『壹』 沖壓機構及送料機構設計
第一節 沖床沖壓機構、送料機構及傳動系統的設計
一、 設計題目
設計沖制薄壁零件沖床的沖壓機構、送料機構及其傳動系統。沖床的工藝動作如圖5—1a)所示,上模先以比較大的速度接近坯料,然後以勻速進行拉延成型工作,此後上模繼續下行將成品推出型腔,最後快速返回。上模退出下模以後,送料機構從側面將坯料送至待加工位置,完成一個工作循環。
(a) (b) (c)
圖5—1 沖床工藝動作與上模運動、受力情況
要求設計能使上模按上述運動要求加工零件的沖壓機構和從側面將坯料推送至下模上方的送料機構,以及沖床的傳動系統,並繪制減速器裝配圖。
二、 原始數據與設計要求
1.動力源是電動機,下模固定,上模作上下往復直線運動,其大致運動規律如圖b)所示,具有快速下沉、等速工作進給和快速返回的特性;
2.機構應具有較好的傳力性能,特別是工作段的壓力角應盡可能小;傳動角γ大於或等於許用傳動角[γ]=40o;
3.上模到達工作段之前,送料機構已將坯料送至待加工位置(下模上方);
4.生產率約每分鍾70件;
5.上模的工作段長度l=30~100mm,對應曲柄轉角0=(1/3~1/2)π;上模總行程長度必須大於工作段長度的兩倍以上;
6.上模在一個運動循環內的受力如圖c)所示,在工作段所受的阻力F0=5000N,在其他階段所受的阻力F1=50N;
7.行程速比系數K≥1.5;
8.送料距離H=60~250mm;
9.機器運轉不均勻系數δ不超過0.05。
若對機構進行運動和動力分析,為方便起見,其所需參數值建議如下選取:
1)設連桿機構中各構件均為等截面均質桿,其質心在桿長的中點,而曲柄的質心則與回轉軸線重合;
2)設各構件的質量按每米40kg計算,繞質心的轉動慣量按每米2kg·m2計算;
3)轉動滑塊的質量和轉動慣量忽略不計,移動滑塊的質量設為36kg;
6)傳動裝置的等效轉動慣量(以曲柄為等效構件)設為30kg·m2;
7) 機器運轉不均勻系數δ不超過0.05。
三、 傳動系統方案設計
沖床傳動系統如圖5-2所示。電動機轉速經帶傳動、齒輪傳動降低後驅動機器主軸運轉。原動機為三相交流非同步電動機,其同步轉速選為1500r/min,可選用如下型號:
電機型號 額定功率(kw) 額定轉速(r/min)
Y100L2—4 3.0 1420
Y112M—4 4.0 1440
Y132S—4 5.5 1440
由生產率可知主軸轉速約為70r/min,若電動機暫選為Y112M—4,則傳動系統總傳動比約為。取帶傳動的傳動比ib=2,則齒輪減速器的傳動比ig=10.285,故可選用兩級齒輪減速器。圖5—2 沖床傳動系統
四、 執行機構運動方案設計及討論
該沖壓機械包含兩個執行機構,即沖壓機構和送料機構。沖壓機構的主動件是曲柄,從動件(執行構件)為滑塊(上模),行程中有等速運動段(稱工作段),並具有急回特性;機構還應有較好的動力特性。要滿足這些要求,用單一的基本機構如偏置曲柄滑塊機構是難以實現的。因此,需要將幾個基本機構恰當地組合在一起來滿足上述要求。送料機構要求作間歇送進,比較簡單。實現上述要求的機構組合方案可以有許多種。下面介紹幾個較為合理的方案。
1.齒輪—連桿沖壓機構和凸輪—連桿送料機構
如圖5—3所示,沖壓機構採用了有兩個自由度的雙曲柄七桿機構,用齒輪副將其封閉為一個自由度。恰當地選擇點C的軌跡和確定構件尺寸,可保證機構具有急回運動和工作段近於勻速的特性,並使壓力角盡可能小。
送料機構是由凸輪機構和連桿機構串聯組成的,按機構運動循環圖可確定凸輪推程運動角和從動件的運動規律,使其能在預定時間將工件推送至待加工位置。設計時,若使lOG<lOH ,可減小凸輪尺寸。
圖5—3 沖床機構方案之一 圖5—4沖床機構方案之二
2.導桿—搖桿滑塊沖壓機構和凸輪送料機構
如圖5—4所示,沖壓機構是在導桿機構的基礎上,串聯一個搖桿滑塊機構組合而成的。導桿機構按給定的行程速比系數設計,它和搖桿滑塊機構組合可達到工作段近於勻速的要求。適當選擇導路位置,可使工作段壓力角較小。
送料機構的凸輪軸通過齒輪機構與曲柄軸相連。按機構運動循環圖可確定凸輪推程運動角和從動件的運動規律,則機構可在預定時間將工件送至待加工位置。
3.六連桿沖壓機構和凸輪—連桿送料機構
如圖5—5所示,沖壓機構是由鉸鏈四桿機構和搖桿滑塊機構串聯組合而成的。四桿機構可按行程速比系數用圖解法設計,然後選擇連桿長lEF及導路位置,按工作段近於勻速的要求確定鉸鏈點E的位置。若尺寸選擇適當,可使執行構件在工作段中運動時機構的傳動角γ滿足要求,壓力角較小。
凸輪送料機構的凸輪軸通過齒輪機構與曲柄軸相連,若按機構運動循環圖確定凸輪轉角及其從動件的運動規律,則機構可在預定時間將工件送至待加工位置。設計時,使lIH<lIR,則可減小凸輪尺寸。
圖5—5沖床機構方案之三 圖5—6沖床機構方案之四
4.凸輪—連桿沖壓機構和齒輪—連桿送料機構
如圖5—6所示,沖壓機構是由凸輪—連桿機構組合,依據滑塊D的運動要求,確定固定凸輪的輪廓曲線。
送料機構是由曲柄搖桿扇形齒輪與齒條機構串聯而成,若按機構運動循環圖確定曲柄搖桿機構的尺寸,則機構可在預定時間將工件送至待加工位置。
選擇方案時,應著重考慮下述幾個方面:
1)所選方案是否能滿足要求的性能指標;
2)結構是否簡單、緊湊;
3)製造是否方便,成本可否降低。
經過分析論證,方案1是四個方案中最為合理的方案,下面就對其進行設計。
五、 沖壓機構設計
由方案1圖5—3可知,沖壓機構是由七桿機構和齒輪機構組合而成。由組合機構的設計可知,為了使曲柄AB回轉一周,C點完成一個循環,兩齒輪齒數比Z1/Z2應等於1。這樣,沖壓機構設計就分解為七桿機構和齒輪機構的設計。
1.七桿機構的設計
設計七桿機構可用解析法。首先根據對執行構件(滑塊F)提出的運動特性和動力特性要求選定與滑塊相連的連桿長度CF,並選定能實現上述要求的點C的軌跡,然後按導向兩桿組法設計五連桿機構ABCDE的尺寸。
設計此七桿機構也可用實驗法,現說明如下。
如圖5—7所示,要求AB、DE均為曲柄,兩者轉速相同,轉向相反,而且曲柄在角度的范圍內轉動時,從動件滑塊在l=60mm范圍內等速移動,且其行程H=150mm。圖5—7 七桿機構的設計
1)任作一直線,作為滑塊導路,在其上取長為l的線段,並將其等分,得分點F1、F2、…、Fn(取n=5)。
2)選取lCF為半徑,以Fi各點為圓心作弧得K1、K2、…、K5。
3)選取lDE為半徑,在適當位置上作圓,在圓上取圓心角為的弧長,將其與l對應等分,得分點D1、D2、…、D5。
4)選取lDC為半徑,以Di為圓心作弧,與K1、K2、…、K5對應交於C1、C2、…、C5。
5)取lBC為半徑,以Ci為圓心作弧,得L1、L2、…、L5。
6)在透明白紙上作適量同心圓弧。由圓心引5條射線等分(射線間夾角為)。
7)將作好圖的透明紙覆在Li曲線族上移動,找出對應交點B1、B2、…、B5,便得曲柄長lAB及鉸鏈中心A的位置。
8)檢查是否存在曲柄及兩曲柄轉向是否相反。同樣,可以先選定lAB長度,確定lDE和鉸鏈中心E的位置。也可以先選定lAB、lDE和A、E點位置,其方法與上述相同。
用上述方法設計得機構尺寸如下:
lAB=lDE=100mm, lAE=200mm, lBC= lDC=283mm, lCF=430mm,A點與導路的垂直距離為162mm,E點與導路的垂直距離為223mm。
2.齒輪機構設計
此齒輪機構的中心距a=200mm,模數m=5mm,採用標準直齒圓柱齒輪傳動,Z1=Z2=40,ha*=1.0。
六、 七桿機構的運動和動力分析
用圖解法對此機構進行運動和動力分析。將曲柄AB的運動一周360o分為12等份,得分點B1、B2、…、B12,針對曲柄每一位置,求得C點的位置,從而得C點的軌跡,然後逐個位置分析滑塊F的速度和加速度,並畫出速度線圖,以分析是否滿足設計要求。
圖5—8是沖壓機構執行構件速度與C點軌跡的對應關系圖,顯然,滑塊在F4~F8這段近似等速,而這個速度值約為工作行程最大速度的40%。該機構的行程速比系數為
故此機構滿足運動要求。圖5-8 七桿機構的運動和動力分析
在進行機構動力分析時,先依據在工作段所受的阻力F0=5000N,並認為在工作段內為常數,然後求得加於曲柄AB的平衡力矩Mb,並與曲柄角速度相乘,獲得工作段的功率;計入各傳動的效率,求得所需電動機的功率為5.3KW,故所確定的電動機型號Y132S—4(額定功率為5.5KW)滿足要求。(動力分析具體過程及結果略)。
七、 機構運動循環圖
