導航:首頁 > 裝置知識 > 生物油制備中試實驗裝置

生物油制備中試實驗裝置

發布時間:2022-08-12 15:31:41

⑴ 生物燃油 是什麼

生物柴油(Biodiesel)是生物質能的一種,它是生物質利用熱裂解等技術得到的一種長鏈脂肪酸的單烷基酯。生物柴油是含氧量極高的復雜有機成分的混合物,這些混合物主要是一些分子量大的有機物,幾乎包括所有種類的含氧有機物,如:醚、酯、醛、酮、酚、有機酸、醇等。

特點:1)含水率較高,最大可達30%-45%。水分有利於降低油的黏度、提高穩定性,但降低了油的熱值;

2)pH值低,故貯存裝置最好是抗酸腐蝕的材料;

3)密度比水大,與水的比值約為1.2;

4)具有「老化」傾向,加熱不宜超過80℃,宜避光、避免與空氣接觸保存;

5)潤滑性能好。

應用:生物柴油可用作鍋爐、渦輪機、柴油機等的燃料,工業上應用的主要是脂肪酸甲酯。

生物柴油是一種優質清潔柴油,可從各種生物質提煉,因此可以說是取之不盡,用之不竭的能源,在資源日益枯竭的今天,有望取代石油成為替代燃料。

柴油是許多大型車輛如卡車及內燃機車及發電機等的主要動力燃料,其具有動力大,價格便宜的優點,我國柴油需求量很大,柴油應用的主要問題「冒黑煙」, 我們經常在馬路上看到冒黑煙的卡車。冒黑煙的主要原因是燃燒不完全,對空氣污染嚴重,如產生大量的顆粒粉塵,CO2排放量高等。據美國燃料學會報道,發動機燃料燃燒產生的空氣污染已成為空氣污染的主要問題,如氮氧化物為其他工業部門排放的一半,一氧化碳為其他工業排放量的三分之二,有毒碳氫化合物為其他工業排放的一半。尾氣中排出的氮氧化物和硫化物和空氣中的水可以結合形成酸雨, 尾氣中的二氧化碳和一氧化碳太多會使大氣溫度升高, 也就是人們常說的「溫室效應」。為解決燃油的尾氣污染問題及日益惡化的環境壓力,人們開始研究採用其他燃料如燃料酒精代替汽油,目前燃料酒精在北美州如美國及加拿大等和南美國家如巴西、阿根廷等已佔有相當比例,裝備有燃料酒精發動機的汽車已投放市場。對大多數需要柴油為燃料的大動力車輛如公共汽車、內燃機車及農用汽車如脫拉機等主要以柴油為燃料的發動機而言,燃料酒精並不適合。而且柴油造成的尾氣污染比汽油大的多, 因此人們開發了柴油的代用品--生物柴油。

其實發動機的發明家狄色爾早在1912年美國密蘇里工程大會報告中說,「用菜籽油作發動機燃料在今天看起來並沒有太大意義,但將來會成為和石油及煤一樣重要的燃料」。1983年美國科學家首先將菜籽油甲酯用於發動機,燃燒了1000個小時。並將以可再生的脂肪酸單酯定義為生物柴油.。1984年美國和德國等國的科學家研究了採用脂肪酸甲酯或乙酯代替柴油作燃料,即採用來自動物或植物脂肪酸單酯包括脂肪酸甲酯,脂肪酸乙酯及脂肪酸丙酯等代替柴油燃燒。生物柴油和傳統的石油柴油相比,具有以下優點:

以可再生的動物及植物脂肪酸單酯為原料,可減少對石化燃料石油的需求量和進口量;

環境友好,採用生物柴油尾氣中有毒有機物排放量僅為十分之一,顆粒物為普通柴油的20%,一氧化碳和二氧化碳排放量僅為石油柴油的10%,無硫化物和鉛及有毒物的排放;混合生物柴油可將排放含硫物濃度從500PPM(PPM百萬分之一)降低到5PPM。

不用更換發動機,而且對發動機有保護作用。

美國是最早研究生物柴油的國家。總生產能力300,000噸。對生物柴油的稅率為0%。美國在黃石公園進行的60萬公里的行車實驗,沒有任何結焦現象,空氣污染物排放降低了80%以上。而且使用生物柴油還吸引了附近300公里外的棕熊來到公園。美國B20是採用20%生物柴油的柴油,尾氣污染物排放可降低50%以上。1992年美國能源署及環保署都提出生物柴油作為清潔燃料,美國總統柯林頓1999年專門簽署了開發生物質能的法令,其中生物柴油被列為重點發展的清潔能源之一,國家對生物柴油不收稅。日本1995年開始研究用飯店剩餘的煎炸油生產生物柴油,在1999年建立了259 升/ 天用煎炸油為原料生產生物柴油的工業化實驗裝置,可降低原料成本。目前日本生物柴油年產量可達400,000噸。

