彈簧;按形狀可分為碟形彈簧、環形彈簧、板彈簧、螺旋彈簧、截錐渦卷彈簧以及扭桿彈簧等。普通圓柱彈簧由於製造簡單,且可根據受載情況製成各種型式,結構簡單,故應用最廣。彈簧的製造材料一般來說應具有高的彈性極限、疲勞極限、沖擊韌性及良好的熱處理性能等,常用的有碳素彈簧鋼、合金彈簧鋼、不銹彈簧鋼以及銅合金、鎳合金和橡膠等。彈簧的製造方法有冷卷法和熱卷法。彈簧絲直徑小於8毫米的一般用冷卷法,大於8毫米的用熱卷法。有些彈簧在製成後還要進行強壓或噴丸處理,可提高彈簧的承載能力。
什麼是螺旋彈簧?
螺旋彈簧即扭轉彈簧,是承受扭轉變形的彈簧,它的工作部分也是密繞成螺旋形。扭轉彈簧的端部結構是加工成各種形狀的扭臂,而不是勾環。扭轉彈簧常用於機械中的平衡機構,在汽車、機床、電器等工業生產中廣泛應用。
什麼是拉伸彈簧?
拉伸彈簧是承受軸向拉力的螺旋彈簧,拉伸彈簧一般都用圓截面材料製造。在不承受負荷時,拉伸彈簧的圈與圈之間一般都是並緊的沒有間隙。
什麼是壓縮彈簧?
壓縮彈簧是承受向壓力的螺旋彈簧,它所用的材料截面多為圓形,也有用矩形和多股鋼縈卷制的,彈簧一般為等節距的,壓縮彈簧的形狀有:圓柱形、圓錐形、中凸形和中凹形以及少量的非圓形等,壓縮彈簧的圈與圈之間有一定的間隙,當受到外載荷時彈簧收縮變形,儲存變形能。
什麼是扭力彈簧? 扭力彈簧利用杠桿原理,通過對材質柔軟、韌度較大的彈性材料的扭曲或旋轉,使之具有極大的機械能。
[編輯本段]彈簧各部分名稱:
(1)彈簧絲直徑d:製造彈簧的鋼絲直徑。
(2)彈簧外徑D:彈簧的最大外徑。
(3)彈簧內徑D1:彈簧的最小外徑。
(4)彈簧中徑D2:彈簧的平均直徑。它們的計算公式為:D2=(D+D1)÷2=D1+d=D-d
(5)t:除支撐圈外,彈簧相鄰兩圈對應點在中徑上的軸向距離成為節距,用t表示。
(6)有效圈數n:彈簧能保持相同節距的圈數。
(7)支撐圈數n2:為了使彈簧在工作時受力均勻,保證軸線垂直端面、製造時,常將彈簧兩端並緊。並緊的圈數僅起支撐作用,稱為支撐圈。一般有1.5T、2T、2.5T,常用的是2T。
(8)總圈數n1: 有效圈數與支撐圈的和。即n1=n+n2.
(9)自由高H0:彈簧在未受外力作用下的高度。由下式計算:H0=nt+(n2-0.5)d=nt+1.5d (n2=2時)
(10)彈簧展開長度L:繞制彈簧時所需鋼絲的長度。L≈n1 (ЛD2)2+n2 (壓簧) L=ЛD2 n+鉤部展開長度(拉簧)
(11)螺旋方向:有左右旋之分,常用右旋,圖紙沒註明的一般用右旋。
(12) 彈簧旋繞比;中徑D與 鋼絲直徑d之比
[編輯本段]彈簧的規定畫法
(1)在平行螺旋彈簧線的視圖上,各圈的輪廓線畫成直線。
(2)有效圈數在4圈以上的彈簧,可只畫出其兩端1~2圈(不含支撐圈)。中間用通過彈簧鋼絲中心的點畫線連起來。
(3)在圖樣上,當彈簧的旋向不作規定時,螺旋彈簧一律畫成右旋,左旋彈簧也畫成右旋,但要註明「左」字。
[編輯本段]彈簧的應用
大多數材料都有不同程度的彈性,如果將其彎曲,便會以很大的力量恢復其原形。在人類歷史上,一定很早就注意到樹苗和幼樹的樹枝有很大的撓性,因為許多原始文化利用這一特性,在特製的門後或籠子後楔上一根棍,或者用活結套在一根桿上向下拉;一旦松開張力,這根棍或桿就會往回彈。他們就用這種辦法來捕捉飛禽走獸。實際上,弓就是按這種方式利用幼樹彈性的彈簧;先向後拉弓,然後撒手,讓其回彈。中世紀時,這種想法開始出現在機械上,如紡織機、車床、鑽機、磨面機和鋸。操作者用手或腳踏板給出下壓沖程,將工作機械往下拉,這時用繩索固定在機械上的一根桿彈回,產生往復運動。
