導航:首頁 > 裝置知識 > 設計動梁輸送裝置

設計動梁輸送裝置

發布時間:2022-08-12 05:53:28

❶ 運輸機械選型設計手冊的圖書目錄

第一章帶式輸送機工藝設計基礎資料
第一節帶式輸送機的選型及輔助計算
一、應用范圍及選用2
(一)型式及應用范圍2
(二)帶速的選擇3
(三)輸送帶的選擇3
二、設計輔助計算6
(一)帶式輸送機幾何尺寸計算6
(二)頭部卸料軌跡的計算8
(三)防逆轉設計計算9
(四)橡膠輸送帶計量方法11
(五)輸送帶的參數計算14
第二節帶式輸送機附屬設施
一、皮帶秤16
(一)電子皮帶秤16
(二)核子皮帶秤22
(三)皮帶秤實物校驗裝置26
二、除鐵器32
(一)懸掛式電磁除鐵器32
(二)滾筒式電磁除鐵器38
(三)永磁除鐵器40
三、金屬探測器42
四、重錘護欄44
五、跨越梯46
六、欄桿47
七、硫化器48
第三節帶式輸送機用建、構築物
一、帶式輸送機通廊49
(一)非採暖地區單機通廊49
(二)非採暖地區雙機通廊50
(三)採暖地區單機通廊51
(四)採暖地區雙機通廊52
(五)裝有電動卸料車帶式輸送機通廊53
二、帶式輸送機平台53
三、轉運站54
(一)轉運站類型54
(二)轉運站布置要點55
四、帶式輸送機同層轉載56
(一)ZJT1A型帶式輸送機同層轉載56
(二)DT型帶式輸送機同層轉載57
第四節帶式輸送機的驅動
一、型式及選用58
二、液力偶合器61
(一)帶後輔腔限矩型液力偶合器61
(二)調速型液力偶合器65
三、MPG可控減速器66
四、CST可控驅動系統70
(一)CST可控驅動系統的構成及工作原理70
(二)CST可控驅動系統規格參數72
五、驅動裝置常用配套件72
(一)電動機72
(二)減速器76
(三)聯軸器91
(四)脹套107
(五)制動器108
(六)逆止器112
第五節帶式輸送機操作控制
一、控制系統設計116
(一)設備聯鎖116
(二)操作方式116
(三)安全設施117
二、安全保護監測裝置117
(一)雙向拉繩開關117
(二)跑偏開關117
(三)打滑檢測器119
(四)溜槽堵塞檢測器120
(五)料流檢測器121
(六)縱向撕裂開關122
參考文獻122
第二章DTⅡ(A)型帶式輸送機
第一節概述
一、應用范圍124
二、產品規格124
三、整機結構、部件名稱及代碼125
四、整機典型配置126
五、部件系列127
第二節部件的選用
一、輸送帶132
(一)輸送帶規格和技術參數132
(二)輸送帶的選用132
二、驅動裝置133
(一)驅動裝置的型式133
(二)驅動裝置的選用133
三、逆止器134
四、傳動滾筒134
五、改向滾筒135
六、托輥136
(一)輥徑選擇136
(二)托輥型式選擇140
(三)托輥間距141
(四)受料段和機尾長度142
七、拉緊裝置142
八、清掃器142
(一)頭部清掃器142
(二)空段清掃器143
九、機架143
(一)滾筒支架143
(二)中間架及支腿143
(三)拉緊裝置架144
十、頭部漏斗144
十一、導料槽144
十二、卸料裝置144
(一)犁式卸料器144
(二)卸料車145
(三)可逆配倉帶式輸送機145
十三、輔助配套設施145
十四、電氣及安全保護裝置147
第三節設 計 計 算
一、計算標准、符號和單位148
二、原始數據及工作條件149
三、輸送量和輸送帶寬度149
四、圓周驅動力152
五、輸送帶張力157
六、傳動滾筒軸功率159
七、逆止力計算和逆止器選擇161
八、電動機功率和驅動裝置組合161
九、輸送帶選擇計算162
十、拉緊參數計算164
十一、凸凹弧段尺寸165
十二、啟動和制動165
十三、雙滾筒驅動計算166
十四、下運帶式輸送機計算169
十五、典型計算示例171
(一)例題1:頭部單傳動,垂直重錘拉緊171
(二)例題2:中部雙傳動,垂直重錘拉緊174
(三)例題3:下運帶式輸送機180
第四節主 要 部 件
一、傳動滾筒183
二、改向滾筒185
三、承載托輥188
(一)35°槽形托輥188
(二)45°槽形托輥189
(三)35°槽形前傾托輥190
(四)過渡托輥191
(五)35°緩沖托輥194
(六)45°緩沖托輥195
(七)平形上托輥195
(八)摩擦上調心托輥196
(九)錐形上調心托輥197
(十)摩擦上平調心托輥198
四、回程托輥198
(一)平形下托輥198
(二)V形下托輥199
(三)V形前傾托輥200
(四)平形梳形托輥201
(五)V形梳形托輥201
(六)反V形托輥202
(七)螺旋托輥202
(八)摩擦下調心托輥203
(九)錐形下調心托輥203
五、托輥輥子204
(一)普通輥子204
(二)緩沖輥子205
(三)梳形輥子206
(四)螺旋輥子207
六、拉緊裝置207
(一)垂直重錘拉緊裝置207
(二)車式重錘拉緊裝置209
(三)螺旋拉緊裝置216
(四)電動絞車拉緊裝置217
七、清掃器219
(一)頭部清掃器219
(二)空段清掃器220
第五節驅 動 裝 置
一、驅動裝置的組成及選擇表220
二、Y?ZLY/ZSY驅動裝置228
三、Y?DBY/DCY驅動裝置270
四、驅動裝置和傳動滾筒組合312
五、驅動裝置架364
(一)Y?ZLY/ZSY型鋼式驅動裝置架364
(二)Y?ZLY/ZSY板梁式驅動裝置架370
(三)Y?DBY/DCY板梁式驅動裝置架378
六、護罩390
(一)梅花聯軸器護罩390
(二)液力偶合器護罩390
第六節電動滾筒和減速滾筒
一、概述392
二、DTYⅡ型電動滾筒392
(一)DTYⅡ型電動滾筒選用表392
(二)DTYⅡ型電動滾筒尺寸表395
三、YTH型減速滾筒396
(一)參數、結構類型及代號396
(二)滾筒尺寸及質量402
(三)滾筒驅動部分選擇表403
(四)驅動部分組合表411
(五)低速級處外裝逆止器安裝尺寸420
(六)護罩421
(七)電動機支架423
第七節結構件
一、傳動滾筒頭架427
(一)角形傳動滾筒頭架427
(二)角形傳動滾筒頭架(H型鋼)428
(三)矩形傳動滾筒頭架450
二、角形改向滾筒頭架(H型鋼)461
三、中部傳動滾筒支架464
四、改向滾筒尾架466
(一)角形改向滾筒尾架466
(二)角形改向滾筒尾架(H型鋼)468
(三)矩形改向滾筒尾架476
五、中部改向滾筒吊架478
六、垂直拉緊裝置架479
七、車式重錘拉緊裝置架480
(一)帶滑輪車式重錘拉緊裝置尾架480
(二)標准型車式重錘拉緊裝置架481
(三)塔架484
八、螺旋拉緊裝置尾架485
九、中間架486
(一)輕中型系列中間架486
(二)重型系列中間架488
十、支腿490
(一)輕中型系列標准支腿490
(二)重型系列標准支腿491
(三)輕中型系列中高式支腿492
(四)重型系列中高式支腿493
十一、導料槽494
(一)矩形口導料槽494
(二)喇叭口導料槽495
十二、頭部漏斗496
(一)普通漏斗496
(二)帶調節擋板漏斗498
(三)進料倉漏斗499
(四)普通漏斗(矩形傳動滾筒頭架專用)500
第八節輔 助 裝 置
一、壓輪501
二、輸送帶水洗裝置502
三、輸送帶除水裝置503
四、輸送機罩503
五、犁式卸料器505
(一)電動雙側犁式卸料器505
(二)電動單側犁式卸料器506
(三)犁式卸料器漏斗506
六、卸料車507
(一)卸料車507
(二)卸料車中部支架508
七、重型卸料車509
(一)重型卸料車509
(二)單側卸料重型卸料車510
(三)重型卸料車專用中部支架511
八、可逆配倉帶式輸送機512
九、重型可逆配倉帶式輸送機516
(一)整體式重型配倉輸送機517
(二)二節拖掛式重型配倉輸送機518
(三)三節拖掛式重型配倉輸送機519
附錄
附錄一D?YM96運煤部件典型設計522
(一)頭部支架522
(二)尾部支架528
(三)中部支架及支腿533
(四)頭部漏斗及配套件536
(五)導料槽547
(六)車式拉緊裝置548
(七)Y?ZSY系列驅動裝置組合及驅動裝置架549
附錄二其他部件554
(一)清掃器554
(二)固定式卸料車556
(三)電動犁式卸料車557
(四)全封閉式導料槽和全封閉式帶式輸送機558
附錄三B>1400mm帶式輸送機部件561
(一)傳動滾筒561
(二)改向滾筒568
(三)承載托輥571
(四)回程托輥579
(五)托輥輥子583
(六)拉緊裝置588
(七)清掃器592
(八)輔助裝置593
(九)機架593
(十)拉緊裝置架612
(十一)中間架615
(十二)支腿617
(十三)導料槽619
(十四)頭部漏斗622
參考文獻624
第三章QD80輕型固定式帶式輸送機
第一節應用范圍及選擇
第二節部件選用說明
一、輸送帶627
二、驅動裝置631
三、傳動滾筒631
四、改向滾筒632
五、托輥632
六、拉緊裝置633
七、中間機架633
八、頭架635
九、尾架635
十、清掃器635
十一、導料槽636
十二、犁式卸料器636
十三、帶式逆止器636
十四、全密封罩636
第三節設 計 計 算
一、原始數據636
二、輸送帶速度選擇636
三、輸送帶寬度計算637
(一)堆料面積計算637
(二)帶寬的計算637
四、輸送量計算638
五、功率計算639