依據沖壓機構分析結果以及對送料機構的要求,可繪制機構運動循環圖(如圖5—9所示)。當主動件AB由初始位置(沖頭位於上極限點)轉過角(=90o)時,沖頭快速接近坯料;又當曲柄由轉到(=210o)時,沖頭近似等速向下沖壓坯料;當曲柄由轉到(=240o)時,沖頭繼續向下運動,將工件推出型腔;當曲柄由轉到(=285o)時,沖頭恰好退出下模,最後回到初始位置,完成一個循環。送料機構的送料動作,只能在沖頭退出下模到沖頭又一次接觸工件的范圍內進行。故送料凸輪在曲柄AB由300o轉到390o完成升程,而曲柄AB由390o轉到480o完成回程。
圖5-9 機構運動循環圖
七、送料機構設計
送料機構是由擺動從動件盤形凸輪機構與搖桿滑塊機構串聯而成,設計時,應先確定搖桿滑塊機構的尺寸,然後再設計凸輪機構。
1.四桿機構設計
依據滑塊的行程要求以及沖壓機構的尺寸限制,選取此機構尺寸如下:
LRH=100mm,LOH=240mm,O點到滑塊RK導路的垂直距離=300mm,送料距離取為250mm時,搖桿擺角應為45.24o。
2.凸輪機構設計
為了縮小凸輪尺寸,擺桿的行程應小AB,故取,最大擺角為22.62o。因凸輪速度不高,故升程和回程皆選等速運動規律。因凸輪與齒輪2固聯,故其等速轉動。用作圖法設計凸輪輪廓,取基圓半徑r0=50mm,滾子半徑rT=15mm。
八、調速飛輪設計
等效驅動力矩Md、等效阻力矩Mr和等效轉動慣量皆為曲柄轉角的函數,畫出三者的變化曲線,然後用圖解法求出飛輪轉動慣量JF。
九、帶傳動設計
採用普通V帶傳動。已知:動力機為Y132S-4非同步電動機,電動機額定功率P=5.5KW ,滿載轉速n1=1440rpm ,傳動比i=2, 兩班制工作。
(1)計算設計功率Pd
由[6]中的表6-6查得工作情況系數KA =1.4
(2)選擇帶型 由[6]中的圖6-10初步選用A型帶
(3)選取帶輪基準直徑 由[6]中的表6-7選取小帶輪基準直徑
由[6]中的表6-8取直徑系列值取大帶輪基準直徑:
(4)驗算帶速V
在(5~25m/s) 范圍內,帶速合適。
(5)確定中心a和帶的基準長度
在 范圍內初選中心距
初定帶長
查[6]中的表6-2 選取A型帶的標准基準長度
求實際中心距
取中心距為500mm。
(6)驗算小帶輪包角
包角合適
(7)確定帶的根數Z
查表得
取Z=3根
(8)確定初拉力
單根普通V帶的初拉力
(9)計算帶輪軸所受壓力
(10)帶傳動的結構設計(略)
十、齒輪傳動設計
齒輪減速器的傳動比為ig=10.285,採用標准得雙級圓柱齒輪減速器,其代號為
ZLY-112-10-1。
第二節 棒料校直機執行機構與傳動系統設計
一、設計題目
棒料校直是機械零件加工前的一道准備工序。若棒料彎曲,就要用大棒料才能加工出一個小零件,如圖5-10所示,材料利用率不高,經濟性差。故在加工零件前需將棒料校直。現要求設計一短棒料校直機。確定機構運動方案並進行執行機構與傳動系統的設計。
圖5-10 待校直的彎曲棒料
二、設計數據與要求
需校直的棒料材料為45鋼,棒料校直機其他原始設計數據如表5-1所示。
表5-1 棒料校直機原始設計數據
參數
分組 直徑d2
(mm) 長度L
(mm) 校直前最大麴率半徑ρ
(mm) 最大校直力
(KN) 棒料在校直時轉數
(轉) 生產率
(根/分)
1 15 100 500 1.0 5 150
2 18 100 400 1.2 4 120
3 22 100 300 1.4 3 100
4 25 100 200 1.5 2 80
註:室內工作,希望沖擊振動小;原動機為三相交流電動機,使用期限為10年,每年工作300天,每天工作16小時,每半年作一次保養,大修期為3年。
三、工作原理的確定
1) 用平面壓板搓滾棒料校直(圖5-11)。此方法的優點是簡單易行,缺點是因材料的回彈,材料校得不很直。
2) 用槽壓板搓滾棒料校直。考慮到「糾枉必須過正」,故將靜搓板作成帶槽的形狀,動、靜搓板的橫截面作成圖5-12所示形狀。用這種方法既可能將彎的棒料校直,但也可能將直的棒料弄彎了,不很理想。
3) 用壓桿校直。設計一個類似於圖5-13所示的機械裝置,通過一電動機,一方面讓棒料回轉,另一方面通過凸輪使壓桿的壓下量逐漸減小,以達到校直的目的。其優點是可將棒料校得很直;缺點是生產率低,裝卸棒料需停車。
4) 用斜槽壓板搓滾校直。靜搓板的縱截面形狀如圖5-14所示,其槽深是由深變淺而最後消失。其工作原理與上一方案使壓下量逐漸減小是相同的,故也能將棒料校得很直。其缺點是動搓板作往復運動,有空程,生產效率不夠高。雖可利用如圖所示的偏置曲柄滑塊機構的急回作用,來減少空程損失,但因動搓板質量大,又作往復運動,其所產生的慣性力不易平衡,限制了機器運轉速度的提高,故生產率仍不理想。
5) 行星式搓滾校直。如圖5-15所示,其動搓板變成了滾子1,作連續回轉運動,靜搓板變成弧形構件3,其上開的槽也是由深變淺而最後消失。這種方案不僅能將棒料校得很直,而且自動化程度和生產率高,所以最後確定採用此工作原理。圖5-11平面壓板搓滾棒料校直 圖5-12 槽壓板搓滾棒料校直
圖5-13 壓桿校直
圖5-14 斜槽壓板搓滾校直 圖5-15 行星式搓滾校直
四、執行機構運動方案的擬定
行星式棒料校直機有兩個執行構件,即動搓板滾子和送料滑塊。動搓板滾子的運動為單方向等速連續轉動,可將其直接裝在機器主軸上。送料滑塊的運動為往復移動。圖5-16給出了兩種送料機構方案,其中圖a)為曲柄搖桿機構與齒輪、齒條機構組合,圖b)為擺動推桿盤形凸輪機構與導桿滑塊機構的組合,曲柄(或凸輪)每轉一周送出一根棒料。由於凸輪機構能使送料機構的動作和搓板滾子的運動能更好的協調,故圖b)的執行機構運動方案優於圖a),下面設計計算針對圖b)方案進行。
a) b)
圖5-16 行星式棒料校直機執行機構運動方案
五、傳動系統運動方案的擬定
初步擬定的傳動方案如圖5-17所示。驅使動搓板滾子1轉動的為主傳動鏈,為提高其傳動效率,主傳動鏈應盡可能簡短,而且還要求沖擊振動小,故圖中採用了一級帶傳動和一級齒輪傳動。傳動鏈的第一級採用帶傳動有下列優點:電動機的布置較自由,電動機的安裝精度要求較低,帶傳動有緩沖減振和過載保安作用。
圖5-17 行星式棒料校直機傳動方案
六、執行機構設計
由於動搓板滾子1直接裝在機器主軸上,只有執行構件,沒有執行機構,故只需對送料機構進行設計。對於圖5-16b)所示得運動方案,送料機構的設計,實際上就是擺動推桿盤狀凸輪機構的設計。
凸輪軸的轉動是由滾子軸(傳動主軸)的轉動經過齒輪機構傳動減速而得到的。下面來討論滾子軸與凸輪軸間的傳動比應如何確定。
應注意在校直棒料時,不允許兩根棒料同時進入校直區,否則將因兩根棒料的相互干擾,可能一根棒料也未被校直。所以一定要待前一根棒料退出落下後,後一根棒料才能進入校直區。
設滾子1的直徑,棒料的直徑為,校直區的工作角為,從棒料進入到退出工作區,滾子1的轉角為。因在棒料校直時的運動狀態跟行星輪系傳動一樣,弧形搓板相當於固定的內齒輪,其內經為,角相當於行星架的轉角,根據周轉輪系的計算式,即可求得滾子1的相應轉角,即
故
設已確定為了校直棒料,棒料需在校直區轉過的轉數為,校直區的工作角為,則滾子1的直徑,可由下式確定:
為了保證不出現兩根棒料同時在校直區的現象,應在滾子1轉過角度時,送料凸輪4才轉一轉,由此可定出齒輪的傳動比為
圖中採用了一級齒輪減速(輪為過輪,用它主要是為了協調中心距)。若一級齒輪減速不能滿足要求時,可考慮用二級或三級齒輪減速。
對於第一組數據,並設校直區的工作角為=1200,則由上面公式可求得滾子1的直徑=240mm,滾子1的轉角為=2550,故取1=2600,從而求得齒輪的傳動比為ig=0.722。故取Zc=26,Za=36。
送料滑塊應將棒料推送到A點,設推送距離對應的圓心角為300,則可求得滑塊行程約為120mm,若取擺桿長lCF=400mm,則其擺角為17.25o。
確定推桿運動規律,設計凸輪輪廓曲線(略)。
七、傳動系統設計
原動機選為Y100L2-4非同步電動機,電動機額定功率P=3KW ,滿載轉速n=1420rpm,則傳動系統的總傳動比為i=n/n1,其中n1為滾子1的轉速。對於第一組數據,n1=2600×150/3600 =108.3,總傳動比為i=13.11,若取帶傳動的傳動比為ib=3.0,則齒輪減速器的傳動比為ig=13.11/3.0=4.3,故採用單級斜齒圓柱齒輪減速器。
帶傳動和單級斜齒圓柱齒輪減速器的設計(略)。