彈性材料的抗扭性不壓於它的抗撓性。希臘帝國時期 (大概是公元前4世紀)發明了用搓成的腱繩或毛繩拉緊的扭簧,用以代替簡單的彈簧來加強石弩和拋石機的威力。這時人們開始認識到,金屬比木頭、角質或任何這類有機物質的彈性更大。菲洛 (其寫作年代約為公元前200年)把它作為一項新發現來進行介紹。他估計讀者是難以置信的。凱爾特人和西班牙人的劍的彈性,引起了他的亞歷山大城的前輩的注意。為了弄清楚劍為什麼有彈性,他們進行了許多實驗。結果他的師傅克特西比發明了拋石機,拋石機的彈簧是用彎曲的青銅板作成的——實際上是最早的片簧;菲洛本人又進一步改進了這些拋石機。富有創造性的克特西比在發明這種拋石機後,又想出了另一種拋石機—一它利用汽缸內空氣在受壓的情況下產生的彈性工作。
在很久以後人們才想到:如果壓縮一根螺旋桿,而不是彎曲一根直桿,那麼金屬彈簧儲存的能量就會更大。據伯魯涅列斯基的小傳記載,他製作過一口鬧鍾,其中使用了若干代彈簧。最近有人指出,在附有一些奇特的螺旋彈簧鍾表圖的15世紀末葉的一本機械手冊中有這架鬧鍾的圖樣。這類彈簧也用於現代的捕鼠器。帶圈簧 (水平壓縮而不是垂直壓縮的彈簧)的鍾表,在1460年左右肯定已開始使用了,但基本上是皇室的奢侈品,大約又過了1個世紀,帶彈簧的鍾表才成為中產階級人士的標志。
控制流動方向的閥門
由於閥門只讓水或其他流體(如空氣)沿一個方向流動,幾乎可以肯定地說,它最先是作為需要這種運動的早期工具——風箱的一個部件出現的。阿格里科拉在研究文藝復興時期的冶金學的文章中說,鍛鐵爐風箱有一個比風眼稍長和稍寬的薄板,「薄板上覆蓋著山羊皮,是用皮帶捆在板上的,毛邊一側沖地面」。放置的方式是:當風箱鼓起來時,薄板打開;當風箱收縮時,薄板關閉。」瓣閥肯定遠比阿格里科拉的時代為早,同楔形板風箱一樣古老。但它問世的具體年代卻很難確定,因為瓣閥這個術語來自古老的皮袋型風箱 (在這種風箱中,操作的人可以用腳或手將風眼堵住)。顯然,最早的模型大約是希臘王朝時代的青銅燈,但在羅馬後期的詩人奧素尼烏斯之前還沒有人提到過青銅燈的閥門。奧索尼烏斯把陸上快咽氣的魚的鰓。比作在掬木腔內往復運動時通過孔眼交替進風和擋風的羊毛閥。
可以說,機械上使用閥門的歷史起始於克特西比的壓力泵。維脫勞維斯和赫羅對壓力泵作了詳細的說明,他們說:「靈巧地安在管道口內的環形薄片,不會讓壓入容器的東西再往回跑。」看來克特西比壓力泵的原始瓣閥呈長筒形,那時已用來搞屋頂通風。後來改用矩形閥,但名稱仍保持不變。已經修復了幾台羅馬壓力泵,其閥門已嚴重腐蝕,但還是可以辨認出來。赫倫在講到用雙氣缸壓力泵作滅火器時,還介紹了一種原始的跳動活門,一些在三根彎柱上滑上滑下的小圓盤。克特西比的水力機件有用來控制空氣進入管道的滑閥。除此以外,在文藝復興時期前,所有的泵和風箱閥都是瓣閥 (或鉸形閥)。
達·芬奇發明的一種錐形跳動舌門,無疑是拉梅利的機械發明手冊
(1588)中所畫的那些舌門的來源。跟拉梅利同時代的阿勒奧蒂,在自動木偶戲中採用了一種蝴蝶閥來控制管道內的水流。但是,從赫倫的時代直到發明蒸汽機,這些跳動舌門沒有一種得到廣泛應用,各種閥門也沒有什麼變化。蒸汽機(需要對流入和流出順序進行更精確的控制)導致了跟發動機的運轉有關的精密閥門的出現,這些閥門包括紐科門設計的釋放積蓄在氣缸中的空氣的「噴氣閥」、默多克的滑閥(1799)和使雙動發動機的活塞保持平衡的平衡閥。
蒸汽機上的曲軸