(一)傳動滾筒軸功率計算639
(二)附加功率的計算639
(三)電動機功率計算640
六、最大張力計算640
七、輸送帶層數計算640
第四節輕型帶式輸送機部件
一、傳動滾筒641
二、改向滾筒642
(一)D=?164~320mm改向滾筒642
(二)D=?108mm改向滾筒642
三、托輥組643
(一)平形上托輥643
(二)下托輥644
(三)槽形托輥644
四、拉緊裝置645
(一)螺旋拉緊裝置645
(二)中間螺旋拉緊裝置646
(三)重錘拉緊裝置647
五、卸料器649
(一)手動單側犁式卸料器649
(二)手動雙側犁式卸料器649
六、清掃器及逆止器650
(一)彈簧清掃器650
(二)空段清掃器650
(三)頭部轉刷清掃器651
(四)尾部轉刷清掃器651
(五)帶式逆止器651
七、頭架652
(一)h=500mm平形低式頭架652
(二)h=500mm槽形低式頭架652
(三)h≥800~1200mm平形中式頭架653
(四)h≥800~1200mm槽形中式頭架654
(五)h≥1200~1600mm平形高式頭架656
(六)h≥1200~1600mm槽形高式頭架657
(七)h≥1600~2000mm平形高式頭架658
(八)h≥1600~2000mm槽形高式頭架659
八、尾架660
(一)β=0°~5°螺旋拉緊裝置用尾架660
(二)β=5°30′~20°螺旋拉緊裝置用尾架661
(三)中間拉緊裝置用尾架662
(四)直角尾架662
九、中間架及中間支架663
(一)標准中間架663
(二)凹弧中間架664
(三)凸弧中間架666
(四)中間支架673
十、頭部漏斗675
(一)漏斗675
(二)護罩676
十一、導料槽676
(一)後部導料槽676
(二)中部導料槽677
(三)前部導料槽677
第五節驅 動 裝 置
一、QDF風冷電動滾筒678
(一)QDF風冷電動滾筒系列選用表678
(二)QDF風冷電動滾筒安裝尺寸680
二、QDN驅動裝置681
(一)QDN驅動裝置選用表681
(二)QDN驅動裝置安裝尺寸684
附錄
附錄一QD80輕型帶式輸送機技術條件685
附錄二QD80輕型帶式輸送機質量估算686
附錄三油冷、油浸式電動滾筒686
(一)QDY型油冷式電動滾筒686
(二)YD型油浸式電動滾筒688
參考文獻689
第四章特輕型帶式輸送機
第一節概述
一、應用范圍691
二、主要參數及設計選用691
三、布置形式及安裝要求692
(一)布置形式692
(二)安裝要求692
第二節各 類 部 件
一、傳動滾筒694
二、改向滾筒695
三、托輥695
四、托板696
(一)平形托板696
(二)槽形托板697
五、拉緊裝置697
(一)尾部拉緊裝置697
(二)中間拉緊裝置698
六、驅動裝置699
(一)特輕型風冷式電動滾筒699
(二)蝸桿驅動裝置700
(三)擺線針輪減速器驅動裝置701
七、機架701
(一)頭架和尾架701
(二)中間機架和彎曲段機架703
(三)支腿704
(四)橫向支撐704
第三節特輕型帶式輸送機整機組合
一、水平型尾部拉緊式輸送機706
二、水平型中間拉緊式輸送機708
三、低斜型尾部拉緊式輸送機710
四、低斜型中間拉緊式輸送機712
五、高斜型尾部拉緊式輸送機714
六、高斜型中間拉緊式輸送機716
七、雙斜型尾部拉緊式輸送機718
八、雙斜型中間拉緊式輸送機719
九、矮斜型尾部拉緊式輸送機721
十、矮斜型中間拉緊式輸送機723
參考文獻725
第五章深槽型帶式輸送機
第一節概述
一、深槽型帶式輸送機提高輸送傾角的原理727
二、深槽型帶式輸送機托輥組結構類型728
第二節半圓形深槽型帶式輸送機
一、半圓形深槽型帶式輸送機的結構730
二、輸送機傾角決定因素731
三、半圓形深槽型帶式輸送機的特點732
四、設計計算方法及算例732
(一)過渡段732
(二)彎曲段733
(三)功率計算734
第三節U形帶式輸送機
一、工作原理和結構特徵735
二、U形帶式輸送機的特點735
三、U形帶式輸送機與普通、O形、吊掛管狀帶式輸送機的特性比較736
四、規格及性能736
五、輸送帶張力及驅動功率計算738
(一)不水平拐彎運行時738
(二)水平拐彎運行時741
六、設計要點及托輥配置742
(一)設計要點742
(二)托輥配置744
參考文獻747
第六章氣墊帶式輸送機
第一節概述
一、氣墊帶式輸送機的特點和工作原理749
(一)工作原理749
(二)主要特點749
(三)主要結構類型750
(四)應用范圍750
(五)產品規格及主要參數752
(六)典型布置形式754
二、氣墊帶式輸送機的部件名稱和用途754
第二節部件的選用
一、氣室755
二、風機756
三、托輥756
四、中部卸料裝置756
五、機架和中間支腿756
六、密封墊756
七、消聲器和隔聲罩757
八、輸送帶757
九、其他部件757
第三節電氣及安全保護裝置
一、對電控的要求757
二、安全保護裝置757
第四節設計選型要領
一、對凸弧段的處理758
二、對凹弧段的處理759
三、頭尾過渡段759
四、盤槽邊角759
五、受料點及多點裝料問題的處理759
六、輸送機長度760
七、關於逆止問題760
八、氣墊帶式輸送機的計量760
第五節設 計 計 算
一、原始數據及工作條件760
二、輸送帶寬度和輸送量計算761
三、圓周驅動力和驅動功率計算764
四、各種參數計算767
五、帶負荷啟動驗算768
六、風機選型計算769
七、風機功率計算772
八、計算例題772
第六節氣墊帶式輸送機部件
一、概述783
二、氣室783
三、雙曲氣室784
四、風管785
五、氣室支架785
六、雙曲氣室支架786
七、防雨罩787
八、風機支架788
九、風機795
十、消聲器804
參考文獻805
第七章波狀擋邊帶式輸送機
第一節概述
一、產品特點和應用范圍807
(一)產品特點807
(二)產品應用范圍808
二、產品主要性能參數808
三、產品名稱和規格809
四、布置形式810
第二節部件的選用
一、波狀擋邊輸送帶811
(一)基帶811
(二)波狀擋邊814
(三)橫隔板815
(四)空邊寬和有效帶寬816
(五)擋邊帶標記方法及示例817
二、驅動裝置817
(一)驅動裝置的型式818
(二)驅動裝置的選用819
三、傳動滾筒819
四、改向滾筒820
五、改向輪和改向輥組821
六、托輥822
七、擋輥823
八、清掃器823
九、拉緊裝置824
十、機架824
第三節電氣及安全保護裝置
第四節設 計 計 算
一、輸送量825
二、許用的最大物料粒度和最大帶速828
三、參數選擇829
四、功率和張力的計算830
五、整機布置設計831
六、應用實例831
(一)參數選擇831
(二)功率和張力計算831
第五節整機基本設計尺寸
一、上水平段基本設計尺寸833
二、下水平段基本設計尺寸833
三、凹弧段機架輔助尺寸計算834
四、中式、高式凸弧段機架輔助尺寸計算834
五、S形波狀擋邊帶式輸送機幾何尺寸計算(其餘機型參考此法)835
第六節DJ?JB型波狀擋邊帶式輸送機部件型譜
一、Y?ZJ型驅動裝置836
二、傳動滾筒855
三、改向輪856
四、托輥857
(一)上托輥857
(二)下托輥857
五、擋輥861
六、清掃器862
七、頭架863
(一)中式頭架863
(二)高式頭架864
八、導料槽865
九、凸弧段機架866
十、凹弧機架874
十一、中間架支腿881
十二、中間架882
十三、受料段中間架883
參考文獻884
第八章圓管帶式輸送機
第一節概述
一、產品特點和應用范圍886
二、性能特點886
三、原理與結構888
四、產品規格和參數888
第二節圓管帶式輸送機的部件結構及選用
一、輸送帶890
二、托輥組結構892
三、框支架895
四、圓管帶式輸送機的糾偏結構897
五、特殊保障結構900
(一)彎曲段900
(二)頭部和尾部901
(三)中間載入902
(四)回程過渡段輸送帶的支撐903
第三節圓管帶式輸送機的線路布置
一、過渡段長度及其托輥的布置904
二、圓管帶式輸送機空間彎曲布置及曲率半徑905
三、圓管帶式輸送機輸送帶的搭接方向906
四、特殊物料輸送時對線路布置的要求907
五、托輥間距907
第四節圓管帶式輸送機設計計算
一、體積輸送量的計算908
二、直線段阻力計算908
三、輸送帶張力的計算909
四、驅動滾筒功率計算909
五、圓管帶式輸送機線路的確定及驅動功率概演算法909
參考文獻910
第九章吊掛管狀帶式輸送機
第一節概述
一、結構及工作原理913
二、特點914
三、使用范圍915
第二節規格與性能
一、帶寬、帶速系列及輸送量915
二、允許輸送的物料最大粒度915
三、各種物料的最大輸送傾角915
四、滿載水平輸送時的最大單機長度916
五、輸送機最小曲率半徑916
第三節設計要點及計算
一、線路設計要點916
二、張力及驅動功率計算918
第四節部 件 選 用
一、機頭922
二、機尾922
三、吊具924
四、輸送帶925
五、張緊小車926
六、滑輪組、重錘吊架和重錘塊926
七、驅動裝置927
八、保護裝置938 附錄一弔具數量計算938
附錄二輸送帶長度計算938
附錄三國內生產使用實例938
參考文獻939