『貳』 求自動送料帶式輸送機一級減速器設計說明書 f=1300 v=1.55 d=250 郵箱[email protected]
發過去了,收下
『叄』 自動送料小車控制
你這個是大學科件製作吧!
自己看看書就幾個編碼的邏輯關系!
如果需要的話可以給你個參考編程
具體的現在都有點忘記了
『肆』 自動送料小車控制系統的設計(PLC 200)梯形圖
TITLE=
Network 1 // 網路題目 (單行版權)
LD SM0.1
S S0.0, 1
Network 2
LSCR S0.0
Network 3
LD I0.0
A I0.2
SCRT S0.1
Network 4
SCRE
Network 5
LSCR S0.1
Network 6
LD SM0.0
= Q0.0
Network 7
LD I0.1
SCRT S0.2
Network 8
SCRE
Network 9
LSCR S0.2
Network 10
LD SM0.0
TON T37, +100
Network 11
LD T37
SCRT S0.3
Network 12
SCRE
Network 13
LSCR S0.3
Network 14
LD SM0.0
= Q0.1
Network 15
LD I0.2
SCRT S0.0
Network 16
SCRE
『伍』 步進送料機課程設計
機械原理課程設計說明書
設計題目:步進送料機
07機械設計製造及其自動化專業 二班
設計者:徐麗麗
指導教師:迎春,張春友
2009年12月6日
課程設計 步進送料機
目錄
前言………………………………………………………
第1章 課程設計內容…………………………………
第2章 設計思路………………………………………
第3章 工作原理………………………………………
第4章 運動循環圖……………………………………
第5章 機械繫統運動方案……………………………
第6章 主要執行結構方案設計………………………
第7章 傳動機構尺寸設計……………………………
第8章 系統機械運動方案簡圖………………………
前言
隨著科學技術、工業生產水平的不斷發展和人們生活條件的不斷改善,消費者的價值觀念變化很快,市場需求才出現多樣化的特徵,機械產品的種類日益增多,例如,各種金屬切削機床、儀器儀表、重型機械、輕工機械、紡織機械、石油化工機械、交通運輸機械、海洋作業機械、鋼鐵成套設備、辦公設備、家用電器以及兒童玩具等等。同時,這些機械產品的壽命周期也相應縮短。
企業為了贏得市場,必須不斷開發符合市場需求的產品。新產品的設計與製造,其中設計是產品開發的第一步,是決定產品的性能、質量、水平、市場競爭力和經濟效益的最主要因素。機械產品的設計是對產品的功能、工作原理、系統運動方案、機構的運動與動力設計、機構的結構尺寸、力和能量的傳遞方式、各個零件的材料和形狀尺寸、潤滑方法等進行構思、分析和計算,並將其轉化為具體的描述以作為製造的工作過程。其中機械產品的功能、工作原理、系統運動方案、機構的運動與動力設計、機構的結構尺寸、力和能量的傳遞方式等內容是機械原理課程的教學內容。
當今世界,科學技術突飛猛進,知識經濟已見端倪,綜合國力的競爭日趨激烈。國力的競爭,歸根結底是科技與人才的競爭。而機械原理課程設計是機械原理課程的一個重要實踐性教學環節,同時,又是機械類專業人才培養計劃中一個相對獨立的設計實踐,在培養學生的機械綜合設計能力及創新意識與能力方面,起著重要的作用。在課程設計中,它培養了學生 創新設計的能力。本次設計的是半自動鑽床設計,以小見大,設計並不是門簡單的課程,它需要同學們理性的思維和豐富的空間想像能力。
關鍵字:送料機構,定位機構,傳動機構
第一章 課程設計 步進送料機
一.設計題目
設計某自動生產線的一部分——步進送料機。如圖25所示,加工過程要求若干個相同的被輸送的工件間隔相等的距離a,在導軌上向左依次間歇移動,即每個零件耗時t1移動距離a後間歇時間t2。考慮到動停時間之比K=t1/t2之值較特殊,以及耐用性、成本、維修方便等因素,不宜採用槽輪、凸輪等高副機構,而應設計平面連桿機構。
具體設計要求為:
1、電機驅動,即必須有曲柄。
2、輸送架平動,其上任一點的運動軌跡近似為虛線所示閉合曲線(以下將該曲線簡稱為軌跡曲線)。
3、軌跡曲線的AB段為近似的水平直線段,其長度為a,允差±c(這段對應於工件的移動);軌跡曲線的CDE段的最高點低於直線段AB的距離至少為b,以免零件停歇時受到輸送架的不應有的回碰。有關數據見表1.1
表1.1 設計數據
方案號 a
mm c
mm b
mm t1
s t2
s
A 300 20 50 1 2
B 300 20 55 1 2
C 350 20 50 1 3
D 350 20 55 1 3
E 400 20 50 2 4
F 400 20 55 2 4
二.設計任務
1. 步進送料機一般至少包括連桿機構和齒輪機構二種常用機構。
2. 設計傳動系統並確定其傳動比分配。
3. 圖紙上畫出步進送料機的機構運動方案簡圖和運動循環圖。
4. 對平面連桿機構進行尺度綜合,並進行運動分析;驗證輸出構件的軌跡是否滿足設計要求;求出機構中輸出件的速度、加速度;畫出機構運動線圖。
5. 編寫設計計算說明書。
三.設計提示
1. 由於設計要求構件實現軌跡復雜並且封閉的曲線,所以輸出構件採用連桿機構中的連桿比較合適。
2. 由於對輸出構件的運動時間有嚴格的要求,可以在電機輸出端先採用齒輪機構進行減速。如果再加一級蝸桿蝸輪減速,會使機構的結構更加緊湊。
3. 由於輸出構件尺寸較大,為提高整個機構的剛度和運動的平穩性,可以考慮採用對稱結構(虛約束)。
第二章 設計思路
零件工作時間與中間間歇時間比為1:2,則齒輪轉動1/(1+2)*360=120為有效工作時間,曲柄搖桿機構的極位夾角為180—120=60. 選取AB=100 mm, BC=350mm,角CBE=30度,BE=173.2mm, 畫出機構如圖所示。E』E』』=300mm,取E』E』』』=50mm,過點E』』』做E』』』B』』』=173.2mm,再過B』』』做B』』』C』』』=350mm,使角C』』』B』』』E』』』=30度,找出C』』』,然後根據C』,C』』,C』』』點畫出D點,CD=374mm 。其中E』E』』相當於軌計的AB點
齒輪傳動
傳動比准確,外廓尺寸小,功率高,壽命長,功率及速度范圍廣,適宜於短距離傳動
製造精度要求高
開式0.92-0.96
閉式0.96-0.99
6級精度直齒v≤18m/s
6級精度非直齒v≤36m/s
5級精度直齒v≤200m/s
漸開線齒輪≤50000kw圓弧齒輪≤6000kw錐齒輪≤1000kw
一對圓柱齒輪i≤10
通常i≤5
一對圓錐齒輪i≤8
通常i≤3
主要用於傳動
帶傳動
中心距變化范圍廣,可用於長距離傳動,可吸振,能起到緩沖及過載保護
用打滑現象,軸上受力較大
平帶0.92-0.98
V帶0.92-0.94
同步帶0.96-0.98
V帶v≤25m/s
同步帶v≤50m/s
V帶≤40
同步帶≤200-750kw
平帶i≤5
V帶i≤7
同步帶i≤10
常用於傳動鏈的高速端
連桿傳動
適用於寬廣的載荷范圍,可實現不同的運動軌跡,可用於急回、增力,加大或縮小行程等
設計復雜,不宜高速度運動
在運動過程中隨時發生變化
既可為傳動機構又可做為執行機構
第三章 工作原理
功能要求:加工過程要求若干個相同的被輸送的工件間隔相等的距離a,在導軌上向左依次間歇移動,即每個零件耗時t1=1s移動距離a=300mm後間歇時間t2=2s
功能原理:步進送料機的工作原理分解如圖所示,該系統由電動機驅動,通過帶傳動將運動傳給齒輪,再由各級齒輪進行減速使其轉速符合要求,即n=1r/3s=20r/min。最後利用齒輪和連桿將運動傳給輸送架。
第四章 運動循環圖
齒輪轉角 0~~120 120~~360
送料 輸送架向前推進,工件前移 輸送架向後退回,工件停止
第五章 機械繫統運動方案
方案號 a
mm c
mm b
mm t1
s t2
s
A 300 20 50 1 2
B 300 20 55 1 2
C 350 20 50 1 3
D 350 20 55 1 3
E 400 20 50 2 4
F 400 20 55 2 4
選擇方案A
第六章 主要執行機構設計方案
連桿傳動機構
送料--------連桿在圖示軌跡上做往復運動----------齒輪定轉速轉動
第七章 計算傳動機構傳動機構尺寸設計
