A. 乙烯裝置急冷油塔盤油循環取熱是什麼意思盤油是什麼
在國內外的乙烯裝置中,汽油分餾塔的急冷油循環段多為折流板或波紋篩板。而油塔油盤是新的冷卻設計,油盤是指靠近底部的一個集油槽
B. 乙烯的工業生產工藝與原理是什麼
石油化學工業中大多數中間產品(有機化工原料)和最終產品(三大合成材料)均以烯烴和芳烴為原料,除由重整生產芳烴以及由催化裂化副產物中回收丙烯、丁烯和丁二烯外,主要有乙烯裝置生產各種烯烴和芳烴。以三烯(乙烯、丙烯、丁二烯)和三苯(苯、甲苯、二甲苯)總量計,約65%來自乙烯生產裝置。因此,常常以乙烯生產作為衡量一個國家和地區石油化工生產水平的標志。通常所說的乙烯裝置,主要包括管式爐裂解和深冷分離。
早在20世紀30年代就有人開始對石油烴高溫裂解生產烯烴的技術進行研究,40年代初建成了管式爐裂解生產乙烯的工業裝置。經過60多年的發展仍在烯烴生產中占據統治地位。其他還有蓄熱爐裂解、流動床裂解等由於投資高、物耗能耗高、污染嚴重逐步被淘汰。
烴類裂解得到的裂解產物還有氫、甲烷、乙烷和乙烯、丙烷和丙烯、混合碳四、碳五、裂解汽油等混合物。此外還有少量二氧化碳、一氧化碳、硫化氫等氣體,並含有微量炔烴等雜質,因此必須對其進行分離和精製才能得到合格的乙烯、丙烯和其他產品。裂解氣分離法主要有油吸收分離法和深冷分離法。前者能耗高、烯烴損失大,60年代幾乎全部被深冷分離法取代。
深冷分離法:利用裂解氣中各組分沸點相對較大,各組分相對揮發度不同,在不同的溫度下用精餾法進行分離。在一定壓力下,碳三以上的餾分可以在常溫下分離,碳二餾分則需要在-30~-40℃條件下分離。用精餾方法將裂解氣中甲烷和氫氣分離出來,則需要-90℃以下的低溫分離。這種採用低溫分離裂解氣中甲烷和氫氣的方法成為深冷分離法。此法,能耗低、操作穩定,不僅能得到高質量的烯烴產品,而且能獲得高純度的氫氣和甲烷。因此現在被普遍採用。裝置主要包括兩大流程:裂解流程、分離流程
1、裂解流程裂解是指烴類在高溫條件下,發生碳鏈斷裂或脫氫反應,生成烯烴和其他產物的過程。裂解目的:以生產乙烯、丙烯為主,同時副產丁二烯、芳烴等。裂解反應特點:強吸熱反應,反應溫度高,停留時間短,烴分壓要低。主要參數:裂解深度(用乙烯對丙烯的收率衡量)、裂解溫度、停留時間、烴分壓。※管式爐裂解的工藝流程
包括原料供給、預熱、對流段、輻射段、高溫裂解氣急冷和熱量回收等幾部分。裂解裝置中五大關鍵設備:裂解爐、急冷換熱器、裂解氣壓縮機、乙烯壓縮機、丙烯壓縮機。
(一) 裂解原料預熱和稀釋蒸汽注入
裂解原料主要在對流段預熱,為減少原料消耗,也常常在進入對流段前通過低位能熱源進行預熱。裂解原料預熱到一定程度後,需要在裂解原料中注入稀釋蒸汽。注入方式:原料進入對流段前注入、原料在對流段中預熱到一定溫度後注入及二次注入(原料先注入部分蒸汽,在對流段中預熱到一定程度後,再次注入經對流段預熱後的稀釋蒸汽)
(二)對流段
管式裂解爐的對流段主要用於回收煙氣熱量,回收的煙氣熱量主要用於預熱原料及稀釋蒸汽,使裂解原料汽化並過熱到裂解反應需要的起始溫度後,進入輻射段加熱進行裂解。也可在對流段進行鍋爐給水預熱、助燃空氣預熱和超高壓蒸汽過熱。
(三)輻射段