❷ 鏈式輸送機傳動裝置的設計

1.1 設計題目: 設計鏈式輸送機傳動裝置 1.2 已知條件:
1. 輸送鏈牽引力 F=4.5 kN ;
2. 輸送鏈速度 v=1.6 m/s(允許輸送帶速度誤差為 5%); 3. 輸送鏈輪齒數 z=15 ; 4. 輸送鏈節距 p=80 mm;
5. 工作情況:兩班制,連續單向運轉,載荷平穩,室內工作,無粉塵; 6. 使用期限:20年; 7. 生產批量:20台;
8. 生產條件:中等規模機械廠,可加工6-8級精度齒輪和7-8級精度蝸輪; 9. 動力來源:電力,三相交流,電壓380伏;
10.檢修間隔期:四年一次大修,二年一次中修,半年一次小修。
驗收方式:
1.減速器裝配圖;(使用AutoCAD繪制並列印為A1號圖紙) 2.繪制主傳動軸、齒輪圖紙各1張; 3.設計說明書1份。

❸ 機械設計 帶式輸送機傳動裝置

機械設計課程設計 設計帶式輸送機傳動裝置中的一級圓柱齒輪減速器_網路知道
僅供參考

一、傳動方案擬定
第二組第三個數據:設計帶式輸送機傳動裝置中的一級圓柱齒輪減速器
(1) 工作條件:使用年限10年,每年按300天計算,兩班制工作,載荷平穩。
(2) 原始數據:滾筒圓周力F=1.7KN;帶速V=1.4m/s;
滾筒直徑D=220mm。
運動簡圖
二、電動機的選擇
1、電動機類型和結構型式的選擇:按已知的工作要求和 條件,選用 Y系列三相非同步電動機。
2、確定電動機的功率:
(1)傳動裝置的總效率:
η總=η帶×η2軸承×η齒輪×η聯軸器×η滾筒
=0.96×0.992×0.97×0.99×0.95
=0.86
(2)電機所需的工作功率:
Pd=FV/1000η總
=1700×1.4/1000×0.86
=2.76KW
3、確定電動機轉速:
滾筒軸的工作轉速:
Nw=60×1000V/πD
=60×1000×1.4/π×220
=121.5r/min

根據【2】表2.2中推薦的合理傳動比范圍,取V帶傳動比Iv=2~4,單級圓柱齒輪傳動比范圍Ic=3~5,則合理總傳動比i的范圍為i=6~20,故電動機轉速的可選范圍為nd=i×nw=(6~20)×121.5=729~2430r/min
符合這一范圍的同步轉速有960 r/min和1420r/min。由【2】表8.1查出有三種適用的電動機型號、如下表
方案 電動機型號 額定功率 電動機轉速(r/min) 傳動裝置的傳動比
KW 同轉 滿轉 總傳動比 帶 齒輪
1 Y132s-6 3 1000 960 7.9 3 2.63
2 Y100l2-4 3 1500 1420 11.68 3 3.89

綜合考慮電動機和傳動裝置尺寸、重量、價格和帶傳動、減速器的傳動比,比較兩種方案可知:方案1因電動機轉速低,傳動裝置尺寸較大,價格較高。方案2適中。故選擇電動機型號Y100l2-4。
4、確定電動機型號
根據以上選用的電動機類型,所需的額定功率及同步轉速,選定電動機型號為
Y100l2-4。
其主要性能:額定功率:3KW,滿載轉速1420r/min,額定轉矩2.2。
三、計算總傳動比及分配各級的傳動比
1、總傳動比:i總=n電動/n筒=1420/121.5=11.68
2、分配各級傳動比
(1) 取i帶=3
(2) ∵i總=i齒×i 帶π
∴i齒=i總/i帶=11.68/3=3.89
四、運動參數及動力參數計算
1、計算各軸轉速(r/min)
nI=nm/i帶=1420/3=473.33(r/min)
nII=nI/i齒=473.33/3.89=121.67(r/min)
滾筒nw=nII=473.33/3.89=121.67(r/min)
2、 計算各軸的功率(KW)
PI=Pd×η帶=2.76×0.96=2.64KW
PII=PI×η軸承×η齒輪=2.64×0.99×0.97=2.53KW