1.根據所給的設計參數,可算出執行構件連接的齒輪的轉速n=20r/min,取驅動電機:y180l-8,功率N=11KW,轉速n=710r/min。所以機械的總傳動比為:
可根據總傳動比設計傳動機構。一般一級減速用皮帶輪i皮≤5~8,二級減速用齒輪,傳動比的各級分配情況應遵循「前小後大」的原則分配較為有利。即:i1<i2<…<in,且相鄰兩級傳動比的差值不要太大,運動鏈這樣逐級減速,使各級中間軸有較高的轉速及較小的轉矩,從而使軸與軸間的零件有較小的尺寸,機構較為緊湊。
齒輪選取鋼料,m=5,取z2=20,i1=7.1,則
z1=20*=142 d1=mz1=5*142=710mm 而AB=200mm,d1>2AB,所以齒輪符合連桿的 傳動要求
i1*i2=35.5,所以i2=5也符合傳動要求
2設計計算各主要執行機構
送料機構的設計,首先要確定從動件的運動規律,確定連桿的幾何尺寸。計算齒輪在轉動一周過程中的理論和實際廓線的坐標值。
對各主要執行機構進行受力分析。
第八章 系統機械運動方案簡圖
參考文獻:《機械原理課程設計指導書》,《機械原理》
2009年12月9日
『陸』 設計已螺旋輸送機的驅動裝置設計說明書
計算內容 計算結果
一, 設計任務書
設計題目:傳送設備的傳動裝置
(一)方案設計要求:
具有過載保護性能(有帶傳動)
含有二級展開式圓柱齒輪減速器
傳送帶鼓輪方向與減速器輸出軸方向平行
(二)工作機原始數據:
傳送帶鼓輪直徑___ mm,傳送帶帶速___m/s
傳送帶主動軸所需扭矩T為___N.m
使用年限___年,___班制
工作載荷(平穩,微振,沖擊)
(三)數據:
鼓輪D 278mm,扭矩T 248N.m
帶速V 0.98m/s,年限 9年
班制 2 ,載荷 微振
二.電機的選擇計算
1. 選擇電機的轉速:
a. 計算傳動滾筒的轉速
nw= 60V/πd=60×0.98/3.14×0.278=67.326 r/min
b.計算工作機功率
pw= nw/9.55×10³=248×67.326/9.55×10³=1.748Kw
2. 工作機的有效功率
a. 傳動裝置的總效率
帶傳動的效率η1= 0.96
彈性聯軸器的效率η2= 0.99
滾筒的轉速
nw=67.326 r/min
工作機功率
pw=1.748Kw
計算內容 計算結果
滾動軸承的效率 η3=0.99
滾筒效率 η4=0.96
齒輪嚙合效率 η5=0.97
總效率 η=η1×η2×η34×η4×η5²=
0.95×0.99×0.994×0.96×0.97²=0.816
c. 所需電動機輸出功率Pr=Pw/η=1.748/0.816=2.142kw
3. 選擇電動機的型號:
查參考文獻[10] 表16-1-28得 表1.1
方案
號 電機
型號 電機
質量
(Kg) 額定
功率
(Kw) 同步
轉速(r/min) 滿載
轉速
(r/min) 總傳
動比
1 Y100L1-4 34 2.2 1500 1420 21.091
2 Y112M-6 45 2.2 1000 940 13.962
根據以上兩種可行同步轉速電機對比可見,方案2傳動比小且質量價格也比較合理,所以選擇Y112M-6型電動機。
三.運動和動力參數的計算
1. 分配傳動比取i帶=2.5
總傳動比 i=13.962
i減=i/i帶=13.962/2.5=5.585
減速器高速級傳動比i1= =2.746
減速器低速級傳動比i2= i減/ i1=2.034
2. 運動和動力參數計算:
總效率
η=0.816
電動機輸出功率
Pr=2.142kw
選用三相非同步電動機Y112M-6
p=2.2 kw
n=940r/min
中心高H=1112mm,外伸軸段D×E=28×60
i=13.962
i12=2.746
i23=2.034
P0=2.142Kw
計算內容 計算結果
0軸(電動機軸):
p0=pr=2.142Kw
n0=940r/min
T0=9.55103P0/n0=9.551032.119/940=21.762N.m
Ⅰ軸(減速器高速軸):
p1=p.η1=2.1420.95=2.035Kw
n1= n0/i01=940/2.5=376
T1=9.55103P1/n1=51.687 N.m
Ⅱ軸(減速器中間軸):
p2=p1η12=p1η5η3=2.0350.970.99
=1.954 Kw
n2= n1/i12=376/2.746=136.926 r/min
T2=9.55103 P2/n2=136.283N.m
Ⅲ軸(減速器低速軸):
p3=p2η23= p2η5η3=1.876 Kw
n3= n2/i23=67.319 r/min
T3=9.55103 P3/n3=266.133 N.m
Ⅳ軸(鼓輪軸):
p4=p3η34=1.839 Kw
n4= n3=67.319 r/min
T4=9.55103 P4/n4=260.884 N.m
四.傳動零件的設計計算
(一)減速器以外的傳動零件
1.普通V帶的設計計算
(1) 工況系數取KA=1.2
確定dd1, dd2:設計功率pc=KAp=1.22.2=2.64Kw n0=940r/min
T0=21.762N.m
p1=2.035Kw
n1=376r/min
T1=51.687N.m
p2=1.954Kw
n2=136.926 r/min
T2=136.283 N.m
p3=1.876Kw
n3=67.319 r/min
T3=266.133N.m
p4=1.839 Kw
n4=67.319r/min
T4=260.884 N.m
小帶輪轉速n1= n0=940 r/min
選取A型V帶 取dd1=118mm
dd2=(n1/n2)dd1=(940/376) 118=295mm
取標准值dd2=315mm
實際傳動i=dd1/ dd2=315/118=2.669
所以n2= n1/i=940/2.669=352.192r/min(誤差為6.3%>5%)
重取 dd1=125mm,
dd2=(n1/n2)dd1=(940/376)125=312.5mm
取標准值dd2=315mm
實際傳動比i= dd1/ dd2=315/125=2.52
n2= n1/i=940/2.52=373.016
(誤差為8% 允許)
所選V帶帶速v=πdd1 n1/(601000)=3.14
125940/(601000)=6.152m/s
在5 ~25m/s之間 所選V帶符合
(2)確定中心距
①初定a0 :0.7(dd1 +dd2)≤a0≤ 2(dd1 +dd2)
308≤a0≤880 取a0=550mm
②Lc=2 a0+(π/2)( dd1 +dd2)+( dd2 -dd1)²/4 a0
=2550+(3.14/2) (315+125)+(315-125)²/4550=1807.559
③取標准值:Ld=1800mm
④中心距:a=a0+ (LdLc)/2=550+(1800-1807.559)/2
計算內容 計算結果
=546.221mm
取a=547mm,a的調整范圍為:
amax=a+0.03 Ld=601mm
amin=a-0.015Ld=520mm
(2)驗算包角:
α≈180°-(dd2-dd1) 60° /a=180°-(315-125) 60°/547=159°>120°,符合要求。
(3)確定根數:z≥pc/p0』
p0』=Kα(p0+Δp1+Δp2)
Kα=1.25(1- )=0.948
對於A型帶:c1=3.7810-4,c2=9.8110-3,
c3=9.610-15,c4=4.6510-5
L0=1700mm
ω1= = =98.437rad/s
p0= dd1ω1[c1- - c3 (dd1ω1)²- c4lg(dd1ω1)]
=12598.437[3.7810-4- -9.6
10-15 (12598.437)²- 4.6510-5
lg(12598.437)]=1.327
Δp1= c4dd1ω1 =0.148
Δp2=c4dd1ω1 =0.0142
p0』=0.948 (1.327+0.149+0.0142)=1.413 Kw
確定根數:z≥ ≤Zmax
z= = 取z=2
(4)確定初拉力F0
F0=500 =500×
=175.633KN
(5)帶對軸的壓力Q
Q=2 F0zsin =2 =690.768KN
(二)減速器以內的零件的設計計算
1.齒輪傳動設計
(1)高速級用斜齒輪
① 選擇材料