德國目前已擁有8個生物柴油的工廠,德國2000年生物柴油產量達25萬噸,擁有300多個生物柴油加油站,並且制定了生物柴油的標准,對生物柴油不收稅。

法國.義大利等歐洲國家都建立生物柴油的企業。法國雪鐵龍集團進行了生物柴油的試驗,通過10萬公里的燃燒試驗,證明生物柴油是可以用於普通柴油發動機的。其使用的標準是在普通石油柴油中添加5%的生物柴油。

可以預見生物柴油作為一種重要的清潔燃料將在大型汽車中發揮重要作用

⑵ 關於調配生物柴油的問題

生物柴油的化學法生產是採用生物油脂與甲醇或乙醇等低碳醇,並使用氫氧化鈉 (占油脂重量的1%) 或甲醇鈉 (Sodium methoxide) 做為觸媒,在酸性或者鹼性催化劑和高溫(230~250℃)下發生酯交換反應(transesterification),生成相應的脂肪酸甲酯或乙酯,再經洗滌乾燥即得生物柴油。甲醇或乙醇在生產過程中可循環使用,生產設備與一般制油設備相同,生產過程中產生10%左右的副產品甘油。
但化學法合成生物柴油有以下缺點:反應溫度較高、工藝復雜;反應過程中使用過量的甲醇,後續工藝必須有相應的醇回收裝置,處理過程繁復、能耗高;油脂原料中的水和游離脂肪酸會嚴重影響生物柴油得率及質量;產品純化復雜,酯化產物難於回收;反應生成的副產物難於去除,而且使用酸鹼催化劑產生大量的廢水,廢鹼(酸)液排放容易對環境造成二次污染等。
化學法生產還有一個不容忽視的成本問題:生產過程中使用鹼性催化劑要求原料必須是毛油,比如未經提煉的菜籽油和豆油,原料成本就占總成本的75%。因此採用廉價原料及提高轉化從而降低成本是生物柴油能否實用化的關鍵,因此美國己開始通過基因工程方法研究高油含量的植物(見下文「工程微藻」法),日本採用工業廢油和廢煎炸油,歐洲是在不適合種植糧食的土地上種植富油脂的農作物。
為解決上述問題,人們開始研究用生物酶法合成生物柴油,即用動物油脂和低碳醇通過脂肪酶進行轉酯化反應,制備相應的脂肪酸甲酯及乙酯。酶法合成生物柴油具有條件溫和、醇用量小、無污染排放的優點。2001年日本採用固定化Rhizopus oryzae細胞生產生物柴油,轉化率在80%左右,微生物細胞可連續使用430小時。
2005年6月4日,《中國環境報》報道:清華大學生物酶法制生物柴油中試成功,採用新工藝在中試裝置上生物柴油產率達90%以上。中試產品技術指標符合美國及德國的生物柴油標准,並滿足我國0號優等柴油標准。中試產品經發動機台架對比試驗表明,與市售石化柴油相比,採用含20%生物柴油的混配柴油作燃料,發動機排放尾氣中一氧化碳、碳氫化合物、煙度等主要有毒成分的濃度顯著下降,發動機動力特性等基本不變。
由於利用物酶法合成生物柴油具有反應條件溫和、醇用量小、無污染物排放等優點,具有環境友好性,因而日益受到人們的重視。但利用生物酶法制備生物柴油目前存在著一些亟待解決的問題:脂肪酶對長鏈脂肪醇的酯化或轉酯化有效,而對短鏈脂肪醇(如甲醇或乙醇等)轉化率低,一般僅為40%-60%;甲醇和乙醇對酶有一定的毒性,容易使酶失活;副產物甘油和水難以回收,不但對產物形成一致,而且甘油也對酶有毒性;短鏈脂肪醇和甘油的存在都影響酶的反應活性及穩定性,使固化酶的使用壽命大大縮短。這些問題是生物酶法工業化生產生物柴油的主要瓶頸。
酶法生產生物柴油主要技術經濟指標有: 1、採用固定床式酶反應器,以植物油及廢油等為原料生產生物柴油,轉化率均可達到95%以上,最高轉化率可以達到96%。
2、建立了生物柴油精餾裝置,分離精製收率高於86%,分離後產品中甲酯含量大於97%,分離後產品各項指標完全符合德國生物柴油生產標准(DIN5160697)。
3、建立了年產500t的生物柴油中試生產裝置。反應器內固定化酶使用壽命超過20天。
4、以地溝油為原料生產生物柴油,成本約為3058元/t,以普通菜籽油為原料生產生物燒油,成本約為4300元/t。
5、燃燒性能明顯優於0號柴油。在0號柴油中添加20%生物柴油的燃燒試驗表明,燃燒尾氣中有毒物質的排放降低35%以上。
「工程微藻」生產柴油,為柴油生產開辟了一條新的技術途徑。美國國家可更新實驗室(NREL)通過現代生物技術建成「工程微藻」,即硅藻類的一種「工程小環藻」。在實驗室條件下可使「工程微藻」中脂質含量增加到60%以上,戶外生產也可增加到40%以上,而一般自然狀態下微藻的脂質含量為5%-20%。「工程微藻」中脂質含量的提高主要由於乙醯輔酶A羧化酶(ACC)基因在微藻細胞中的高效表達,在控制脂質積累水平方面起到了重要作用。目前,正在研究選擇合適的分子載體,使ACC基因在細菌、酵母和植物中充分表達,還進一步將修飾的ACC基因引入微藻中以獲得更高效表達。利用「工程微藻」生產柴油具有重要經濟意義和生態意義,其優越性在於:微藻生產能力高、用海水作為天然培養基可節約農業資源;比陸生植物單產油脂高出幾十倍;生產的生物柴油不含硫,燃燒時不排放有毒害氣體,排入環境中也可被微生物降解,不污染環境,發展富含油質的微藻或者「工程微藻」是生產生物柴油的一大趨勢。