3、 計算各軸轉矩
Td=9.55Pd/nm=9550×2.76/1420=18.56N?m
TI=9.55p2入/n1 =9550x2.64/473.33=53.26N?m

TII =9.55p2入/n2=9550x2.53/121.67=198.58N?m

五、傳動零件的設計計算
1、 皮帶輪傳動的設計計算
(1) 選擇普通V帶截型
由課本[1]P189表10-8得:kA=1.2 P=2.76KW
PC=KAP=1.2×2.76=3.3KW
據PC=3.3KW和n1=473.33r/min
由課本[1]P189圖10-12得:選用A型V帶
(2) 確定帶輪基準直徑,並驗算帶速
由[1]課本P190表10-9,取dd1=95mm>dmin=75
dd2=i帶dd1(1-ε)=3×95×(1-0.02)=279.30 mm
由課本[1]P190表10-9,取dd2=280
帶速V:V=πdd1n1/60×1000
=π×95×1420/60×1000
=7.06m/s
在5~25m/s范圍內,帶速合適。
(3) 確定帶長和中心距
初定中心距a0=500mm
Ld=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0
=2×500+3.14(95+280)+(280-95)2/4×450
=1605.8mm
根據課本[1]表(10-6)選取相近的Ld=1600mm
確定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2
=497mm
(4) 驗算小帶輪包角
α1=1800-57.30 ×(dd2-dd1)/a
=1800-57.30×(280-95)/497
=158.670>1200(適用)
(5) 確定帶的根數
單根V帶傳遞的額定功率.據dd1和n1,查課本圖10-9得 P1=1.4KW
i≠1時單根V帶的額定功率增量.據帶型及i查[1]表10-2得 △P1=0.17KW
查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99
Z= PC/[(P1+△P1)KαKL]
=3.3/[(1.4+0.17) ×0.94×0.99]
=2.26 (取3根)
(6) 計算軸上壓力
由課本[1]表10-5查得q=0.1kg/m,由課本式(10-20)單根V帶的初拉力:
F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062 =134.3kN
則作用在軸承的壓力FQ
FQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)
=791.9N

2、齒輪傳動的設計計算
(1)選擇齒輪材料與熱處理:所設計齒輪傳動屬於閉式傳動,通常
齒輪採用軟齒面。查閱表[1] 表6-8,選用價格便宜便於製造的材料,小齒輪材料為45鋼,調質,齒面硬度260HBS;大齒輪材料也為45鋼,正火處理,硬度為215HBS;
精度等級:運輸機是一般機器,速度不高,故選8級精度。
(2)按齒面接觸疲勞強度設計
由d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
確定有關參數如下:傳動比i齒=3.89
取小齒輪齒數Z1=20。則大齒輪齒數:Z2=iZ1= ×20=77.8取z2=78
由課本表6-12取φd=1.1
(3)轉矩T1
T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N?mm
(4)載荷系數k : 取k=1.2
(5)許用接觸應力[σH]
[σH]= σHlim ZN/SHmin 由課本[1]圖6-37查得:
σHlim1=610Mpa σHlim2=500Mpa
接觸疲勞壽命系數Zn:按一年300個工作日,每天16h計算,由公式N=60njtn 計算
N1=60×473.33×10×300×18=1.36x109
N2=N/i=1.36x109 /3.89=3.4×108
查[1]課本圖6-38中曲線1,得 ZN1=1 ZN2=1.05
按一般可靠度要求選取安全系數SHmin=1.0
[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa
[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa
故得:
d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
=49.04mm
模數:m=d1/Z1=49.04/20=2.45mm
取課本[1]P79標准模數第一數列上的值,m=2.5
(6)校核齒根彎曲疲勞強度
σ bb=2KT1YFS/bmd1
確定有關參數和系數
分度圓直徑:d1=mZ1=2.5×20mm=50mm
d2=mZ2=2.5×78mm=195mm
齒寬:b=φdd1=1.1×50mm=55mm
取b2=55mm b1=60mm
(7)復合齒形因數YFs 由課本[1]圖6-40得:YFS1=4.35,YFS2=3.95
(8)許用彎曲應力[σbb]
根據課本[1]P116:
[σbb]= σbblim YN/SFmin
由課本[1]圖6-41得彎曲疲勞極限σbblim應為: σbblim1=490Mpa σbblim2 =410Mpa
由課本[1]圖6-42得彎曲疲勞壽命系數YN:YN1=1 YN2=1
彎曲疲勞的最小安全系數SFmin :按一般可靠性要求,取SFmin =1
計算得彎曲疲勞許用應力為
[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa
[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa
校核計算
σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]
σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]
故輪齒齒根彎曲疲勞強度足夠
(9)計算齒輪傳動的中心矩a
a=(d1+d2)/2= (50+195)/2=122.5mm
(10)計算齒輪的圓周速度V
計算圓周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s
因為V<6m/s,故取8級精度合適.

六、軸的設計計算
從動軸設計
1、選擇軸的材料 確定許用應力
選軸的材料為45號鋼,調質處理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭轉強度估算軸的最小直徑
單級齒輪減速器的低速軸為轉軸,輸出端與聯軸器相接,
從結構要求考慮,輸出端軸徑應最小,最小直徑為:
d≥C
查[2]表13-5可得,45鋼取C=118
則d≥118×(2.53/121.67)1/3mm=32.44mm
考慮鍵槽的影響以及聯軸器孔徑系列標准,取d=35mm
3、齒輪上作用力的計算
齒輪所受的轉矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N
齒輪作用力:
圓周力:Ft=2T/d=2×198582/195N=2036N
徑向力:Fr=Fttan200=2036×tan200=741N
4、軸的結構設計
軸結構設計時,需要考慮軸系中相配零件的尺寸以及軸上零件的固定方式,按比例繪制軸系結構草圖。
(1)、聯軸器的選擇
可採用彈性柱銷聯軸器,查[2]表9.4可得聯軸器的型號為HL3聯軸器:35×82 GB5014-85
(2)、確定軸上零件的位置與固定方式
單級減速器中,可以將齒輪安排在箱體中央,軸承對稱布置
在齒輪兩邊。軸外伸端安裝聯軸器,齒輪靠油環和套筒實現
軸向定位和固定,靠平鍵和過盈配合實現周向固定,兩端軸
承靠套筒實現軸向定位,靠過盈配合實現周向固定 ,軸通
過兩端軸承蓋實現軸向定位,聯軸器靠軸肩平鍵和過盈配合
分別實現軸向定位和周向定位
(3)、確定各段軸的直徑
將估算軸d=35mm作為外伸端直徑d1與聯軸器相配(如圖),
考慮聯軸器用軸肩實現軸向定位,取第二段直徑為d2=40mm
齒輪和左端軸承從左側裝入,考慮裝拆方便以及零件固定的要求,裝軸處d3應大於d2,取d3=4 5mm,為便於齒輪裝拆與齒輪配合處軸徑d4應大於d3,取d4=50mm。齒輪左端用用套筒固定,右端用軸環定位,軸環直徑d5
滿足齒輪定位的同時,還應滿足右側軸承的安裝要求,根據選定軸承型號確定.右端軸承型號與左端軸承相同,取d6=45mm.
(4)選擇軸承型號.由[1]P270初選深溝球軸承,代號為6209,查手冊可得:軸承寬度B=19,安裝尺寸D=52,故軸環直徑d5=52mm.
(5)確定軸各段直徑和長度
Ⅰ段:d1=35mm 長度取L1=50mm