小齒輪選用40Cr鋼,調質處理,齒面硬度250~280HBS大齒輪選用ZG340~ 640,正火處理,齒面硬度170 ~ 220HBS
應力循環次數N:
N1=60n1jLh=60×376×(9×300×16)=9.74×108
N2= N1/i1=9.74×108 ÷2.746=3.549×108
查文獻[2]圖5-17得:ZN1=1.02 Z N2=1.11(允許有一點蝕)
由文獻[2]式(5-29)得:ZX1 = ZX2=1.0,取SHmin=1.0,Zw=1.0,ZLVR=0.92
按齒面硬度250HBS和170HBS由文獻[2]圖(5-16(b))得:σHlim1=690Mpa, σHlim2=450 Mpa
許用接觸應力[σH]1 =(σHlim1/SHmin)ZN1 ZX1 Zw ZLVR=647.496 Mpa,[σH]2=(σHlim2/SHmin)ZN2 ZX2 Zw ZLVR
=459.540 Mpa
因[σH]2〈[σH]1,所以計算中取[σH]= [σH]2 =459.540 Mpa
②按接觸強度確定中心距
初定螺旋角β=12° Zβ= =0.989
初取KtZεt2=1.12 由文獻[2]表5-5得ZE=188.9 ,減速傳動u=i1 =2.746,取Φa=0.4
端面壓力角αt=arctan(tanαn/cosβ)=arctan(tan20°/cos12°)=20.4103°
基圓螺旋角βb= arctan(tanβ×cosαt)= arctan(tan12°×cos20.4103°)=11.2665°
ZH= = =2.450
計算中心距a:
計算內容 計算結果
a≥
=
=111.178mm
取中心距 a=112mm
估算模數mn=(0.007~0.02)a=(0.007~0.02)×=
0.784~2.24
取標准模數mn=2
小齒輪齒數
實際傳動比: 傳動比誤差 在允許范圍之內
修正螺旋角β=
10°50′39〃
與初選β=12°相近,Zβ,ZH可不修正。
齒輪分度圓直徑
圓周速度
由文獻[2]表5-6 取齒輪精度為8級
③驗算齒面接觸疲勞強度
按電機驅動,載荷平穩,由文獻[2]表5-3 取 KA=1.25
由文獻[2]圖5-4(b),按8級精度和
取KV=1.023
齒寬 ,取標准b=45mm
由文獻[2]圖5-7(a)按b/d1=45/61.091=0.737,取Kβ=1.051
由文獻[2]表5-4,Kα=1.2
載荷系數K= KAKVKβKα=
計算重合度:
齒頂圓直徑
端面壓力角:
齒輪基圓直徑: mm
mm
端面齒頂壓力角:
高速級斜齒輪主要參數:
mn=2
z1=30, z2=80
β=
10°50′39〃
mt= mn/cosβ=2.036mm
d1=61.091mm
d2=162.909mm
da1=65.091mm
da2=166.909mm
df1= d1-2(ha*+ c*) mn=56.091mm
df2= d2-2(ha*+ c*) mn=157.909mm
中心距a=1/2(d1+d2)=112mm
齒寬b2=b=
45mm
b1= b2+(5~10)=50mm
計算內容 計算結果
齒面接觸應力
安全
④驗算齒根彎曲疲勞強度
由文獻[2]圖5-18(b)得:
由文獻[2]圖5-19得:
由文獻[2]式5-23:
取
計算許用彎曲應力:
計算內容
計算結果
由文獻[2]圖5-14得:
由文獻[2]圖5-15得:
由文獻[2]式5-47得計算
由式5-48: 計算齒根彎曲應力:
均安全。
⑵低速級直齒輪的設計
①選擇材料
小齒輪材料選用40Cr鋼,齒面硬度250—280HBS,大齒輪材料選用ZG310-570,正火處理,齒面硬度162—185HBS
計算應力循環次數N:同高速級斜齒輪的計算 N1=60 n1jL h=1.748×108
N2= N1/i1=0.858×108
計算內容
計算結果
查文獻[2]圖5-17得:ZN1=1.12 Z N2=1.14
按齒面硬度250HBS和162HBS由文獻[2]圖(5-16(b))得:σHlim1=690Mpa, σHlim2=440 Mpa
由文獻[2]式5-28計算許用接觸應力:
[σH]1 =(σHlim1/SHmin)ZN1 ZX1 Zw ZLVR=710.976 Mpa,[σH]2=(σHlim2/SHmin)ZN2 ZX2 Zw ZLVR
=461.472 Mpa
因[σH]2〈[σH]1,所以取[σH]= [σH]2 =461.472 Mpa
②按接觸強度確定中心距
小輪轉距T1=136.283N.m=136283N.m
初取KtZεt2=1.1 由文獻[2]表5-5得ZE=188.9 ,減速傳動u=i23=2.034,取Φa=0.35
計算中心距a: a≥
=145.294mm
取中心距 a=150mm估算模數m=(0.007~0.02)a=(0.007~0.02)×150=
1.05~3
取標准模數m=2
小齒輪齒數
齒輪分度圓直徑
齒輪齒頂圓直徑:
齒輪基圓直徑: mm
mm
圓周速度
由文獻[2]表5-6 取齒輪精度為8級
按電機驅動,載荷平穩,而工作機載荷微振,由文獻[2]表5-3 取 KA=1.25
按8級精度和 取KV=1.02
齒寬 b= ,取標准b=53mm
由文獻[2]圖5-7(a)按b/d1=53/100=0.53,取Kβ=1.03
由文獻[2]表5-4,Kα=1.1
載荷系數K= KAKVKβKα=
計算端面重合度:
安全。
③校核齒根彎曲疲勞強度
按z1=50, z2=100,由文獻[2]圖5-14得YFa1=2.36 ,YFa2=2.22
由文獻[2]圖5-15得YSa1= 1.71,YSa2=1.80。
Yε=0.25+0.75/ εα=0.25+0.75/1.804=0.666
由文獻[2]圖5-18(b),σFlim1=290Mp, σFlim2=152Mp
由文獻[2]圖5-19,YN1= YN2=1.0,因為m=4〈5mm,YX1= YX2=1.0。
取YST=2.0,SFmin=1.4。
計算許用彎曲應力:
[σF1]= σFlim1YST YN1 YX1/SFmin=414Mp
[σF2]= σFlim2YST YN2 YX2/SFmin=217Mp
計算齒根彎曲應力:
σF1=2KT1YFa1YSa1Yε/bd1m=2×1.445×136283×2.36×1.71×0.666/53×100×2=99.866Mp〈[σF1]
σF2=σF1 YFa2YSa2/ YFa1YSa1=98.866Mp〈[σF2]
均安全。
五.軸的結構設計和軸承的選擇
a1=112mm, a2=150mm,
bh2=45mm, bh1= bh2+(5~10)=50mm
bl2=53mm, bl1= bl2+(5~10)=60mm
(h----高速軸,l----低速軸)
考慮相鄰齒輪沿軸向不發生干涉,計入尺寸s=10mm,考慮齒輪與箱體內壁沿軸向不發生干涉,計入尺寸k=10mm,為保證滾動軸承放入箱體軸承座孔內,計入尺寸c=5mm,初取軸承寬度分別為n1=20mm,n2=22,n3=22mm,3根軸的支撐跨距分別為:
計算內容
低速級直齒輪主要參數:
m=2
z1=50, z1=50 z2=100
u=2.034
d1=100mm
d2=200mm
da1=104mm
da2=204mm
df1=
d1-2(ha*+ c*) m=95mm
df2=
d2-2(ha*+ c*) m=195mm
a=1/2(d2+ d1)=150mm
齒寬b2 =b=53mm
b1=b2+
(5~10)=60mm
計算結果
l1=2(c+k)+bh1+s+bl1+n1=2×(5+10)+50+10+60+20=170mm
l2=2(c+k)+bh1+s+bl1+n2=2×(5+10)+50+10+60+20=
172mm
l3=2(c+k)+bh1+s+bl1+n3=2×(5+10)+50+10+60+20=172mm
(2)高速軸的設計:
①選擇軸的材料及熱處理
由於高速軸小齒輪直徑較小,所以採用齒輪軸,選用40r鋼,
②軸的受力分析:
如圖1軸的受力分析:
lAB=l1=170mm,
lAC=n1/2+c+k+bh1/2=20/2+5+10+50/2=50mm
lBC= lAB- lAC=170-50=120mm
(a) 計算齒輪嚙合力:
Ft1=2000T1/d1=2000×51.687/61.091=162.131N
Fr1=Ft1tanαn/cosβ1692.13×tan20°/cos10.8441°=627.083N