⑶ 生物柴油的生產流程是怎樣的

生物柴油的生產工藝流程
生物柴油是由從植物油或動物脂的脂肪酸烷基單酯組成的一種可替代柴油燃料。目前,大多數生物柴油是由大豆油、甲醇和一種鹼性催化劑(膽鹼酯酶)生產而成的。然而還有大多數的不易被人體消化的廉價油脂能夠轉化為生物柴油。
(1)物理精煉:首先將油脂水化或磷酸處理,除去其中的磷脂,膠質等物質。再將油脂預熱、脫水、脫氣進入脫酸塔,維持殘壓,通入過量蒸汽,在蒸汽溫度下,游離酸與蒸汽共同蒸出,經冷凝析出,除去游離脂肪酸以外的凈損失,油脂中的游離酸可降到極低量,色素也能被分解,使顏色變淺。各種廢動植物油在自主研發的DYD催化劑作用下,採用酯化、醇解同時反應工藝生成粗脂肪酸甲酯。
(2)甲醇預酯化:首先將油脂水化脫膠,用離心機除去磷脂和膠等水化時形成的絮狀物,然後將油脂脫水。原料油脂加入過量甲醇,在酸性催化劑存在下,進行預酯化,使游離酸轉變成甲酯。蒸出甲醇水,經分餾後,無游離酸的分出C12-16棕櫚酸甲酯和C18油酸甲酯。
(3)酯交換反應:經預處理的油脂與甲醇一起,加入少量NaOH做催化劑,在一定溫度與常壓下進行酯交換反應,即能生成甲酯,採用二步反應,通過一個特殊設計的分離器連續地除去初反應中生成的甘油,使酯交換反應繼續進行。
(4)重力沉澱、水洗與分層。
(5)甘油的分離與粗製甲酯的獲得。
(6)水份的脫出、甲醇的釋出、催化劑的脫出與精製生物柴油的獲得。
整個工藝流程實現閉路循環,原料全部綜合利用,實現清潔生產。大致描述如下:原料預處理(脫水、脫臭、凈化)------反應釜(加醇+催化劑+70℃)------攪拌反應1小時-------沉澱分離排雜-------回收醇------過濾--------成品。
生物柴油是一種優質清潔柴油,可從各種生物質提煉,因此可以說是取之不盡,用之不竭的能源,在資源日益枯竭的今天,有望取代石油成為替代燃料。

⑷ 高中生物植物芳香油的提取實驗中,水蒸氣蒸餾裝置為什麼要事先乾燥

高中生物植來物芳香油的提取自實驗中,水蒸氣蒸餾裝置沒必要事先乾燥。
水蒸氣蒸餾裝置中本身就要加水的,然後將水加熱到沸騰,靠水蒸氣將其中的芳香油夾帶出來,因此沒必要提前乾燥。也許是老師讓你們養成好習慣,實驗完畢,把儀器清洗干凈,然後放到烘箱里烘乾,下次要做實驗,直接就可以拿出來用了。

⑸ 生物柴油

生物柴油(Biodiesel)是指以油料作物、野生油料植物和工程微藻等水生植物油脂以及動物油脂、餐飲垃圾油等為原料油通過酯交換工藝製成的可代替石化柴油的再生性柴油燃料。生物柴油是生物質能的一種,它是生物質利用熱裂解等技術得到的一種長鏈脂肪酸的單烷基酯。生物柴油是含氧量極高的復雜有機成分的混合物,這些混合物主要是一些分子量大的有機物,幾乎包括所有種類的含氧有機物,如:醚、酯、醛、酮、酚、有機酸、醇等。生物柴油是一種優質清潔柴油,可從各種生物質提煉,因此可以說是取之不盡,用之不竭的能源,在資源日益枯竭的今天,有望取代石油成為替代燃料。