II段:d2=40mm
初選用6209深溝球軸承,其內徑為45mm,
寬度為19mm.考慮齒輪端面和箱體內壁,軸承端面和箱體內壁應有一定距離。取套筒長為20mm,通過密封蓋軸段長應根據密封蓋的寬度,並考慮聯軸器和箱體外壁應有一定矩離而定,為此,取該段長為55mm,安裝齒輪段長度應比輪轂寬度小2mm,故II段長:
L2=(2+20+19+55)=96mm
III段直徑d3=45mm
L3=L1-L=50-2=48mm
Ⅳ段直徑d4=50mm
長度與右面的套筒相同,即L4=20mm
Ⅴ段直徑d5=52mm. 長度L5=19mm
由上述軸各段長度可算得軸支承跨距L=96mm
(6)按彎矩復合強度計算
①求分度圓直徑:已知d1=195mm
②求轉矩:已知T2=198.58N?m
③求圓周力:Ft
根據課本P127(6-34)式得
Ft=2T2/d2=2×198.58/195=2.03N
④求徑向力Fr
根據課本P127(6-35)式得
Fr=Ft?tanα=2.03×tan200=0.741N
⑤因為該軸兩軸承對稱,所以:LA=LB=48mm

(1)繪制軸受力簡圖(如圖a)
(2)繪制垂直面彎矩圖(如圖b)
軸承支反力:
FAY=FBY=Fr/2=0.74/2=0.37N
FAZ=FBZ=Ft/2=2.03/2=1.01N
由兩邊對稱,知截面C的彎矩也對稱。截面C在垂直面彎矩為
MC1=FAyL/2=0.37×96÷2=17.76N?m
截面C在水平面上彎矩為:
MC2=FAZL/2=1.01×96÷2=48.48N?m
(4)繪制合彎矩圖(如圖d)
MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N?m
(5)繪制扭矩圖(如圖e)
轉矩:T=9.55×(P2/n2)×106=198.58N?m
(6)繪制當量彎矩圖(如圖f)
轉矩產生的扭剪文治武功力按脈動循環變化,取α=0.2,截面C處的當量彎矩:
Mec=[MC2+(αT)2]1/2
=[51.632+(0.2×198.58)2]1/2=65.13N?m
(7)校核危險截面C的強度
由式(6-3)

σe=65.13/0.1d33=65.13x1000/0.1×453
=7.14MPa< [σ-1]b=60MPa
∴該軸強度足夠。

主動軸的設計
1、選擇軸的材料 確定許用應力
選軸的材料為45號鋼,調質處理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭轉強度估算軸的最小直徑
單級齒輪減速器的低速軸為轉軸,輸出端與聯軸器相接,
從結構要求考慮,輸出端軸徑應最小,最小直徑為:
d≥C
查[2]表13-5可得,45鋼取C=118
則d≥118×(2.64/473.33)1/3mm=20.92mm
考慮鍵槽的影響以系列標准,取d=22mm
3、齒輪上作用力的計算
齒輪所受的轉矩:T=9.55×106P/n=9.55×106×2.64/473.33=53265 N
齒輪作用力:
圓周力:Ft=2T/d=2×53265/50N=2130N
徑向力:Fr=Fttan200=2130×tan200=775N
確定軸上零件的位置與固定方式
單級減速器中,可以將齒輪安排在箱體中央,軸承對稱布置
在齒輪兩邊。齒輪靠油環和套筒實現 軸向定位和固定
,靠平鍵和過盈配合實現周向固定,兩端軸
承靠套筒實現軸向定位,靠過盈配合實現周向固定 ,軸通
過兩端軸承蓋實現軸向定位,
4 確定軸的各段直徑和長度
初選用6206深溝球軸承,其內徑為30mm,
寬度為16mm.。考慮齒輪端面和箱體內壁,軸承端面與箱體內壁應有一定矩離,則取套筒長為20mm,則該段長36mm,安裝齒輪段長度為輪轂寬度為2mm。
(2)按彎扭復合強度計算
①求分度圓直徑:已知d2=50mm
②求轉矩:已知T=53.26N?m
③求圓周力Ft:根據課本P127(6-34)式得
Ft=2T3/d2=2×53.26/50=2.13N
④求徑向力Fr根據課本P127(6-35)式得
Fr=Ft?tanα=2.13×0.36379=0.76N
⑤∵兩軸承對稱
∴LA=LB=50mm
(1)求支反力FAX、FBY、FAZ、FBZ
FAX=FBY=Fr/2=0.76/2=0.38N
FAZ=FBZ=Ft/2=2.13/2=1.065N
(2) 截面C在垂直面彎矩為
MC1=FAxL/2=0.38×100/2=19N?m
(3)截面C在水平面彎矩為
MC2=FAZL/2=1.065×100/2=52.5N?m
(4)計算合成彎矩
MC=(MC12+MC22)1/2
=(192+52.52)1/2
=55.83N?m
(5)計算當量彎矩:根據課本P235得α=0.4
Mec=[MC2+(αT)2]1/2=[55.832+(0.4×53.26)2]1/2
=59.74N?m
(6)校核危險截面C的強度
由式(10-3)
σe=Mec/(0.1d3)=59.74x1000/(0.1×303)
=22.12Mpa<[σ-1]b=60Mpa
∴此軸強度足夠

(7) 滾動軸承的選擇及校核計算
一從動軸上的軸承
根據根據條件,軸承預計壽命
L'h=10×300×16=48000h
(1)由初選的軸承的型號為: 6209,
查[1]表14-19可知:d=55mm,外徑D=85mm,寬度B=19mm,基本額定動載荷C=31.5KN, 基本靜載荷CO=20.5KN,
查[2]表10.1可知極限轉速9000r/min

(1)已知nII=121.67(r/min)

兩軸承徑向反力:FR1=FR2=1083N
根據課本P265(11-12)得軸承內部軸向力
FS=0.63FR 則FS1=FS2=0.63FR1=0.63x1083=682N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端為壓緊端,現取1端為壓緊端
FA1=FS1=682N FA2=FS2=682N
(3)求系數x、y
FA1/FR1=682N/1038N =0.63
FA2/FR2=682N/1038N =0.63
根據課本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)計算當量載荷P1、P2
根據課本P264表(14-12)取f P=1.5
根據課本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1083+0)=1624N
P2=fp(x2FR1+y2FA2)= 1.5×(1×1083+0)=1624N
(5)軸承壽命計算
∵P1=P2 故取P=1624N
∵深溝球軸承ε=3
根據手冊得6209型的Cr=31500N
由課本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×31500/1624)3/60X121.67=998953h>48000h
∴預期壽命足夠

二.主動軸上的軸承:
(1)由初選的軸承的型號為:6206
查[1]表14-19可知:d=30mm,外徑D=62mm,寬度B=16mm,
基本額定動載荷C=19.5KN,基本靜載荷CO=111.5KN,
查[2]表10.1可知極限轉速13000r/min
根據根據條件,軸承預計壽命
L'h=10×300×16=48000h
(1)已知nI=473.33(r/min)
兩軸承徑向反力:FR1=FR2=1129N
根據課本P265(11-12)得軸承內部軸向力
FS=0.63FR 則FS1=FS2=0.63FR1=0.63x1129=711.8N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端為壓緊端,現取1端為壓緊端
FA1=FS1=711.8N FA2=FS2=711.8N
(3)求系數x、y
FA1/FR1=711.8N/711.8N =0.63
FA2/FR2=711.8N/711.8N =0.63
根據課本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)計算當量載荷P1、P2
根據課本P264表(14-12)取f P=1.5
根據課本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1129+0)=1693.5N
P2=fp(x2FR1+y2FA2)=1.5×(1×1129+0)= 1693.5N
(5)軸承壽命計算
∵P1=P2 故取P=1693.5N
∵深溝球軸承ε=3
根據手冊得6206型的Cr=19500N
由課本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×19500/1693.5)3/60X473.33=53713h>48000h
∴預期壽命足夠

七、鍵聯接的選擇及校核計算
1.根據軸徑的尺寸,由[1]中表12-6
高速軸(主動軸)與V帶輪聯接的鍵為:鍵8×36 GB1096-79
大齒輪與軸連接的鍵為:鍵 14×45 GB1096-79
軸與聯軸器的鍵為:鍵10×40 GB1096-79
2.鍵的強度校核
大齒輪與軸上的鍵 :鍵14×45 GB1096-79
b×h=14×9,L=45,則Ls=L-b=31mm
圓周力:Fr=2TII/d=2×198580/50=7943.2N
擠壓強度: =56.93<125~150MPa=[σp]
因此擠壓強度足夠
剪切強度: =36.60<120MPa=[ ]
因此剪切強度足夠
鍵8×36 GB1096-79和鍵10×40 GB1096-79根據上面的步驟校核,並且符合要求。

八、減速器箱體、箱蓋及附件的設計計算~
1、減速器附件的選擇
通氣器
由於在室內使用,選通氣器(一次過濾),採用M18×1.5
油麵指示器
選用游標尺M12
起吊裝置
採用箱蓋吊耳、箱座吊耳.