9世紀的一首贊美詩曾講到西方用曲柄跟曲柄銷和曲柄臂連成一體來轉動磨石的事。此後500年內,曲軸只偶爾見於圖例。在公元1400年之後不久,至少在低地國家的帶旋轉升降機、罐籠,甚至測試儀表等插圖的手稿中似乎都突然出現了曲軸。組合曲軸在同一時代問世,最初為拉桿式,是一種簡單的手持工具。但是,在拉桿曲軸首次出現後幾年內,有人就想到轉動拉桿的曲柄臂可以用連桿代替,在手磨機中,連桿僅僅是人的手臂的延伸,但是,連接機構可以反向運動,通過旋轉曲柄驅動連桿來操縱一台泵,如同公元1431年的一部手稿中所描繪的那樣。於是,曲軸誕生了。15世紀和16世紀普遍採用曲柄來驅動風箱和大型鋸機,它們是要求雙向控制的僅有的兩種機器。雖然偶爾也在泵中採用曲軸,但已經設計出雙拐甚至四拐曲軸,並且很可能已經到處安裝使用。然而,在很長時間內,人們並不真正歡迎曲軸,因為只要重型機器都是木製的,曲軸就不易製成整體,就會使連接處受到很大的應力。
不管怎樣,在鑄鐵時代以前,曲軸並未獲得應有的信譽。公元1780年,瓦特發覺自己受到一項專利的限制,不能利用曲軸將他的蒸汽機的往復運動轉變為旋轉運動——舊式運動路線的倒轉。雖然他很氣憤,但卻從中受到了啟發,設計出了達到同一目的的恆星與行星齒輪。但是隨著專利的過時,曲軸變成了進行這種作業的標准設備。如果使用兩個或多個汽缸,或必須從兩側提供動力 (例如向汽船的槳輪上提供動力),那麼,曲軸就是一個解決辦法。在爾後的蒸汽時代,曲軸被用在20世紀所有的活塞發動機上,無論哪一種燃料都可以驅動。
螺釘和改錐的來歷
木螺絲 (在美國有時稱為螺釘)是比較近代的東西。但是,在16世紀,軍械工人和軍械士已經使用一種帶凸片的小型工具——最初的「螺絲起子」——來調節他們的步槍機構了。步槍機構用鐵釘釘在槍托上。有人發現,在鐵釘上加螺紋,會固定得更牢。像所有其他鐵釘一樣,它們都是被敲進去的,取出來很困難。唯一的解決辦法,是在將鐵釘敲入之前,在其頭部切出溝槽。這樣,利用「螺絲起子」就可以將它們取出。於是,螺絲起子就成了最早的螺絲鉗子或擰松器。費利比安的1676年的改錐就是這種類型。
由於螺釘是用手工製造的,造價自然昂貴,只用在特殊的工件上。然而,到18世紀末,一些不知名的天才(可能是在英國伯明翰)發現了一種更好的製造方法,不過仍然是用機器製造平端螺釘。這使得螺釘的造價低廉,能普遍地用於固定鉸鏈、門、傢具等。但是,細紋螺釘的作用由於敲擊而減低,需要用有較長凸片的工具將其擰進去。大約在公元1780年,倫敦裝配工具的製造廠商引進了有較長凸片的改錐,這種改錐的商標至今還稱為「倫敦牌」。大約在公元1840年,內特爾福德改進了木螺釘,將其製成帶尖的。改錐從此一直向前發展。
空氣泵
德國馬德堡市市長蓋里克對科學家和哲學家關於形成真空的可能性的爭論很感興趣。作為一個受過專門教育的工程師,他決定通過實驗來解決這個問題。公元1650年,他製造出了第一台空氣泵——像一台手工操作的水泵,但有製造精密的零件,不透氣。這台空氣泵是成功的。他指出,在一個抽盡了空氣的容器內,聽不到鍾響,蠟燭不燃燒,動物也會悶死。
他的大規模的演示是十分壯觀的。有一次實驗是當著皇帝斐迪南三世的面在其宮廷前面的空曠處進行的。在這個實驗中,在直徑12英尺的兩個半球的周邊凸緣上塗上潤滑脂,將兩個半球的凸緣嵌合,然後將球內空氣抽盡。將8匹馬分成兩組拉拴在每個半球上的鋼索也未能將其分開,可是放進空氣後,它們就分開了。在公元1654年的另一次實驗,是將一個立式開口圓筒活塞下面抽成真空,用50人拉拴在活塞上的繩子,他們反而被活塞拉動了。人們就是用這種方法來使活塞做功的;活塞的下面必須始終有一個真空。