特點:

1)含水率較高,最大可達30%-45%。水分有利於降低油的黏度、提高穩定性,但降低了油的熱值;

2)pH值低,故貯存裝置最好是抗酸腐蝕的材料;

3)密度比水大,與水的比值約為1.2;

4)具有「老化」傾向,加熱不宜超過80℃,宜避光、避免與空氣接觸保存;

5)潤滑性能好。

6)優良的環保特性:硫含量低,二氧化硫和硫化物的排放低、生物柴油的生物降解性高達98%,降解速率是普通柴油的2倍,可大大減輕意外泄漏時對環境的污染;

7)較好的低溫發動機啟動性能;

8)較好的安全性能:閃點高,運輸、儲存、使用方面安全;

生產方法
利用油脂原料合成生物柴油的方法;用動物油製取的生物柴油及製取方法;生物柴油和生物燃料油的添加劑;廢動植物油脂生產的輕柴油乳化劑及其應用;低成本無污染的生物質液化工藝及裝置;低能耗生物質熱裂解的工藝及裝置;利用微藻快速熱解制備生物柴油的方法;用廢塑料、廢油、廢植物油腳提取汽、柴油用的解聚釜,生物質氣化制備燃料氣的方法及氣化反應裝置;以植物油腳中提取石油製品的工藝方法;用等離子體熱解氣化生物質製取合成氣的方法,用澱粉酶解培養異養藻制備生物柴油的方法;用生物質生產液體燃料的方法;用植物油下腳料生產燃油的工藝方法,由生物質水解殘渣制備生物油的方法,植物油腳提取汽油柴油的生產方法;廢油再生燃料油的裝置和方法;脫除催化裂化柴油中膠質的方法;廢橡膠(廢塑料、廢機油)提煉燃料油的環保型新工藝,脫除柴油中氧化總不溶物及膠質的化學精製方法;阻止柴油、汽油變色和膠凝的助劑;廢潤滑油的絮凝分離處理方法。

應用
生物柴油可用作鍋爐、渦輪機、柴油機等的燃料,工業上應用的主要是脂肪酸甲酯。

生物柴油是一種優質清潔柴油,可從各種生物質提煉,因此可以說是取之不盡,用之不竭的能源,在資源日益枯竭的今天,有望取代石油成為替代燃料。

柴油是許多大型車輛如卡車及內燃機車及發電機等的主要動力燃料,其具有動力大,價格便宜的優點,我國柴油需求量很大,柴油應用的主要問題「冒黑煙」, 我們經常在馬路上看到冒黑煙的卡車。冒黑煙的主要原因是燃燒不完全,對空氣污染嚴重,如產生大量的顆粒粉塵,CO2排放量高等。據美國燃料學會報道,發動機燃料燃燒產生的空氣污染已成為空氣污染的主要問題,如氮氧化物為其他工業部門排放的一半,一氧化碳為其他工業排放量的三分之二,有毒碳氫化合物為其他工業排放的一半。尾氣中排出的氮氧化物和硫化物和空氣中的水可以結合形成酸雨, 尾氣中的二氧化碳和一氧化碳太多會使大氣溫度升高, 也就是人們常說的「溫室效應」。為解決燃油的尾氣污染問題及日益惡化的環境壓力,人們開始研究採用其他燃料如燃料酒精代替汽油,目前燃料酒精在北美洲如美國及加拿大等和南美國家如巴西、阿根廷等已佔有相當比例,裝備有燃料酒精發動機的汽車已投放市場。對大多數需要柴油為燃料的大動力車輛如公共汽車、內燃機車及農用汽車如拖拉機等主要以柴油為燃料的發動機而言,燃料酒精並不適合。而且柴油造成的尾氣污染比汽油大的多, 因此人們開發了柴油的代用品--生物柴油。

其實發動機的發明家狄色爾早在1912年美國密蘇里工程大會報告中說,「用菜籽油作發動機燃料在今天看起來並沒有太大意義,但將來會成為和石油及煤一樣重要的燃料」。1983年美國科學家首先將菜籽油甲酯用於發動機,燃燒了1000個小時。並將以可再生的脂肪酸單酯定義為生物柴油.。1984年美國和德國等國的科學家研究了採用脂肪酸甲酯或乙酯代替柴油作燃料,即採用來自動物或植物脂肪酸單酯包括脂肪酸甲酯,脂肪酸乙酯及脂肪酸丙酯等代替柴油燃燒。生物柴油和傳統的石油柴油相比,具有以下優點:

以可再生的動物及植物脂肪酸單酯為原料,可減少對石化燃料石油的需求量和進口量;環境又好,採用生物柴油尾氣中有毒有機物排放量僅為十分之一,顆粒物為普通柴油的20%,一氧化碳和二氧化碳排放量僅為石油柴油的10%,無硫化物和鉛及有毒物的排放;混合生物柴油可將排放含硫物濃度從500PPM(PPM百萬分之一)降低到5PPM。

不用更換發動機,而且對發動機有保護作用。

世界各國對生物柴油的應用

目前,世界各國,尤其是發達國家,都在致力於開發高效、無污染的生物質能利用技術。歐洲已成為全球生化柴油的主要生產地。美國、義大利、法國已相繼建成生物柴油生產裝置數十座。

美國是最早研究生物柴油的國家。總生產能力1300,000噸。對生物柴油的稅率為0%。美國在黃石公園進行的60萬公里的行車實驗,沒有任何結焦現象,空氣污染物排放降低了80%以上。而且使用生物柴油還吸引了附近300公里外的棕熊來到公園。美國B20是採用20%生物柴油的柴油,尾氣污染物排放可降低50%以上。1992年美國能源署及環保署都提出生物柴油作為清潔燃料,美國總統柯林頓1999年專門簽署了開發生物質能的法令,其中生物柴油被列為重點發展的清潔能源之一,國家對生物柴油不收稅。日本1995年開始研究用飯店剩餘的煎炸油生產生物柴油,在1999年建立了259 升/ 天用煎炸油為原料生產生物柴油的工業化實驗裝置,可降低原料成本。目前日本生物柴油年產量可達400,000噸。

德國目前已擁有8個生物柴油的工廠,德國擁有300多個生物柴油加油站,並且制定了生物柴油的標准,對生物柴油不收稅,2006年生物柴油產量達100萬噸。

法國、義大利等歐洲國家都建立生物柴油的企業。法國雪鐵龍集團進行了生物柴油的試驗,通過10萬公里的燃燒試驗,證明生物柴油是可以用於普通柴油發動機的。其使用的標準是在普通石油柴油中添加5%的生物柴油。

可以預見生物柴油作為一種重要的清潔燃料將在大型汽車行駛中發揮重要作用。

■生物柴油的化學法生產

生物柴油的化學法生產是採用生物油脂與甲醇或乙醇等低碳醇,並使用氫氧化鈉 (占油脂重量的1%) 或甲醇鈉 (Sodium methoxide) 做為觸媒,在酸性或者鹼性催化劑和高溫(230~250℃)下發生酯交換反應(transesterification),生成相應的脂肪酸甲酯或乙酯,再經洗滌乾燥即得生物柴油。甲醇或乙醇在生產過程中可循環使用,生產設備與一般制油設備相同,生產過程中產生10%左右的副產品甘油。
但化學法合成生物柴油有以下缺點:反應溫度較高、工藝復雜;反應過程中使用過量的甲醇,後續工藝必須有相應的醇回收裝置,處理過程繁復、能耗高;油脂原料中的水和游離脂肪酸會嚴重影響生物柴油得率及質量;產品純化復雜,酯化產物難於回收;反應生成的副產物難於去除,而且使用酸鹼催化劑產生大量的廢水,廢鹼(酸)液排放容易對環境造成二次污染等。
化學法生產還有一個不容忽視的成本問題:生產過程中使用鹼性催化劑要求原料必須是毛油,比如未經提煉的菜籽油和豆油,原料成本就占總成本的75%。因此採用廉價原料及提高轉化從而降低成本是生物柴油能否實用化的關鍵,因此美國己開始通過基因工程方法研究高油含量的植物(見下文「工程微藻」法),日本採用工業廢油和廢煎炸油,歐洲是在不適合種植糧食的土地上種植富油脂的農作物。

■生物柴油的生物酶合成法

為解決上述問題,人們開始研究用生物酶法合成生物柴油,即用動物油脂和低碳醇通過脂肪酶進行轉酯化反應,制備相應的脂肪酸甲酯及乙酯。酶法合成生物柴油具有條件溫和、醇用量小、無污染排放的優點。2001年日本採用固定化Rhizopus oryzae細胞生產生物柴油,轉化率在80%左右,微生物細胞可連續使用430小時。
2005年6月4日,《中國環境報》報道:清華大學生物酶法制生物柴油中試成功,採用新工藝在中試裝置上生物柴油產率達90%以上。中試產品技術指標符合美國及德國的生物柴油標准,並滿足我國0號優等柴油標准。中試產品經發動機台架對比試驗表明,與市售石化柴油相比,採用含20%生物柴油的混配柴油作燃料,發動機排放尾氣中一氧化碳、碳氫化合物、煙度等主要有毒成分的濃度顯著下降,發動機動力特性等基本不變。
由於利用物酶法合成生物柴油具有反應條件溫和、醇用量小、無污染物排放等優點,具有環境友好性,因而日益受到人們的重視。但利用生物酶法制備生物柴油目前存在著一些亟待解決的問題:脂肪酶對長鏈脂肪醇的酯化或轉酯化有效,而對短鏈脂肪醇(如甲醇或乙醇等)轉化率低,一般僅為40%-60%;甲醇和乙醇對酶有一定的毒性,容易使酶失活;副產物甘油和水難以回收,不但對產物形成一致,而且甘油也對酶有毒性;短鏈脂肪醇和甘油的存在都影響酶的反應活性及穩定性,使固化酶的使用壽命大大縮短。這些問題是生物酶法工業化生產生物柴油的主要瓶頸。