放油螺塞
選用外六角油塞及墊片M18×1.5
根據《機械設計基礎課程設計》表5.3選擇適當型號:
起蓋螺釘型號:GB/T5780 M18×30,材料Q235
高速軸軸承蓋上的螺釘:GB5783~86 M8X12,材料Q235
低速軸軸承蓋上的螺釘:GB5783~86 M8×20,材料Q235
螺栓:GB5782~86 M14×100,材料Q235
箱體的主要尺寸:

(1)箱座壁厚z=0.025a+1=0.025×122.5+1= 4.0625 取z=8
(2)箱蓋壁厚z1=0.02a+1=0.02×122.5+1= 3.45
取z1=8
(3)箱蓋凸緣厚度b1=1.5z1=1.5×8=12
(4)箱座凸緣厚度b=1.5z=1.5×8=12
(5)箱座底凸緣厚度b2=2.5z=2.5×8=20

(6)地腳螺釘直徑df =0.036a+12=
0.036×122.5+12=16.41(取18)
(7)地腳螺釘數目n=4 (因為a<250)
(8)軸承旁連接螺栓直徑d1= 0.75df =0.75×18= 13.5 (取14)
(9)蓋與座連接螺栓直徑 d2=(0.5-0.6)df =0.55× 18=9.9 (取10)
(10)連接螺栓d2的間距L=150-200
(11)軸承端蓋螺釘直d3=(0.4-0.5)df=0.4×18=7.2(取8)
(12)檢查孔蓋螺釘d4=(0.3-0.4)df=0.3×18=5.4 (取6)
(13)定位銷直徑d=(0.7-0.8)d2=0.8×10=8
(14)df.d1.d2至外箱壁距離C1
(15) Df.d2

(16)凸台高度:根據低速級軸承座外徑確定,以便於扳手操作為准。
(17)外箱壁至軸承座端面的距離C1+C2+(5~10)
(18)齒輪頂圓與內箱壁間的距離:>9.6 mm
(19)齒輪端面與內箱壁間的距離:=12 mm
(20)箱蓋,箱座肋厚:m1=8 mm,m2=8 mm
(21)軸承端蓋外徑∶D+(5~5.5)d3

D~軸承外徑
(22)軸承旁連接螺栓距離:盡可能靠近,以Md1和Md3 互不幹涉為准,一般取S=D2.

九、潤滑與密封
1.齒輪的潤滑
採用浸油潤滑,由於為單級圓柱齒輪減速器,速度ν<12m/s,當m<20 時,浸油深度h約為1個齒高,但不小於10mm,所以浸油高度約為36mm。
2.滾動軸承的潤滑
由於軸承周向速度為,所以宜開設油溝、飛濺潤滑。
3.潤滑油的選擇
齒輪與軸承用同種潤滑油較為便利,考慮到該裝置用於小型設備,選用GB443-89全損耗系統用油L-AN15潤滑油。
4.密封方法的選取
選用凸緣式端蓋易於調整,採用悶蓋安裝骨架式旋轉軸唇型密封圈實現密封。密封圈型號按所裝配軸的直徑確定為GB894.1-86-25軸承蓋結構尺寸按用其定位的軸承的外徑決定。

十、設計小結
課程設計體會
課程設計都需要刻苦耐勞,努力鑽研的精神。對於每一個事物都會有第一次的吧,而沒一個第一次似乎都必須經歷由感覺困難重重,挫折不斷到一步一步克服,可能需要連續幾個小時、十幾個小時不停的工作進行攻關;最後出成果的瞬間是喜悅、是輕松、是舒了口氣!
課程設計過程中出現的問題幾乎都是過去所學的知識不牢固,許多計算方法、公式都忘光了,要不斷的翻資料、看書,和同學們相互探討。雖然過程很辛苦,有時還會有放棄的念頭,但始終堅持下來,完成了設計,而且學到了,應該是補回了許多以前沒學好的知識,同時鞏固了這些知識,提高了運用所學知識的能力。

十一、參考資料目錄
[1]《機械設計基礎課程設計》,高等教育出版社,陳立德主編,2004年7月第2版;
[2] 《機械設計基礎》,機械工業出版社 胡家秀主編 2007年7月第1版

❹ 機械課程設計!!設計輸送傳送裝置!怎麼設計啊

你要輸出50r/min的轉速,那麼你就得選用速比29的減速機,我早上的回答有點錯誤,把你說的軸功率看成了轉矩,要是功率的話,按能量守恆的原理是應該不變的,要是考慮到效率應該再除上0.8就行了,那你最好選用7.5KW的,餘地大點就選11KW的,也要選4極的電機.

❺ 設計帶式輸送機的傳動裝置 傳送裝置簡圖

上傳了一份設計供參考,請查收。

❻ 帶式輸送機傳動裝置設計

一、帶式輸送機傳動裝置,可伸縮膠帶輸送機與普通膠帶輸送機的工作原理一樣,是以膠帶作為牽引承載機的連續運輸設備,不過增加了儲帶裝置和收放膠帶裝置等,當游動小車向機尾一端移動時,膠帶進入儲帶裝置內,機尾回縮;反之則機尾延伸,因而使輸送機具有可伸縮的性能。
二、設計安裝調試:

1.輸送機的各支腿、立柱或平台用化學錨栓牢固地固定於地面上。
2.機架上各個部件的安裝螺栓應全部緊固。各托輥應轉動靈活。托輥軸心線、傳動滾筒、改向滾筒的軸心線與機架縱向的中心線應垂直。
3.螺旋張緊行程為機長的1%~1.5%。
4.拉繩開關安裝於輸送機一側,兩開關間用覆塑鋼絲繩連接,松緊適度。
5.跑偏開關安裝於輸送機頭尾部兩側,成對安裝。開關的立輥與輸送帶帶邊垂直,且保證帶邊位於立輥高度的1/3處。立輥與輸送帶邊緣距離為50~70mm。
6.各清掃器、導料槽的橡膠刮板應與輸送帶完全接觸,否則,調節清掃器和導料槽的安裝螺栓使刮板與輸送帶接觸。
7.安裝無誤後空載試運行。試運行的時間不少於2小時。並進行如下檢查:
(1)各托輥應與輸送帶接觸,轉動靈活。
(2)各潤滑處無漏油現象。
(3)各緊固件無松動。
(4)軸承溫升不大於40°C,且最高溫度不超過80°C。
(5)正常運行時,輸送機應運行平穩,無跑偏,無異常噪音。

❼ 帶式輸送機傳動裝置如何設計

【傳動方案擬定】

  1. 工作條件:使用年限10年,每年按300天計算,兩班制工作,載荷回平穩。

  2. 原始數據:滾答筒圓周力F=1.7KN;帶速V=1.4m/s;

  3. 滾筒直徑D=220mm。

【電動機的選擇】

  1. 電動機類型和結構型式的選擇:按已知的工作要求和 條件,選用 Y系列三相非同步電動機。

  2. 確定電動機的功率:
    傳動裝置的總效率:
    η總=η帶×η2軸承×η齒輪×η聯軸器×η滾筒
    =0.96×0.992×0.97×0.99×0.95
    =0.86
    電機所需的工作功率:
    Pd=FV/1000η總
    =1700×1.4/1000×0.86
    =2.76KW