但是,沒有空氣泵能形成真空嗎?經過許多年之後,人們發現用蒸汽可以解決這個問題。公元1698年,托馬斯·薩弗里第一個利用蒸汽排水,使蒸汽通入密閉容器,然後在容器上噴冷水,使其中的蒸汽冷凝,從而產生真空。他利用這種真空從礦井抽水,又利用鍋爐蒸汽將容器中的水排空。這個循環過程反復進行。
薩弗里的設備被稱為「礦工之友」。它沒有任何活塞或活動零件,也不是一台發動機,而只是一台泵而已。
在此以前的1690年,法國的丹尼斯·帕平已經製造出了一個模型設備,一個直徑2.5英寸的活塞剛好能放進汽缸里。在汽缸內盛少量的水,他就能夠通過連續地將水加熱和冷卻的辦法,證明汽缸冷卻時在活塞下面形成真空。雖然這種設備沒有得到實際應用,但卻是第一台利用冷凝蒸汽推動活塞和做功的設備。
公元 1712年,將居里克、帕平和薩弗里的上述3項成就結合在一起,達特默思的托馬斯·紐科門製成了一台實用的蒸汽機。
胡克發明了萬向節
公元1676年,被譽為「英國的達·芬奇」的羅伯特·胡克發表了他關於
「太陽鏡」的演說。這是一台採用反射鏡系統安全地觀測太陽的儀器。這台儀器是用他新奇的萬向節進行操縱的。萬向節是一種萬能儀器……用來通過任何不規則的彎曲軌道產生環形運動。雖然胡克比較詳細地講過這種新儀器的製造方法,並且含糊地指出,這種儀器可能在各方面獲得應用,但他自己只想用它來進行天文觀測,或用在時鍾和日規的設計中,故在當時沒有引起多少人注意。
胡克是個才華橫溢的人,他在系統提出物理學、化學和地質學方面的革命性理論之餘,在倫敦咖啡館內同思想相近的朋友們無休止地討論之餘,抽空兒搞了二十幾項發明。他的日記通常略為提及某些新設想是如何在他的高度活躍的頭腦中逐步醞釀成形的。英國皇家學會會議記錄,記載了那些使他最新的發現得以馳名的實驗。
但是,日記並沒有講他在萬向節上花費了許多時間;他也不曾想學會演示萬向節。就這種機器而言,發明完全屬於他個人看來是勿容置疑的。但是,在動力傳輸方面,在19世紀的運輸革命之前,和許多其他的發明一樣,並不需要一個具有向各個方向傳動的自由接頭。
瓦拉發明了調速器
瓦特在1789年發明的蒸汽機中使用的離心調速器,在當時引起的轟動不是太大;瓦特重視動力系統,只把調速器看成是蒸汽機上的一個附件。然而它是第一台通過改變燃料輸入量而有效地控制速度的裝置,是使一台機器能進行自動調節的一切反饋裝置的鼻祖,在發明史上的地位已確定無疑。瓦特的調速器是由一對離心擺組成,最遠處與蒸汽機的旋轉飛輪相連,直接連在一個套筒上,套筒又與汽缸的進汽閥連接。當飛輪轉動較快時,兩個球體就向外擺動,使套筒下降;當速度減慢時,球體就隨之下垂,迫使套筒上升。汽閥可開大開小,以維持均勻的速度。
瓦特調速器的歷史,也許可追溯到中世紀和文藝復興時期機器上有時用來代替飛輪的球—鏈裝置或球—桿裝置。然而這些裝置只發揮飛輪的功能,通過貯存能量、使鑽床或曲柄產生較有規律的運動來帶動工具越過「死點」;它們不能控制速度或功率輸入,最多隻是對調速器的造型有所啟發。直到力學發展了,人們知道了鍾擺的性能,懂得了離心力後,才有人想到利用球—桿組合裝置來進行控制。
磨坊工人經常碰到的一個問題是無法利用強風力。因為當軸旋轉很快時,磨石容易向上移動,擴大兩塊磨石之間的距離,以至夾在兩塊磨石當中的穀粒不能完全磨碎。人們靠手將兩塊磨石拉緊,使它們之間保持適當的距離。直到1787年,托馬斯·米德才想出一種方法,將兩個擺分開掛在驅動磨石的正齒輪上,通過鏈條和萬向節提升和調節拉桿。另一對擺與風車翼板相連,這樣就使後者隨速度的變化而張合。磨坊工人只要改變翼板承受的風力,就能調節旋轉軸的速度。兩年後,斯蒂芬·胡珀用齒條和扇形齒輪代替鏈條,設計了一台可以同它匹敵的機器,取得了專利權。