烴和稀釋蒸汽的混合物在對流段預熱到物料橫跨溫度(裂解原料和稀釋蒸汽混合物在對流段預熱的出口溫度,也是輻射段的入口溫度)後進入輻射盤管,輻射盤管在輻射段內用高溫燃燒氣體加熱,使裂解原料在管內進行裂解。(四)高溫裂解氣的急冷和熱量回收
裂解爐輻射盤管出來的高溫裂解氣達到800℃以上,為抑制二次反應的發生,需要將輻射盤管內的高溫裂解氣進行急速冷卻。急速冷卻有兩種方式:一種是用急冷油(或急冷水)直接噴淋冷卻,一種是用換熱器進行冷卻。用急冷換熱器(TLE或TLX表示)冷卻時,可回收高溫裂解氣的熱量而副產出高位能的高壓蒸汽。急冷換熱器與汽包構成的發生蒸汽的系統稱為急冷鍋爐(或廢熱鍋爐)。在管式爐裂解輕烴、石腦油和柴油時,都採用廢熱鍋爐冷卻裂解氣並副產高壓蒸汽。經過廢熱鍋爐冷卻後的裂解氣溫度仍在400℃,此時可再由急冷油直接噴淋冷卻。為防止急冷換熱器結焦,廢熱鍋爐出口溫度要高於裂解氣的露點,裂解原料越重,廢熱鍋爐終期出口溫度越高,因此,根據裂解原料的情況,廢熱鍋爐可採用一級急冷、二級急冷、三級急冷等不同方式。2、裂解氣分離
急冷後的裂解氣溫度仍然在200℃~300℃,並且是含有從氫到裂解燃料油的復雜混合物,首先必須通過預分餾使其冷卻到常溫,並分出重組分,然後進行壓縮和凈化,以除去酸性氣體和水等雜質,並達到分離所需要的壓力,最後通過深冷精餾分離才能得到所需要的合格產品。
※預分餾:將急冷後的裂解氣進一步冷卻到常溫,並在冷卻過程中分餾出裂解氣中的重組分經急冷器冷卻後的裂解氣進入油洗塔,塔頂用裂解汽油噴淋,塔頂溫度控制在100℃~110℃之間,保證裂解氣中的水分從塔頂帶出洗油塔。塔釜溫度隨裂解原料的不同而控制在180℃~200℃左右。塔釜所得燃料油產品,部分經氣提並冷卻後作為裂解燃料油產品輸出。另外部分(稱為急冷油)送到稀釋蒸汽系統作為發生稀釋蒸汽的熱源,由此回收裂解氣的在熱量。經稀釋蒸汽發生系統冷卻後的急冷油,大部分送到急冷器以噴淋高溫裂解氣,少部分急冷油尚可進一步冷卻後作為油洗塔中段迴流。
油洗塔塔頂裂解氣進入水洗塔,塔頂用急冷水噴淋,塔頂裂解氣降至40℃左右送入裂解氣壓縮機。塔釜溫度約80℃,在此可分餾出裂解氣中大部分水分和裂解汽油。塔釜油水混合物經油水分離後,部分水(稱急冷水)經冷卻後送如水洗塔作為塔頂噴淋,另一部分水則送到稀釋蒸汽發生器發生稀釋蒸汽,供裂解使用。油水分離後得到的裂解汽油餾分,部分送到油洗塔作為塔頂噴淋,另一部分則作為產品經汽提冷卻後送出。※裂解氣分離流程
預分餾出來的裂解氣是含有酸性氣體和水等雜質的烴類混合物。為了得到合格的目的產品,必須對其進行凈化和精餾分離。在裂解氣分離過程中,要通過催化加氫的方法脫除炔烴,有前加氫和後加氫之分(在裂解氣分離氫氣之前/後)。
◎裂解氣的壓縮
在深冷分離部分,要求溫度最低的部分是氫氣和甲烷的分離。所需溫度隨壓力的降低而降低。因此,對裂解氣進行壓縮升壓,以提高深冷分離的操作溫度,從而節約低溫能量和低溫材料。另一方面,加壓會促使裂解氣中的水和重質烴冷凝,可除去相當部分的水和重質烴,從而減少乾燥脫水和精餾分離的負擔。裂解氣的壓縮比一般在25以上,為降低能耗並限制裂解氣在壓縮過程中升溫,均採用多段壓縮,段間設置中間冷卻。為避免在壓縮過程中因溫度過高而使雙烯烴聚合,一般需要5段壓縮才能滿足各段出口溫度低於100℃的要求。目前大型乙烯生產工廠均採用離心式(或稱透平式)壓縮機。乙烯裝置中採用壓縮製冷,常以乙烯、丙烯為製冷工質。