  3. 確定電動機轉速:
    滾筒軸的工作轉速:
    Nw=60×1000V/πD
    =60×1000×1.4/π×220
    =121.5r/min

❽ 求帶式輸送機傳動裝置設計

課程設計說明書

一.電動機的選擇:
1.選擇電動機的類型:
按工作要求和條件,選用三機籠型電動機,封閉式結構,電壓380V,Y系列斜閉式自扇冷式鼠籠型三相非同步電動機。(手冊P167)
選擇電動機容量 :
滾筒轉速:
負載功率:
KW
電動機所需的功率為:
(其中: 為電動機功率, 為負載功率, 為總效率。)
2.電動機功率選擇:

折算到電動機的功率為:

3.確定電動機型號:
按指導書 表1推薦的傳動比合理范圍,取圓柱齒輪傳動一級減速器傳動比范圍為: .取V帶傳動比 ,則總傳動比理論范圍為 ,故電動機轉速的可選范圍為
符合這一范圍的同步轉速有750,1000和1500
查手冊 表 的:選定電動機類型為:
其主要性能:額定功率: ,滿載轉速: ,額定轉速: ,質量:
二、確定傳動裝置的總傳動比和分配傳動比
1.減速器的總傳動比為:

2、分配傳動裝置傳動比:
按手冊 表1,取開式圓柱齒輪傳動比
因為 ,所以閉式圓錐齒輪的傳動比 .
三.運動參數及動力參數計算:
1.計算各軸的轉速:
I軸轉速:

2.各軸的輸入功率
電機軸:
I軸上齒輪的輸入功率:
II軸輸入功率:
III軸輸入功率:
3.各軸的轉矩
電動機的輸出轉矩:

四、傳動零件的設計計算
1.皮帶輪傳動的設計計算:
(1)選擇普通V帶
由課本 表5.5查得:工作情況系數:
計算功率:
小帶輪轉速為:
由課本 圖5.14可得:選用A型V帶:小帶輪直徑
(2)確定帶輪基準直徑,並驗算帶速
小帶輪直徑 ,參照課本 表5.6,取 ,

由課本 表5.6,取
實際從動輪轉速:
轉速誤差為:
滿足運輸帶速度允許誤差要求.
驗算帶速
在 范圍內,帶速合適.
(3)確定帶長和中心距
由課本 式5.18得:

查課本 表5.1,得:V帶高度:
得:
初步選取中心距:
由課本 式5.2得:
根據課本 表5.2選取V帶的基準長度:
則實際中心距:
(4)驗算小帶輪包角:
據課本 式5.1得: (適用)
(5)確定帶的根數:
查課本 表5.3,得: .查課本 表5.4,得:
查課本 表5.4,得: .查課本 表5.2,得:
由課本 式5.19得:
取 根.
(6)計算軸上壓力
查課本 表5.1,得:
由課本 式5.20,得:單根V帶合適的張緊力:

由課本 式5.21,得:作用在帶輪軸上的壓力為 :

2、齒輪傳動的設計計算:
(1)選擇齒輪材料及精度等級
初選大小齒輪的材料均為45鋼,經調質處理,硬度為
由課本表取齒輪等級精度為7級,初選
(2)計算高速級齒輪
<1>查課本 表6.2得:
取 ,
由課本 圖6.12取 ,由課本 表6.3,取 ,
齒數教少取 ,取 則 .
<2>接觸疲勞許用應力
由課本 圖6.14查得: .
由課本 表6.5,查得: ,
則應力循環次數:

查課本 圖6.16可得接觸疲勞的壽命系數: ,
.
<3>計算小齒輪最小直徑
計算工作轉矩:
由課本 表6.8,取: ,

<4>確定中心距:
為便於製造和測量,初定: .
<5>選定模數 齒數 和螺旋角
一般: ,初選: 則 .
由 得:
由課本 表6.1取標准模數: ,則:
取 ,則: .
取 , .
齒數比:
與 的要求比較,誤差為1.6%,可用.是:
滿足要求.
<6>計算齒輪分度圓直徑
小齒輪: ;
大齒輪:
<7>齒輪寬度

圓整得大齒輪寬度: ,取小齒輪寬度: .
<8>校核齒輪彎曲疲勞強度
查課本 圖6.15,得 ;
查課本 表6.5,得: ;
查課本 圖6.17得:彎曲強度壽命系數: ;

由課本 表6.4,得: ,
Z較大 ,取 ,
則: ,
所以兩齒輪齒根彎曲疲勞強度滿足要求,此種設計合理.
〈9〉齒輪的基本參數如下表所示:

名稱 符號 公式 齒1 齒2
齒數

19 112
分度圓直徑

58.015 341.985
齒頂高

3 3
齒根高

3.75 3.75
齒頂圓直徑

64.015 347.985
齒根圓直徑

50.515 334.485
中心距

200
孔徑 b
齒寬

80 75

五、軸的設計計算及校核:
1.計算軸的最小直徑
查課本 表11.3,取:
軸:
軸:
軸:
取最大轉矩軸進行計算,校核.
考慮有鍵槽,將直徑增大 ,則: .
2.軸的結構設計
選材45鋼,調質處理.
由課本 表11.1,查得: .
由課本 表11.4查得: , .
由課本 式10.1得:聯軸器的計算轉矩:
由課本 表10.1,查得: ,
按照計算轉矩應小於聯軸器公稱轉矩的條件,查手冊 表8-7,
選擇彈性柱銷聯軸器,型號為: 型聯軸器,其公稱轉矩為:
半聯軸器 的孔徑: ,故取: .
半聯軸器長度 ,半聯軸器與軸配合的轂孔長度為: .
(1)軸上零件的定位,固定和裝配
單級減速器中可以將齒輪安排在箱體中央,相對兩軸承對稱分布.齒輪左面由套筒定位,右面由軸肩定位,聯接以平鍵作為過渡配合固定,兩軸承均以軸肩定位.

(2)確定軸各段直徑和長度
<1> 段:為了滿足半聯軸器的軸向定位要求, 軸段右端需制出一軸肩,故取 段的直徑 ,左端用軸端擋圈定位,查手冊表按軸端去擋圈直徑 ,半聯軸器與軸配合的轂孔長度: ,為了保證軸端擋圈只壓在半聯軸器上而不壓在軸的端面上,故段的長度應比略短,取: .
<2>初步選擇滾動軸承,因軸承同時受有徑向力和軸向力的作用 ,故選用蛋列圓錐滾子軸承,參照工作要求並根據: .
由手冊 表 選取 型軸承,尺寸: ,軸肩
故 ,左端滾動軸承採用縐件進行軸向定位,右端滾動軸承採用套筒定位.
<3>取安裝齒輪處軸段 的直徑: ,齒輪右端與右軸承之間採用套筒定位,已知齒輪輪轂的寬度為 ,為了使套筒端面可靠地壓緊齒輪,此軸段應略短與輪轂寬度,故取: ,齒輪右端採用軸肩定位,軸肩高度 ,取 ,則軸環處的直徑: ,軸環寬度: ,取 , ,即軸肩處軸徑小於軸承內圈外徑,便於拆卸軸承.
<4>軸承端蓋的總寬度為: ,取: .
<5>取齒輪距箱體內壁距離為: .
, .
至此,已初步確定了軸的各段直徑和長度.
(3)軸上零件的周向定位
齒輪,半聯軸器與軸的周向定位均採用平鍵聯接
按 查手冊 表4-1,得:平鍵截面 ,鍵槽用鍵槽銑刀加工,長為: .
為了保證齒輪與軸配合有良好的對中性,故選擇齒輪輪轂與軸的配合為; ,半聯軸器與軸的聯接,選用平鍵為: ,半聯軸器與軸的配合為: .
滾動軸承與軸的周向定位是借過渡配合來保證的,此處選軸的直徑尺寸公差為: .
(4)確定軸上圓角和倒角尺寸,
參照課本 表11.2,取軸端倒角為: ,各軸肩處圓角半徑: 段左端取 ,其餘取 , 處軸肩定位軸承,軸承圓角半徑應大於過渡圓角半徑,由手冊 ,故取 段為 .
(5)求軸上的載荷
在確定軸承的支點位置時,查手冊 表6-7,軸承 型,取 因此,作為簡支梁的軸的支撐跨距 ,據軸的計算簡圖作出軸的彎矩圖,扭矩圖和計算彎矩圖,可看出截面處計算彎矩最大 ,是軸的危險截面.
(6)按彎扭合成應力校核軸的強度.