■生物柴油的「工程微藻」法

「工程微藻」生產柴油,為柴油生產開辟了一條新的技術途徑。美國國家可更新實驗室(NREL)通過現代生物技術建成「工程微藻」,即硅藻類的一種「工程小環藻」。在實驗室條件下可使「工程微藻」中脂質含量增加到60%以上,戶外生產也可增加到40%以上,而一般自然狀態下微藻的脂質含量為5%-20%。「工程微藻」中脂質含量的提高主要由於乙醯輔酶A羧化酶(ACC)基因在微藻細胞中的高效表達,在控制脂質積累水平方面起到了重要作用。目前,正在研究選擇合適的分子載體,使ACC基因在細菌、酵母和植物中充分表達,還進一步將修飾的ACC基因引入微藻中以獲得更高效表達。利用「工程微藻」生產柴油具有重要經濟意義和生態意義,其優越性在於:微藻生產能力高、用海水作為天然培養基可節約農業資源;比陸生植物單產油脂高出幾十倍;生產的生物柴油不含硫,燃燒時不排放有毒害氣體,排入環境中也可被微生物降解,不污染環境,發展富含油質的微藻或者「工程微藻」是生產生物柴油的一大趨勢。

■現行生物柴油標准

世界上很多國家已經擬定了生物柴油標准,從而保證柴油的質量,保證使用者更加放心的使用生物柴油。
生物柴油的國際標準是ISO 14214A另一個是ASTM國際標准ASTM D 6751,這一標準是美國所採用的標准,該標准由美國環保局1996年在「清潔空氣法」的211(b)部分加以了法律確認。另一被廣泛認同的是德國的DIN生物柴油系列標准,是迄今為止最為詳細系統的生物柴油標准,該標准體系針對不同的製造原料有不同的DIN標准:以油菜籽和純粹以蔬菜籽為原料的RME(rapeseed methyl ester)、PME(vegetable methyl ester)生物柴油DIN E 51606 標准,以蔬菜油脂和動物脂肪為混合原料FME (fat methyl ester)的生物柴油DIN V 51606標准。歐盟也在2003年11月頒布了EN14241生物柴油燃料標准。此外奧地利、澳大利亞、捷克共和國、法國、義大利、瑞典等國家也擬訂了生物柴油燃油規范。

■德國DIN V 51606生物柴油標准

生物柴油的標准主要對以下成份進行考評:生產製造的整個反映過程,甘油的去除情況,催化劑的去除情況,酒精的去除情況,以及確保不含游離脂肪酸。生物柴油的生產標准評定指針包括比重、動態粘度、閃火點、硫含量、殘留量、十六烷值、灰份、水份、總雜質、三酸甘油脂、游離甘油等。生物柴油標準的規范,正在極大的推動生物柴油在這些國家的汽車工業中正式應用和合法化,同時,大量國家對生物柴油的認可也正在推動生物柴油作為一種新型可再生生物能源的國際化。
由於目前生物柴油在商用上主要以生物柴油和石化柴油的混合油的形式供應,因此,對於混合油也有標准推出。例如5%的生物柴油加95%的常規柴油的混合油需要達到2000年頒布的EN590(EN590:2000)的標准,凡是符合這一標準的混合油,都可以安全地應用於所有柴油機發動機,雖然這一混合油不需要添加任何穩定劑,但是國外也有提議稱需要在EN 590:2000標准中增加這樣一條:混合油中的生物柴油自身必須符合EN 14214的標准。

⑹ 有關於生產生物柴油中試的文章嗎

2.2研究實例2:黃色脂生產生物柴油

這部分敘述的是黃色脂生產生物柴油的一個研究實例。黃色脂的脂肪酸分布見附錄。

工藝的第一步是將黃色脂在55-60℃過濾出不溶性物質,如肉和骨屑。然後,採用前面提到的兩步酸催化反應降低原料的FFA值小於1%。用在本案例的黃色脂檢測酸價為18.03mgKOH/g,相當於FFA值約9%。酸價用AOCOS方法測定。