C. 你對乙苯、苯乙烯裝置、重點部位及設備了解多少
單元組成與工藝流程
1、組成單元
苯乙烯裝置的基本組成單元為:乙苯單元、脫氫單元、苯乙烯精餾單元。
(1)乙苯單元
本單元由烷基化反應、烷基轉移反應和乙苯精餾部分構成。烷基化反應部分的任務是在分子篩催化劑的作用下使乙烯和苯烷基化生成乙苯、多乙苯等物質。烷基轉移反應部分的任務則是在分子篩催化劑的作用下使苯、多乙苯發生烷基轉移反應,生成乙苯。烷基化反應和烷基轉移反應部分的出料中含有乙苯、多乙苯、重質物及未反應的原料苯,都被送到乙苯精餾預分餾塔。由預分餾塔、苯塔、乙苯塔、多乙苯塔、脫非芳塔將反應產物分離成苯、乙苯、多乙苯和重質物。其中回收的苯返回到烷基化反應器和烷基轉移反應器,多乙苯返回到烷基轉移反應器。脫非芳塔則用於脫除進料和反應過程中生成的輕組分和輕非芳烴。
(2)脫氫單元
新鮮乙苯和從乙苯回收塔返回的循環乙苯與工藝凝液混合在一起,乙苯/水的混合物形成一種用來冷凝乙苯/苯乙烯分離塔頂氣相的共沸物。被蒸發的乙苯/水的混合物在乙苯/蒸汽過熱器中經反應物流加熱,與稀釋蒸汽混合,進入第一脫氫反應器。在新smart工藝,三個絕熱徑向反應器連續放在一起。第一反應器、第三反應器只裝脫氫催化劑,而第二反應器裝脫氫催化劑和氧化催化劑。混合物流進入第一反應器,部分乙苯脫氫生成苯乙烯。反應器人口設有高溫報警,當溫度超過650℃時,將停蒸汽過熱爐(正常為610—640℃)。由於反應是吸熱的,所以溫度在反應器中降低。
經過控制的富氧氣體和稀釋蒸汽進入到第一反應器流出物中,混合氣體在進入第二反應器之前,進入一個靜態混合器。在第二反應器,反應物首先經過氧化催化劑,部分氫氣被消耗。反應物在進入第二床層脫氫催化劑之前被氧化反應放出的熱量加熱。在氧化反應床層非常短的停留時間減少了副反應的發生。第二脫氫床層的乙苯生成苯乙烯。混合氣體經過一個靜態混合器進入第三反應器,在第三反應器,反應物首先經過反應器內的中間加熱器加熱反應物料,進入第三脫氫催化劑床層,的乙苯在脫氫催化劑床層轉化成苯乙烯。反應物流進人廢熱鍋爐(乙苯/蒸汽預熱器),進一步換熱,產生中壓和低壓蒸汽,冷卻後的反應物經工藝凝液、空冷器進一步冷卻。
從空冷器中出來的氣相進一步冷卻,未冷凝的氣體在尾氣壓縮機中壓縮,冷卻作為燃料和殘油一起在蒸汽過熱爐中燃燒。一些碳氫化合物在洗滌塔通過殘油洗滌出來,汽提塔頂餾分返回主冷卻器。從主冷卻器和後冷器出來的物料進入脫氫液/水分離罐,脫氫液和水相分離。dm液(脫氫液)直接送到分離系統或儲罐。水相進入工藝凝液汽提塔,微量有機物被汽提出來,部分水用來冷卻從廢熱鍋爐出來的物料。工藝凝液汽提塔頂餾分在塔頂冷卻器冷卻後,進入dm/水分離罐。未冷凝的塔頂餾分排到後冷卻器中,汽提後的冷凝液過濾後,一部分過濾冷凝液用於乙苯和苯乙烯單元發生蒸汽,另外的送到界區外。
(3)苯乙烯精餾單元