與此同時,約翰·倫尼在倫敦建的第一個用蒸汽驅動的磨房——「阿爾比恩磨房」。裝有和米德調速器一樣的調速器。博爾頓在1788年5月給他的合作者瓦特寫信說,「有一種調節頂磨石和底磨石之間的壓力或距離的裝置。用這種調節裝置,蒸汽機運轉得越快,上下磨石就越密合……當蒸汽機停止運轉時,頂磨石就升起……這是由於兩個鉛鎮重的離心力所致。全速運轉時,鉛鎮重水平上升;運轉減慢時,鉛鎮重就下落。它們通過這種方式對杠桿產生作用。」這一定是瓦特的妙想,因為雖然這種調速器最初是用在磨石上,而不是用在蒸汽機上,但在1788年底前,瓦特就按後一種用途將它進行改裝了。由於他知道自己不能聲稱發現了這個基本原理,因而沒有想申請專利權。他先於競爭對手對調速器採取保密措施。
流珠軸承
看來很可能是義大利文藝復興時期的雕刻家和金匠的塞利尼 (1500~1571年),首先看出一圈自由旋轉的滾珠可能減少兩個轉動體之間的摩擦力。1543年,他在自傳中寫道:「我已作成了一尊美麗的朱庇特雕像,將它放在一個木製底座上。我在底座內安了4個小木球,木球的一大半埋在球窩內。整個設計十分巧妙,一個幼小的孩子也能輕而易舉地使其前後移動和轉身。
但是松動地安在滾道里的進行滾動接觸的滾珠軸承,直到18世紀最後25年才開始用在風車上。最先用滾珠軸承的風車是柱式風車(約1780年),機器的整個結構圍繞中心柱旋轉。1794年,威爾士卡馬森的一個叫菲利普·沃恩的鐵器製造商用經向滾珠軸承作為四輪馬車的車軸軸承,並為此申請了專利權。從那時起到19世紀,特別是在19世紀的50年代和60年代,人們將滾珠軸承用在兒童玩的旋轉木馬、螺旋槳軸、軍艦上的機槍轉塔、扶手椅和自行車等器械的軸上,並取得了若干專利權。但是,直到有動力裝置的車輛出現以後,金屬部件因快速行駛而發生大量的磨損時,這項發明才開始得到充分利用。因此,在汽車和能大批生產的精密的球磨機出現以前,滾珠軸承並沒有真正起到像今天這樣重大的作用。
傳動鏈條
1864年,斯萊特獲得了一種傳動鏈條的專利,這種傳動鏈條可以看作研製一種能驅動自行車和其他機械的精密鏈條的第一步。他在索爾福德一個工廠製造紡織機械鏈條。後來這家工廠被瑞士人雷諾德買去。雷諾德又於1880年獲得套筒鏈的專利。把套筒裝在這種鏈上,比斯萊特的設計能提供大得多的承載表面。
人們所知的最早的傳動鏈的設計圖是達·芬奇畫的,然而不知道他畫的傳動鏈是否真的製造出來了。我們從拉梅利的 《不同的人工機械》一書上,可以看到公元1588年的一種抽水機的插圖,這種抽水機就是利用鏈傳動。圖上的鏈有一個方形的鏈環,與木輪上凸出的齒相配,每一個方形鏈環都通過3個橢圓形的鏈環與下一個方形鏈環連接。
因為適合做傳動鏈的金屬又稀有又昂貴,又缺乏良好的製作工具,所以傳動鏈未能廣泛使用。然而到19世紀初期,由於工業革命的緣故,傳動鏈獲得了較為廣泛的應用。
後輪用鏈傳動的最早的法國自行車是吉爾梅設計的,由梅耶和吉埃於1868年製造出來。雖然傳動鏈已經使用了一段時間,但主要是用於紡織機械,自行車鏈條仍然相當差勁。後來,一個叫朱贊的法國人於1885年研製成功了所謂的「現代自行車」,它的兩個輪子一般大,後輪用鏈傳動。英國人斯塔利於1885年製造出了稱為「安全漫遊者」的自行車。這種自行車有新的改進,但後輪仍用傳動鏈傳動。於是考文垂成了自行車的中心,開始了現代自行車的時代。後來人們又把鏈傳動原理用於摩托車和汽車。現在,精確的傳動鏈已經成為工業機械的最重要的零件之一。