Fa1= Ft1tanβ×tan10.8441°=324.141N
(b) 求水平面內支承反力,軸在水平面內和垂直面的受力簡圖如下圖:
RAx= Ft1 lBC/ lAB=1692.131×120/170=1194.445N
RBx= Ft1-RAx=1692.131-1194.445=497.686N
RAy=(Fr1lBC+Fa1d1/2)/lAB=(627.083×120+324.141×
61.091/2)/170=500.888N
RBy= Fr1-RAy=627.083-500.888=126.195N
(c) 支承反力
彎矩MA= MB=0,MC1= RA lAC=64760.85N.mm
MC2= RB lBC=61612.32N.mm
轉矩T= Ft1 d1/2=51686.987N.mm
計算內容
計算結果
d≥ ③軸的結構設計
按經驗公式,減速器輸入端軸徑A0 由文獻[2]表8-2,取A0=100
則d≥100 ,由於外伸端軸開一鍵槽,
d=17.557(1+5%)=18.435取d=20mm,由於da1<2d,用齒輪軸,根據軸上零件的布置、安裝和定位的需要,初定軸段直徑和長度,其中軸頸、軸的結構尺寸應與軸上相關零件的結構尺寸聯系起來考慮。
初定軸的結構尺寸如下圖:
高速軸上軸承選擇:選擇軸承30205 GB/T297-94。
(2)中間軸(2軸)的設計:
①選擇軸的材料及熱處理
選用45號綱調質處理。
②軸的受力分析:
如下圖軸的受力分析:
計算內容
計算結果
lAB=l2=172mm,
lAC=n2/2+c+k+bh1/2=22/2+5+10+50/2=51mm
lBC= lAB- lAC=172-51=121mm
lBD=n2/2+c+k+bl1/2=22/2+5+10+60/2=56mm
(a) 計算齒輪嚙合力:
Ft2=2000T2/d2=2000×136.283/162.909=1673.118N
Fr2=Ft2tanαn/cosβ=1673.118×tan20°/cos10.8441°=620.037N
Fa2=Ft2tanβ=1673.118×tan10.8441°=320.499N
Ft3=2000T2/d3=2000×136.283/100=2725.660N
Fr3=Ft3tanα=2725.660×tan20°=992.059N
(b)求水平面內和垂直面內的支反力
RAx=(Ft2lBC+Ft3lBD )/lAB=(1673.118×121+2725.660×56)/172=2064.443N
RBx=Ft2+Ft3-RAX=1673.118+2725.660-2064.443=2334.35N
RAY=(Fa2d2/2-Fr2lBC+Fr3lBD)/lAB=(320.449×162.909/2-620.037×121+992.059×56)=190.336N
RBY=Fr3-Fr2-RAY=992.059-620.037-190.336=
計算內容
計算結果
181.656N
RA=2073.191N, RB=2341.392N
③軸的結構設計
按經驗公式, d≥A0 由文獻[2]表8-2,取A0=110
則d≥110 ,取開鍵槽處d=35mm
根據軸上零件的布置、安裝和定位的需要,初定軸段直徑和長度,其中軸頸、軸的結構尺寸應與軸上相關零件的結構尺寸聯系起來考慮。
初定軸的結構尺寸如下圖:
中間軸上軸承選擇:選擇軸承6206 GB/T276-94。
(3)低速軸(3軸)的設計:
①選擇軸的材料及熱處理
選用45號綱調質處理。
②軸的受力分析:
如下圖軸的受力分析:
計算內容
計算結果
初估軸徑:
d≥A0 =110
聯接聯軸器的軸端有一鍵槽,dmin=33.5(1+3%)=34.351mm,取標准d=35mm
軸上危險截面軸徑計算:d=(0.3~0.4)a=(0.3~0.4)×150=45~60mm 最小值dmin =45×(1+3%)=46.35mm,取標准
計算內容 計算結果
50mm
初選6207GB/T276-94軸承,其內徑,外徑,寬度為40×80×18
軸上各軸徑及長度初步安排如下圖:
③低速級軸及軸上軸承的強度校核
a、 低速級軸的強度校核
①按彎扭合成強度校核:
轉矩按脈動循環變化,α≈0.6
Mca1= Mc=106962.324N.mm
Mca2=
Mca3=αT=159679.800N.mm
計算彎矩圖如下圖:
計算內容
計算結果
Ⅱ剖面直徑最小,而計算彎矩較大,Ⅷ剖面計算彎矩最大,所以校核Ⅱ,Ⅷ剖面。
Ⅱ剖面:σca= Mca3/W=159679.8/0.1×35³=37.243Mp
Ⅷ剖面:σca= Mca2/W=192194.114/0.1×50³=15.376Mp
對於45號綱,σB=637Mp,查文獻[2]表8-3得
[σb] -1=59
Mp,σca<[σb] -1,安全。
②精確校核低速軸的疲勞強度
a、 判斷危險截面:
各個剖面均有可能有危險剖面。其中,Ⅱ,Ⅲ,Ⅳ剖面為過度圓角引起應力集中,只算Ⅱ剖面即可。Ⅰ剖面與Ⅱ剖面比較,只是應力集中影響不同,可取應力集中系數較大者進行驗算。Ⅸ--Ⅹ面比較,它們直徑均相同,Ⅸ與Ⅹ剖面計算彎矩值小,Ⅷ剖面雖然計算彎矩值最大,但應力集中影響較小(過盈配合及鍵槽引起的應力集中均在兩端),所以Ⅵ與Ⅶ剖面危險,Ⅵ與Ⅶ剖面的距離較接近(可取5mm左右),承載情況也很接近,可取應力集中系數較大值進行驗算。
計算內容
計算結果
b.較核Ⅰ、Ⅱ剖面疲勞強度:Ⅰ剖面因鍵槽引
起的應力集中系數由文獻[2]附表1-1查得:kσ=1.76, kτ=1.54
Ⅱ剖面配合按H7/K6,引起的應力集中系數由文獻[2]附表1-1得:kσ=1.97, kτ=1.51。Ⅱ剖面因過渡圓角引起的應力集中系數查文獻[2]附表1-2(用插入法): (過渡圓角半徑根據D-d由文獻[1]表4.2-13查取) kτ=1.419,故應按過渡圓角引起的應力集中系數驗算Ⅱ剖面
Ⅱ剖面產生的扭應力、應力幅、平均應力為:
τmax =T/ WT=266.133/0.2×35³=31.036Mp,
τa=τm =τmax /2=15.52Mp
絕對尺寸影響系數查文獻[2]附表1-4得:εσ =0.88,ετ =0.81,表面質量系數查文獻[2]附表1-5:βσ =0.92,βτ =0.92
Ⅱ剖面安全系數為:
S=Sτ=
取[S]=1.5~1.8,S>[S] Ⅱ剖面安全。
b、 校核Ⅵ,Ⅶ剖面:
Ⅵ剖面按H7/K6配合,引起的應力集中系數查附表1-1,kσ=1.97, kτ=1.51
Ⅵ剖面因過渡圓角引起的應力集中系數查附表1-2, ,kσ=1.612,kτ=1.43
Ⅶ剖面因鍵槽引起的應力集中系數查文獻[2]附表1-1得:kσ=1.82, kτ=1.62。故應按過渡圓角引起
計算內容
計算結果
的應力集中系數來驗算Ⅵ剖面
MVⅠ=113 RA=922.089×113=104196.057N.mm, TVⅠ=266133N.mm
Ⅵ剖面產生的正應力及其應力幅、平均應力:
σmax= MVⅠ/W=104196.057/0.1×50³=8.336Mp
σa=σmax=8.366 σm=0
Ⅵ剖面產生的扭應力及其應力幅,平均應力為:
τmax =TⅥ/ WT=266133/0.2×50³
絕對尺寸影響系數由文獻[2]附表1-4得:εσ =0.84,ετ
=0.78
表面質量系數由文獻[2]附表1-5查得:βσ =0.92,βτ =0.92
Ⅵ剖面的安全系數:
Sσ =
Sτ=
S=
取[S]= 1.5~1.8,S>[S] Ⅵ剖面安全。
六.各個軸上鍵的選擇及校核
1.高速軸上鍵的選擇:
初選A型6×32 GB1095-79:b=6mm,L=32mm,l=26mm,查文獻[2]表2-10,許用擠壓應力[σp]=110Mp,σp= 滿足要求;
計算內容
高速軸上
選A型6×32 GB1095-79:b=6mm,L=32mm,l=26mm
中間軸
選A型10×32 GB1095-79:b=10mm,h=8mm,L=32mm,l=22mm,
計算結果
2.中間軸鍵的選擇:
A處:初選A型10×32 GB1095-79:b=10mm,h=8mm,L=32mm,l=22mm, [σp]=110Mp
σp= 滿足要求;
B處:初選A型10×45 GB1095-79:
b=10mm,h=8mm,L=32mm,l=22mm,[σp]=110Mp
σp= 滿足要求.