在60℃溫度下將所需數量的過濾後黃色脂用泵輸送到預處理反應罐,把甲醇和硫酸溶液加入到反應罐中。中試裝置預處理單元有每批20kg生產能力。對於一批每步的配料量見表3。第一步預處理是由5%硫酸和20:1摩爾比甲醇,兩者都是依據於所測定的FFA量。該混合物通過加熱管循環一小時,保持混合物溫度在55℃和60℃之間。一小時後,將該混合物輸送到一級沉降罐從預處理後黃色脂中分離醇-水混合物。在第一次的終點時,原料的平均酸價測定為4.26mgKOH/g。

為了進行第二次預處理,將低相物從第一次沉降罐中打回到預處理反應罐中,並且加入增加的甲醇和硫酸。在這次預處理中,硫酸量是5%,甲醇摩爾比40:1,根據於FFA值。再次將該混合物通過加熱管保持溫度在55℃—60℃循環1小時,然後將混合物打到二級沉降罐中。通常關注的焦點是在二級沉降罐中的醇水混合物的分離。然而,在此步驟中水的生成是很少的(小於0.1%),不能對鹼催化轉酯化反應有顯著的影響。因此,該醇-水混合物在主轉酯化反應工藝之前不用除去。

經過預處理後,該工藝繼續同鹼性催化劑(0.82%NaOCH3)在6:1摩爾比甲醇,根據未反應的甘三酯量確定。預處理後黃色脂的FFA值經測定為0.85mgKOH/g,需要加入過量的催化劑中和這些FFAs。在沒有明確得到去中和第二步預處理剩餘硫酸需要加入的過量鹼性催化劑的情況下,以後的計算表明處理這些至少需要25%的催化劑加入。使用甲醇鈉作催化劑的原因是經多次試驗表明它是非常有效的催化劑,並且能夠采購到已經與甲醇混合好的,且很容易分散。用於轉酯化反應的醇和催化劑的摩爾比是依據最初黃色脂中的脂量計算的。轉酯化過程發生在室溫下8小時。對於每批預處理後黃色脂轉酯化反應的配料量見表4。

反應後,將該混合物泵送到分離罐,酯和甘油層在罐中分離。然而,甘油的分離發生在水加入時。該混合物用溫軟水洗滌四次,每次30min,以除去甘油、過量醇和催化劑。對於每一步的洗滌,水量都是酯體積比的50%。在洗滌過程中,存在著一種分離相,含有既不溶於酯也不溶於洗滌水的物質。這個物質稱為相間物。在經過第四次洗滌步驟後,相間物絮集在酯和從酯中分離出來的水之間。經發現多增加兩步洗滌步驟(總六次)對於控制酯中游離甘油值達到燃料級生物柴油所要求的指標范圍(0.02%)是非常必要的。在抽出洗滌水-甘油混合物後,把酯泵送到儲罐中。黃色脂生產生物柴油的總甘油、游離甘油和酯的收率數據見表5。

表3 一批含9%FFA黃色脂進行預處理反應的配料量

反應物
第一步
第二步

原料
20kg
20kg

甲醇
4.35kg
2.13kg

硫酸
0.087kg
0.021kg

表4 一批預處理後黃色脂轉酯化反應的配料量

反應物
數量(kg)

預處理後黃色脂
176

甲醇
32.6

甲醇鈉(0.82%)
1.22

甲醇鈉(去中和)
0.28

表5 預處理後黃色脂轉酯化反應的多種因素

原料
總甘油(%)
游離甘油(%)
收率(%)

黃色脂
0.23
0.019
90.2

2.3研究實例3:褐色脂生產生物柴油

第三個研究案例關繫到的是由褐色脂在中試裝置的生產。所得到的褐色脂的酸價為79.2mgKOH/g,相當於FFA值約為39.6%。褐色脂的脂肪酸分布見附錄。

利用兩步酸催化反應可將原料的FFA值降到小於1%。對於含39.6%FFA褐色脂的預處理反應,其配料量見表6。

第一次預處理的組分是10%wt硫酸和20:1摩爾比的甲醇,依據於反應物的FFA量。混合物通過加熱管在55℃—60℃溫度下循環一小時。當反應完成時,將該混合物泵送到一級沉降槽從預處理後的褐色脂中分離出醇-水混合物。該醇-水混合物被移走是因為水會抑制接下來的反應步驟。在第一步的終點時,原料的平均酸價經測定為6.69mgKOH/g(約3.5wt%)。