<1>作用在齒輪上的力
因已知低速級大齒輪的分度圓直徑為: ,
得: , , .
<2>求作用於軸上的支反力
水平面內支反力:

垂直面內支反力:

<3>作出彎矩圖
分別計算水平面和垂直面內各力產生的彎矩.

計算總彎矩:

<4>作出扭矩圖: .
<5>作出計算彎矩圖: ,
.

<6>校核軸的強度
對軸上承受最大計算彎矩的截面的強度進行校核.
由課本 式11.4,得: ,
由課本 表11.5,得: ,
由手冊 表4-1,取 ,計算得: ,
得: 故安全.
(7)精確校核軸的疲勞強度
校核該軸截面 左右兩側.
<1>截面 右側:由課本 表11.5,得:
抗彎截面模量: ,
抗扭截面模量: ,
截面 右側的彎矩: ,
截面 世上的扭矩為: ,
截面上的彎曲應力: ,
街面上行的扭轉切應力: .
截面上由於軸肩而形成的理論應力集中系數 及 ,
由課本 圖1.15,查得:
得:
由課本 圖1.16,查得:材料的敏性系數為:
故有效應力集中系數為:

由課本 圖1.17,取:尺寸系數 ;扭轉尺寸系數: .
按磨削加工,
由課本 圖1.19,取表面狀態系數: .
軸未經表面強化處理,即: .
計算綜合系數值為:
.
由課本第一章取材料特性系數: .
計算安全系數 :
由課本 式,得: ,
.
由課本 表11.6,取疲勞強度的許用安全系數: .
,故可知其安全.
<2>截面 左側
抗彎截面模量為: .
抗扭截面模量為: .
彎矩及彎曲應力為: ,
扭矩及扭轉切應力為: ,
過盈配合處的 值: ,由 ,得: .
軸按磨削加工,由課本 圖1.19,取表面狀態系數為: .
故得綜合系數為: ,
.
所以在截面 右側的安全系數為: ,
.
.

故該軸在截面右側的強度也是足夠的.
3. 確定輸入軸的各段直徑和長度

六. 軸承的選擇及計算
1.軸承的選擇:
軸承1:單列圓錐滾子軸承30211(GB/T 297-1994)
軸承2:單列圓錐滾子軸承30207(GB/T 297-1994)
2.校核軸承:
圓錐滾子軸承30211,查手冊:
由課本 表8.6,取

由課本 表8.5,查得:單列圓錐滾子軸承 時的 值為: .
由課本 表8.7,得:軸承的派生軸向力: , .
因 ,故1為松邊,
作用在軸承上的總的軸向力為: .
查手冊 表6-7,得:30211型 , .
由課本 表8.5,查得: ,
,得: .
計算當量動載荷: ,
.
計算軸承壽命,由課本 式8.2,得: 取: .
則: .

七.鍵的選擇和計算
1.輸入軸:鍵 , , 型.
2.大齒輪:鍵 , , 型.
3.輸出軸:鍵 , , 型.
查課本 表3.1, ,式3.1得強度條件: .
校核鍵1: ;
鍵2: ;
鍵3: .
所有鍵均符合要求.
八.聯軸器的選擇
選擇 軸與電動機聯軸器為彈性柱銷聯軸器
型號為: 型聯軸器:
公稱轉矩: 許用轉速: 質量: .
選擇 軸與 軸聯軸器為彈性柱銷聯軸器
型號為: 型聯軸器:
公稱轉矩: 許用轉速: 質量: .
九.減數器的潤滑方式和密封類型的選擇
1、 減數器的潤滑方式:飛濺潤滑方式
2、 選擇潤滑油:工業閉式齒輪油(GB5903-95)中的一種。
3、 密封類型的選擇:密封件:氈圈1 30 JB/ZQ4606-86
氈圈2 40 JB/ZQ4606-86

十.設計小節
對一級減速器的獨立設計計算及作圖,讓我們融會貫通了機械專業的各項知識,更為系統地認識了機械設計的全過程,增強了我們對機械行業的深入了解,同時也讓我們及時了解到自己的不足,在今後的學習中會更努力地探究.
十一.參考資料
1.「課本」:機械設計/楊明忠 朱家誠主編 編號 ISBN 7-5629-1725-6 武漢理工大學出版社 2004年6月第2次印刷.
2.「手冊」:機械設計課程設計手冊/吳宗澤,羅聖國主編 編號ISBN7-04-019303-5 北京高等教育出版社 2006年11月第3次印刷.
3「指導書」:機械設計課程設計指導書/龔桂義,羅聖國主編 編號ISBN 7-04-002728-3 北京高等教育出版社 2006年11月第24次印刷.

❾ 設計帶式輸送機傳動裝置

下面是解題步驟,將其中的力,速度,直徑數值給換一下就行了,其他數據不用變
(1)工作軸需要功率
Pe =F*V=8×1.4=11.2KW
(2)電機所需的工作功率:
P工作=Pe/η0
=11.2/×0.8692
=12.8854KW
選擇電動機額定功率 13KW
其中η0=η帶×η2軸承×η齒輪×η聯軸器×ηw
=0.96×0.992×0.97×0.992×0.96
=0.8962
3、確定電動機轉速:
滾筒工作轉速:
n筒=60×1000V/πD
=60×1000×1.4/π×400
=66.8451r/min
計算各軸的功率(KW)
P0=P工作=12.8854KW
PI=P0×η1=12.8854×0.96=12.3700KW
PII=PI×η軸承×η齒輪=12.3700×0.99×0.97
=11.8789KW
帶式運輸機P= PII×η聯軸器=11.8789×0.992=11.7839kw
計算各軸轉速(r/min)
N0= =970r/min
nI=n0/i帶=970/4.8371=200.5334(r/min)
nII=nI/i齒輪=200.5334/3=66.8445(r/min)
運輸機軸n= nII=66.8445(r/min)
計算各軸扭矩(N

閱讀全文

與設計動梁輸送裝置相關的資料

熱點內容
一百五十匹製冷機應該是多少瓦 瀏覽:326
暖氣閥門被腐蝕 瀏覽:686
供暖進戶開關閥門怎麼開 瀏覽:974
家裡的天然氣閥門是什麼樣的 瀏覽:132
凌派領先版液晶儀表盤怎麼調按鍵 瀏覽:690
寶馬5系如何設置胎壓到儀表盤上 瀏覽:928
什麼機床能做出v形槽 瀏覽:42
木炭還原氧化銅的實驗裝置 瀏覽:231
東科電動工具怎麼樣 瀏覽:638
聲納超聲波有什麼區別 瀏覽:858
zch6自動重合閘裝置 瀏覽:724
樂山廚房自動滅火裝置 瀏覽:201
修理風扇用的什麼軸承 瀏覽:33
瘦腰瘦腿減肚子用什麼健身器材 瀏覽:507
籃球紀錄台需要哪些器材 瀏覽:291
國內閥門有什麼好點品牌代理 瀏覽:19
智跑機械鑰匙如何打開 瀏覽:217
車輪輪轂用什麼鑄造方法 瀏覽:80
紅銅機械桿如何去氧化 瀏覽:401
筷子可以代替哪些化學儀器 瀏覽:850