在苯乙烯分離單元,dm液分離成循環乙苯,產品甲苯,循環苯,苯乙烯單體產品和焦油。使用4個分離塔和薄膜蒸發器。在乙苯/苯乙烯分離塔頂回收乙苯和輕組分,而苯乙烯產品和重組分在塔釜。塔釜乙苯含量很少,因乙苯是苯乙烯產品中的主要雜質。nsi阻聚劑加到乙苯/苯乙烯分離塔,防止苯乙烯聚合。為了減少聚合物生成,分離塔在負壓下操作。填料結構是為了降低塔的壓降。乙苯/苯乙烯分離塔塔釜物料進到苯乙烯塔,苯乙烯產品從塔頂出來,被冷卻。tbc阻聚劑為了抑制聚合,送到儲罐。苯乙烯塔也在負壓下操作,苯乙烯塔釜中的苯乙烯經薄膜蒸發器回收返回到苯乙烯塔。蒸發器頂部氣相返回到苯乙烯塔釜。苯乙烯單元的焦油和乙苯單元的殘油混合送到儲罐作為燃料或部分過濾後返回到乙苯/苯乙烯分離塔,降低nsi消耗。乙苯/苯乙烯塔頂氣相含有乙苯和輕組分,與乙苯/水的共沸物換熱後冷凝,排出的氣體進一步冷卻回收殘留的有機物,塔頂冷凝液送到乙苯回收塔。未轉化的乙苯返回到反應單元。乙苯回收塔頂餾分是苯和甲苯的混合物,在有些苯乙烯裝置,苯和甲苯混合物被送到界區外進一步分離。其他苯乙烯裝置有一個苯/甲苯分離塔,苯從塔頂分離出來,返回到乙苯單元。甲苯作為副產品。
2、工藝流程
化學反應過程
1.烷基化反應機理:在一定的溫度、壓力下,乙烯與苯在酸性催化劑上進行烷基化反應生成乙苯,同時,生成的乙苯還可以進一步與乙烯反應生成多乙苯。理論上說,可以生成從二乙苯一直到六乙苯。
2.烷基轉移機理
烷基轉移反應是在一定的溫度、壓力條件下,在酸性催化劑的作用下,多乙苯轉化成為乙苯的反應。理論上,所有的多乙苯都可以進行烷基轉移反應,但是實際上四乙苯幾乎不發生烷基轉移反應。烷基轉移反應是可逆的二級反應,受化學平衡限制。同烷基化反應一樣,烷基轉移反應也是發生在分子篩催化劑的酸性活性中心上。除了生成乙基苯外,還可生成重質化合物,從而導致物耗增加,乙苯收率下降。因此應最大可能地減少副反應的發生,維持苯過量可以獲得較高的轉化率和乙苯選擇性。
3.乙苯脫氫反應機理
乙苯在高溫和催化劑作用下,發生脫氫反應生成苯乙烯根據有關資料,上述的乙苯脫氫反應主要受化學平衡的控制,部分還受到擴散因素的控制。由於該反應為氣相的吸熱反應,平衡常數隨溫度升高而增加。
4.氧化反應機理
發生在脫氫床的反應是強吸熱的,並且通過催化劑床層溫降很大。在進入下一脫氫床層之前反應物必須被重新加熱到所需要的反應溫度。傳統的絕熱單元是通過反應出料和高溫蒸汽換熱達到目的的。氧化再加熱工藝通過反應付產物氫氣與氧氣反應釋放出能量實現溫度升高,從而達到反應溫度。氧化反應使用了專有催化劑,氧氣純度為90%,必須嚴格控制其注入速率。反應在氧化催化劑床層進行。此反應將氫氣脫除對生產苯乙烯工藝是有利的,原因有以下幾點:
(1)它為反應物料提供了熱量,使其達到下一級脫氫反應床層所要求的溫度。
(2)反應物中氫氣分壓降低,乙苯轉化率和苯乙烯選擇性提高。
氧化催化劑雖然對氫氣燃燒有很高的選擇性,但同時一小部分烴也被消耗了。
(四)主要操作條件及工藝技術特點
1、主要操作條件:因不同的工藝,操作條件不盡相同,表3—52列出一般生產工藝操作條件
2、工藝技術特點:
(1)與國內外先進水平相比:本裝置工藝路線的特點,在乙苯生產工藝上,採用液相分子篩循環烷基化生產乙苯工藝的原理,較之三氯化鋁法乙苯生產工藝,具有工藝先進、無環境污染、無腐蝕的特點。在苯乙烯生產工藝上,採用美國hunmus—monsanto開發的負壓脫氫和uop的氧化脫氫(smart) 工藝生產苯乙烯,並回收了乙苯/苯乙烯分離塔塔頂冷凝熱,由於採用了先進的脫氫催化劑及氧化催化劑,因此,乙苯轉化率較高,苯乙烯選擇性高,能耗、物耗比較低。
(2)化學反應的影響因素:在烷基化反應過程中,苯烯比(即進料苯與乙烯的分子比)、空速、反應溫度、水含量、反應壓力;在烷基轉移反應過程中,苯與多乙苯分子比、反應溫度、水含量、空速;在脫氫反應過程中,反應溫度、反應壓力、水比;在氧化反應過程中,氫氣的燃燒量、稀釋蒸汽/氧氣的比值均對化學反應產生較大影響,在生產過程中應注意操作和調整。
(五)催化劑及助劑
1.脫氫催化劑
不同的催化劑具有不同的活性和選擇性。一般催化劑有兩種類型:一種是高水比,高活性,低選擇性催化劑,另一種是低水比,活性適中,高選擇性催化劑。前者適用於公用工程便宜而原料較貴的地區,後者適用於公用工程較貴而原料便宜的地區。近年來,發展了一系列低水比,高活性,高選擇性催化劑。如美國聯合催化劑公司生產的g84c。我國上海石化院研製的gs—08,其水比為1.3。轉化率為62.7%,選擇性為94%,基本上達到了g84c的水平。
2.氧化催化劑
當氧化催化劑活性下降以至於達不到需要的床層出口溫度時,可能發生氧氣穿透。在設計時已經考慮了這一點,值得一提的是如果這種情況發生,未轉化的氧氣會離開氧化床進入脫氫床,氧氣將氧化脫氫催化劑表面的鐵,引起乙苯脫氫催化劑暫時失活。如果氧氣穿透終止脫氫催化劑能夠還原恢復活性。發生穿透後一部分氧不是與脫氫催化劑混合,而是無選擇的消耗其他反應物,減少產品產量。
3.無硫阻聚劑ns
無硫阻聚劑nsi的化學名稱為2,4—二硝基酚,分子式為(n02):c6h30h,nsi用tda—401和da—403中防止苯乙烯高溫聚合。nsi的主要質量指標為純度≥98%。當其純度不合格時,配製的nsi溶液有效成分低,將使da—401塔底nsi濃度實際上低於1500x10—6(質量),而影響阻聚效果,嚴重時甚至造成da—401/403塔底物黏度過大,無法加熱,被迫停車置換塔內物料。因此必須嚴格監控nsi內有效成分2,4—二硝基酚的含量。
4.產品阻聚劑tbc
產品阻聚劑tbc的化學名稱為4—特丁基—鄰苯二酚/甲醇溶液。用於苯乙烯產品中,防止或減少在儲運過程中的聚合。tbc的主要質量指標是揮發度,即其中所含甲醇量。當所含甲醇過高時,配製後實際進入苯乙烯產品是4—特丁基—鄰苯二酚量低,影響阻聚劑效果,而造成苯乙烯產品中聚合物含量超標(≤10x10—6)。
提供技術支持 博科原料
D. 乙烯裝置火炬罐為什麼分干濕火炬罐
干濕火炬罐 系統氣密方案 火炬火炬隱藏>> 乙烯裝置火炬系統氣密方案 乙烯裝置火炬系統氣密方案 系統氣密 1.系統嚴密性試驗的目的 系統嚴密性試驗的目的 1.1
E. 關於乙烯及其下游裝置圖片
乙烯是重要的有機合成原料之一。以乙烯為基礎的乙烯系統產品,目前估計占國際上全部石油化工產品的一半左右。在國外,往往以議席乙烯的生產水平來衡量一個國家化學工業的發展水平。 目前大量用於生產聚乙烯,環氧乙烯,苯乙烯,氯乙烯和乙醇等重..