表6 一批含39.6%FFA褐色脂預處理反應的配料量

反應物
第一步
第二步

原料
15kg
25kg

甲醇
14.8kg
4.3kg

硫酸
0.59kg
0.09kg

在第二步預處理步驟中,將原料從第一級沉降罐打回到預處理反應罐,按照表6中的數量加入增加的甲醇和硫酸。在這個預處理步驟中,硫酸的量是10%,根據FFA值6.69mgKOH/g原料的40:1摩爾比。再次將混合物在55℃—60℃溫度下循環一小時。反應後,將混合物打到二級沉降槽,但是醇-水混合物不用除去。在這個步驟中水的生成是微量的(小於0.1%),使得不能影響到轉酯化反應過程。在第二步的這個時候,原料的平均酸價測定為1.54mgKOH/g。

預處理後,工藝繼續同鹼性催化劑在6:1摩爾比甲醇的量進行。試驗表明0.21%的NaOCH3加一定量的需要中和脂肪酸的量是足夠完成反應的。醇和催化劑量的,摩爾比計算依據於最初的褐色脂中的甘三酯量。對於每一批預處理後的褐色脂進行主反應的配料量見表7。轉酯化反應在室溫下進行8小時,然後將該混合物泵送到分離罐。象處理黃色脂的例子一樣,甘油相不用分離的。當將60℃的軟化水加入時,分離發生了,酯相上升到了上部,水-甘油相沉降到了底部。他們相之間被前面講到的相間物分開。將該混合物水洗6次,每次30分鍾,軟水溫度60℃,以除去甘油、過量醇和催化劑。對於每一次洗滌,水量都是酯體積的50%。在第四步洗滌後,相間物絮集在由酯中分離出的洗滌水和酯中間。在抽取出洗滌水-甘油混合物後,將酯泵送到酯罐中。對於不同數量的催化劑的兩個操作步驟,褐色甲基酯同鹼性催化劑反應後的反應完成數據見表8。

結果顯示,總甘油值在燃料指標(0.24)之內。他們同時表明當使用過量的催化劑時,皂的形成會增加,並且收率降低。從該兩步驟中都發現甘油的分離和甲醇鈉的回收利用是問題。

3.中試裝置甲基酯生產過程中皂和催化劑分析

為了驗證中試裝置中洗滌的效果,收集到酯、洗滌水和甘油,並且測定皂和催化劑的量。催化劑的測定是用0.01NHCl滴定,酚酞作指示劑。皂的確定是繼續用HCl滴定至黃色點,溴酚藍作指示劑。表6表明在三個例子中從大豆油、黃色脂和褐色脂製取甲基酯中的催化劑和皂值。在黃色脂和褐色脂中沒有數據表明收集到甘油。原因是在第一批洗滌水加入時沒有甘油的生成。表10說明了催化劑的金屬物料平衡。該物料平衡確定了皂和催化劑的測量精度。

象 表中說明的一樣,大多數催化劑在大豆油的轉酯化過程中隨甘油一起除去了。對於黃色和褐色脂的轉酯化反應催化劑隨同第二步洗滌的水一同除去。除非洗滌水的甘 油分離不充分。在第二步洗滌後在洗滌水中沒有發現催化劑,但是在以後的洗滌過程中都有皂的發現。鉀和鈉的進量和排出量非常接近。可以肯定的時大多數的皂和 催化劑已經從生物柴油中除去了。表9表明在第六步洗滌步驟中依然由一些皂從酯中被除去。然而從表10中的鈉平衡顯示微量的皂存在。同時鈉平衡中沒有分析到的相間物表明沒有含有過多的鈉。因此,可能沒有鈉皂混合物存在。繼續驗證,這些物質可能於鈣基物質或蛋白結合,因為只有在動物脂中才能發現。

閱讀全文

與生物油制備中試實驗裝置相關的資料

熱點內容
一百五十匹製冷機應該是多少瓦 瀏覽:326
暖氣閥門被腐蝕 瀏覽:686
供暖進戶開關閥門怎麼開 瀏覽:974
家裡的天然氣閥門是什麼樣的 瀏覽:132
凌派領先版液晶儀表盤怎麼調按鍵 瀏覽:690
寶馬5系如何設置胎壓到儀表盤上 瀏覽:928
什麼機床能做出v形槽 瀏覽:42
木炭還原氧化銅的實驗裝置 瀏覽:231
東科電動工具怎麼樣 瀏覽:638
聲納超聲波有什麼區別 瀏覽:858
zch6自動重合閘裝置 瀏覽:724
樂山廚房自動滅火裝置 瀏覽:201
修理風扇用的什麼軸承 瀏覽:33
瘦腰瘦腿減肚子用什麼健身器材 瀏覽:507
籃球紀錄台需要哪些器材 瀏覽:291
國內閥門有什麼好點品牌代理 瀏覽:19
智跑機械鑰匙如何打開 瀏覽:217
車輪輪轂用什麼鑄造方法 瀏覽:80
紅銅機械桿如何去氧化 瀏覽:401
筷子可以代替哪些化學儀器 瀏覽:850