3. 低速軸上鍵的選擇:
a.聯軸器處選A型普通平鍵
初選A型10×50 GB1096-79:b=10mm,h=8mm,L=50mm,l=40mm,查文獻[2]表2-10,許用擠壓應力[σp]=110Mp
σp= 滿足要求.
b. 齒輪處初選A型14×40 GB1096-79:b=14mm,h=9mm,L=40mm,l=26mm, [σp]=110Mp
σp= 滿足要求.
七.聯軸器的選擇
根據設計題目的要求,減速器只有低速軸上放置一聯軸器。
查表取工作情況系數K=1.25~1.5 取K=1.5
計算轉矩 Tc=KT=1.5×266.133=399.200Mp
選用HL3型聯軸器:J40×84GB5014-85,[T]=630N.m, Tc<[T],n<[n],所選聯軸器合適。
低速軸
聯軸器處選A型10×50GB1096-79:b=10mm,h=8mm,L=50mm,l=40mm
低速軸
齒輪處初選A型14×40GB1096-79:
b=14mm,h=9mm,L=40mm,l=26mm
選用HL3型聯軸器:J40×84GB5014-85
參考資料:機械課程設計,理論力學
『柒』 跪求~~各位大爺幫我解決題目:用於自動送料的帶式運輸機的傳動裝置一級圓柱齒輪減速器 答辯過關重謝~
看一下你要的是不是這個圖,這個帖子http://..com/question/229266625.html有貼圖,如果能幫你請確認你的帖子,我收到最佳答案的通知後傳你郵箱圖紙
『捌』 沖床自動送料系統含plc控制的
這個是用 錢買的
『玖』 塑料模具設計說明書怎麼寫
畢業設計論文
目錄
零件介紹 3
設計加工該模具。 4
1零件工藝性分析 4
2確定工藝方案及級進沖裁的順序安排 4
3模具設計計算 5
(1) 確定排樣設計 5
(2):調料寬度 6
(3)確定步距 8
(4): 計算總壓力 8
(5): 確定壓力中心 8
(6)確定刃口尺寸 9
①沖孔模凸模 9
②脹形凸模 9
③翻邊模尺寸計算 10
④彎曲模尺寸 11
(7)確定各主要零件的結構尺寸 13
4設計並繪制總裝配圖、選取標准件 14
5繪制零件圖 15
6編制主要零件的加工工藝規程 19
7模具的裝配 19
零件介紹
零件名稱:背板
生產批量:大批量
材料: 20
設計加工該模具。
1零件工藝性分析: 沖壓件的工藝性性是指沖壓件對沖壓工藝性的適應性,即設計的沖壓件在結構,形狀尺寸以及公差等各方面是否符合沖壓加工的工藝要求,沖壓件工藝性的好壞直接影響到沖壓件的沖壓加工的難易程度。
2確定工藝方案及級進沖裁的順序安排
(1) ①先沖孔或切口,最後落料或切斷;
②採用定距側刃時,定距側刃切邊工序應安排與首次沖孔同時進行。
(2)多工序工件用單工序沖裁時的順序安排
①先落料,使毛坯與條料分離,再沖孔或沖缺口;
②沖裁大小相同、相距較近的孔時,應先沖大孔再沖小孔 模具結構形式 綜上分析,該零件尺寸不大,精度 ,該零件進行沖壓加工的基本工序為沖孔、脹形、翻邊、彎曲和落料,
其加工工藝方案有二種。
沖孔,翻邊、脹形、彎曲、落料
沖工藝孔、脹形、沖翻邊孔、翻邊、彎曲、落料
分析沖壓方案如下:
方案一:模具結構相對簡單一點,但翻邊的孔形易受下一步脹形的影響。
方案二:工序多一點,但是易保證各部的精度不受下一步的影響,故零件加工精度較高。
綜上所述,為保證各項技術要求,選用方案二,其工序如下:
沖ø4的孔和3*15的矩形孔;一次性脹形內部形狀;沖5-ø1.8的孔;翻邊5-ø3和沖5-ø1.8的孔;翻邊5-ø3;落料。
3模具設計計算
確定排樣設計
排樣要求級進模中大部分採用側刃定位,側刃位置要適當,排樣時應避免凸凹模單邊工作,在不浪費材料的前提下,可將交錯排樣改為並列排樣,消除單邊沖裁。
沖壓件在板料或者條料上布置的方式成為排樣,不合理的排樣會浪費材料衡量排樣經濟性的指標是排樣的利用率。其公式如下:
η=S/S0*100/100
S表示工件的實際面積
S0表示所用材料的面積
從上式可以看出若能減少廢料的面積,則材料的利用率很高,廢料可以分為工藝廢料與結構廢料兩種。結構廢料由工件的形狀特點而定,一般不能改變,搭邊和余料屬於工藝廢料。是余排樣形式和沖壓方式有關的廢料,設計合理的排樣方案,減少工藝廢料能夠提高材料的利用率。排樣的合理與否不但影響到製件的質量,模具的結構和壽命,製件的生產率和模具的成本技術等經濟指標,因此設計排樣時應該考慮如下原則:
1,提高材料的利用率,但是要在不影響製件的使用性能的前提下;
2,排樣方法應該使沖壓操作方便,勞動強度小且安全;
3,模具結構簡單,壽命高;
4,保證製件質量和對板料纖維方向的要求。
觀察工件以及查表:2.5.2《搭邊a和a1數值》(低碳鋼)
本方案採取無廢料排樣
(2):調料寬度:
由於背板裡面的變形里邊緣較遠,故可以認為裡面的變形不影響條料尺寸,R=0.8, R/t=0.8/0.8=1
彎曲件毛坯展開長度的計算:∵R〉0.5t
∴
∴L=3+3+73.4+1.571*(0.8+X*0.8)
∵X表示各段圓弧中性層位移系數
查表3.3.3得X=0.42
∴L=81.5
無側壓裝置的條料寬度:B=【D+2(a+δ)+c】0-δ
即B=81.50.50
(3)確定步距:級進模進料步距為 48mm
(4): 計算總壓力
F沖=kptlτ=1.3*0.8*2*3.14*0.9*350=2057
τ表示可用抗拉強度
F卸=kFp=0.04*2057=82.28
F推=nk1Fp=h/t*k1Fp=5/0.8*0.05*2057=642.8
F翻=1.1Лt(D-d0)бb=1.1*3.14*0.8*
(3.8-1.8)*450=2486
F脹=kltбb=0.7*L*0.8*450=67374
F彎=(0.7kbt2бb)
/(r+t)=7371
(5): 確定壓力中心
以水平中心線為X軸
易知y0=0
F1=kp*t*l*τ=1.3*0.8*56.5*350=20566
F2=10* F翻=24860
F3=10* F沖=20570
F4= F脹=67374
F5= kp*t*l*τ=1.3*0.8*36*350=13104
F6= kp*t*l*τ=1.3*0.8*2*3.14*2*350=4571
X0= (F1*46.5+F2*94.5+F3*142.5+F4*190.5+F5*214.5+F6*262.5)/ (F1+ F2+F3+F4+F5+F6)=152.8
即壓力中心為(x0,y0)
(153,0)
(6)確定刃口尺寸
①沖孔模凸模,計算公式:dp=(dmin+XΔ)0-δp
注意δp=0.25Δ
孔ø40+0.3 X取0.5 dp=4.150-0.08=40.150.08
孔ø1.80+0.3 dp=1.90-0.07
中心距製造偏差取工件偏差的1/8
沖孔凹模,按照凸模刃口實際尺寸配製,保證雙邊間隙0.25~0.36
②脹形凸模,
脹形尺寸,60-0.87
脹形工序,工件未標注公差,按IT14級製造,凸凹模的製造精度按照IT9級製造,脹形單邊間隙Z/2=1.1t
凸凹模的製造精度按照IT9級製造,查表得,δ凸=δ凹=0.087
D凹=(D-0.075Δ)0+δ凹
=(6-0.75*0.87)0+0.087=5.350+0.087
D凸= (D凹-Z)0-δ凸=3.590-0.087
脹形尺寸 260-0.9
脹形工序,工件未標注公差,按IT14級製造,凸凹模的製造精度按照IT9級製造,脹形單邊間隙Z/2=1.1t
凸凹模的製造精度按照IT9級製造,查表得,δ凸=δ凹=0.09
D凹=(D-0.075Δ)0+δ凹
=(26-0.75*0.9)0+0.09=25.330+0.09
D凸= (D凹-Z)0-δ凸=23.570-0.087
③翻邊模尺寸計算
D=4.6-0.8=3.8
d0=3.8-2*(2-0.43*1-0.72*0.8)
=3.8-2*0.994=1.8
翻邊工序,工件未標注公差,按IT14級製造,凸凹模的製造精度按照IT9級製造,脹形單邊間隙Z/2=1.1t
凸凹模的製造精度按照IT9級製造,查表得,δ凸=δ凹=0.063
D凸=(D-0.075Δ)0+δ凸
=(3-0.75*0.2)0+0.063=2.850+0.063
D凹= (D凹+Z)0-δ凹=6.360-0.063
④彎曲模尺寸
.1彎曲圓角部分是彎曲變形的主要變形區
變形區的材料外側伸長,內側縮短,中性層長度不變。
2.彎曲變形區的應變中性層
應變中型層是指在變形前後金屬纖維的長度沒有發生改
變的那一層金屬纖維。
3. 變形區材料厚度變薄的現象
變形程度愈大,變薄現象愈嚴重。
4.變形區橫斷面的變形
變形區橫斷面形狀尺寸發生改變稱為畸變。主要影響因
素為板料的相對寬度。
(寬板) :橫斷面幾乎不變;
(窄板) :斷面變成了內寬外窄的扇形。
彎曲模尺寸計算
Rmin/0.8=0.5→Rmin=0.4
∵r=0.8∴r≥0.4且r/0.8≤5~8
故該零件可以成形
彎曲凸模凹模之間的間隙
C=tmin+nt=0.8+0.8*0.05=0.84
查表3.4得 n=0.05
凸模和凹模工作尺寸及公差:
彎曲件標的是外形尺寸,
故
凹模尺寸Ld=(L-0.5Δ)0+δd=7500.02
凸模尺寸Lp=(Ld-2C)0-δp=73.320-0.05=730-0.87
彎曲件凹模部分深度h0=3 查表3.4.2
∵t≤1∴h0=3mm
(7)確定各主要零件的結構尺寸
a,凹模外形尺寸的確定。
凹模厚度H的確定(按經驗公式)
H=kb(H>=15mm)
其中,B為最大型孔的寬度,取b=90;k為系數,
查沖壓手冊取0.35
H=0.35*90=31.5mm
故凹模厚度取35mm
凹模長度L的確定
L=步距*6+2*50≈440
凹模寬度的確定
B=步距+工件寬+2C≈200
b,凸模長度的確定
凸模長度的計算為
L凸=h1+h2+h3+Δ
其中 導料板厚h1為9mm,
卸料板厚為h2為21;凸模固定板厚h3為30
L凸=90
其中彎曲凸模最長,為98mm
選用沖床的公稱壓力,應大於算出的總壓力
P0=151.1kN
4設計並繪制總裝配圖、選取標准件
按以確定的模具形式及參數,從冷沖模標准中選取標准模架,根據所選的壓力機,繪制模具總裝配圖為單排沖孔脹形翻邊彎曲落料級進模,下圖為裝配圖
5繪制零件圖
(1)上模座板
(2)墊板
凸模固定板
(4)導料板
(5)凹模板
(6)下墊板
(7)凸模
6編制主要零件的加工工藝規程
(1)沖壓工藝規程編制的主要內容和步驟
沖壓工藝規程是指導沖壓件生產過程的工藝技術文件。沖壓工藝文件一般指沖壓工藝過程卡片,是模具設計以及指導沖壓生產工藝過程的依據。
沖壓工藝規程的制訂主要有以下步驟:
《1》 分析沖壓件的工藝性
沖壓件的工藝性是指沖壓件對沖壓工藝的適應性,即設計的沖壓件在結構、形狀、尺寸及公差以及尺寸基準等各方面是否符合沖壓加工的工藝要求。
產品零件圖是編制和分析沖壓工藝方案的重要依據。
《2》 確定沖壓件的成形工藝方案
確定沖壓件的工藝方案時需要考慮沖壓工序的性質、數量、順序、組合方式以及其它輔助工序的安排。
此項在此省略,因為另外單獨製作工藝卡
7模具的裝配
模具裝配沒有嚴格的工藝規程,裝配工藝過程有模具鉗工掌握 ,但模具裝配都有一定的裝配順序。
例如:級進模先裝配下模,再以下模為准裝配上模,復合模時先裝凸凹模,然後再裝凹模和凸模,最後總裝;導料板則以卸料板為基準件進行裝配,無導向,導套的模具,可以先裝配下模,也可以先裝配上模等。冷沖模裝配的主要技術要求是保證凸凹木的均勻配合間隙
裝配敘述
以下模座為基準件,壓裝導柱
按下模座的中心線為基準,找正凹模的位置後,用平行夾將凹模與下模座夾緊,以凹模上的螺釘過孔,銷孔為引導,在下模座上鑽螺紋孔底孔、攻螺紋、鑽、鉸銷孔;按凹模型孔在模座上劃出漏料孔線,取下凹模,銑下模座漏料孔
將固定卸料板對凹模的長側面找正平行,校正左右位置後與凹模一起夾緊,然後翻轉過來,按凹模配作卸料板上的螺釘過孔和銷孔
先將導料板對凹模的長側找正平行,校正左右位置後與凹模一起夾緊;再找正另一塊導料板後也與凹模一起夾緊;然後翻轉過來,按凹模配製導料板上的螺釘過孔和銷孔。
將凹模、卸料板、導料板都裝在下模座上,以圓柱銷定位,用螺釘連接。
以上模座為上模部件的基準件,壓裝導套。
以凸模固定板與凸模組件為基準,壓裝上凸模。
將所有凸模插入凹模的型孔,在凸模固定板和凹模之間墊等高墊鐵,使凸模插入凹模型孔1mm左右;放上墊板,裝上上模座,用平行夾將凸模固定板、墊板、上模座夾持在一起;將整個模具翻過來,用透光法通過下模座的漏料孔進行觀察,調整凸凹模配合間隙的均勻性,調整好後擰緊平夾;將模具再翻過來,輕巧上模座,使凸模從凹模型孔中退出,墊紙試沖,再調整,再沖………直到間隙均勻為止。
擰緊平夾,取下上模部件;配鑽螺釘孔、配鑽、鉸銷孔。
裝上銷釘和螺釘。
將裝配好的模具裝在沖床上試沖,檢查送料是否流暢,凸凹模配合間隙是否均勻,步距是否正確,卸料是否靈活,沖件是否符合圖紙要求。
參考文獻:
1、《實用模具設計簡明手冊》主編 鄧明 機械工業出版社出版
2、《沖壓工藝與模具設計》 主編 成虹 高等教育出版社出版
3、《互換性與測量技術》 主編 陳於萍 高等教育出版社出版
4、《模具設計標准化與原型結構設計》
主編 許發樾 機械工業出版社出版
5、《沖壓手冊》 主編 王孝培 機械工業出版社出版