F. 前冷後冷的區分乙烯裝置
乙烯裝置是以石油或天然氣為原料。
乙烯裝置是以石油或天然氣為原料,以生產高純度乙烯和丙烯為主,同時副產多種石油化工原料的石油化工裝置。
裂解原料在乙烯裝置中通過高溫裂解、壓縮、分離得到乙烯,同時得到丙烯、丁二烯、苯、甲苯及二甲苯等重要的副產品。
基本信息
製取乙烯可以使用不同的原料(天然氣、輕油等),有不同的製取工藝流程。但生產的產品原料混合氣必須經過分離、提純,才能最終得到所需的乙烯產品。
在產品原料混合氣的分離過程中,低溫分離是所有工藝都必須採用的方法。乙烯冷箱就是進行低溫分離的主要設備之一。
「九五」之前,我國引進的乙烯成套裝置幾乎全部是從國外引進的。雖然我國自20世紀70年代就成立了乙烯冷箱攻關組,但工作進展緩慢。
到90年代我國在引進乙烯裝置進行第一次擴量改造時,所配用的乙烯冷箱仍然全部依靠國外進口,乙烯冷箱的設計、製造技術完全壟斷在國外公司手中,價格昂貴。
「九五」末,我國乙烯冷箱落實了依託工程,經過主要承擔企業——杭州杭氧股份有限公司的艱苦努力取得了突破性進展,2001年在燕山石化等企業的擴產改造項目中取得成功,其技術經濟指標達到國際水平。
經過五、六年的發展,杭氧先後承接了揚子石化、天津聯化、金山石化、齊魯石化、茂名石化等國內多個乙烯擴量改造冷箱的設計製造任務,設計製造能力從當初的30萬噸/年等級提升到100萬噸/年等級。
G. 乙烯熱泵原理
熱泵是一種從低溫熱源吸收熱量並在高溫下放出熱量的裝置。目前乙烯裝置所用的熱泵大都是壓縮式熱泵。其原理為,利用壓縮機將工質壓縮,壓縮後的工質在較高溫度下冷凝放熱,然後冷凝進行等焓節流,溫度降低並形成汽液混相,汽液混相從低溫熱源吸取熱量後汽化並過熱,之後進入壓縮機,從而完成一次循環。
對乙烯精餾塔,塔頂氣相物流需要冷劑冷凝,塔釜需要熱介質提供再沸。而在乙烯冷劑壓縮機系統,壓縮機入口需要熱介質汽化乙烯,壓縮機出口則要冷劑進行冷卻,將兩者結合起來開式熱泵技術,可充分利用能量,大大降低塔的操作能耗。所謂開式熱泵系統,即是塔和壓縮機既有介質交換又有能量交換的熱泵系統
H. 某大型石化企業要擴建一套乙烯裝置,需要進行:一段設計二段設計三段設計為
如果說想要知道相應的一個設計的話,肯定是會有人發明的,你是可以進行相應的文字了解。
I. 國家對新建的乙烯裝置有什麼要求嗎
國家為了進一步完善裝置規模至世界領先水平:規劃和新建乙烯裝置規模均應達到100萬噸/年以上。著重向大型化、一體化和基地化發展:向「煉油-乙烯-芳烴-動力」深度集成的一體化模式發展,相應煉油規模應達到1500-2000萬噸/年。全面提高乙烯裝置經濟技術指標:提高乙烯收率達到33%以上,乙烯平均能耗力爭降到600-620公斤標油/噸。調整下游產品結構,向高端產品發展。繼續加大國產化技術的開發應用,應鼓勵以帶入高新技術的對外合作模式。全面提升有機原料生產技術水平。強化綠色工藝,擴大生產能力並提高裝置單系列規模。因為乙烯的成本會隨著裝置規模的增大而降低,比如100萬噸/年規模的乙烯項目,與50萬噸/年規模乙烯項目相比,成本會降低約25%。目前,世界各國新建乙烯裝置的經濟規模為每年60萬至80萬噸,世界級乙烯裝置的規模為每年80萬至130萬噸。同時有些企業對於原有產能較低的乙烯裝置,採取了擴能工程。比如位於中國廣東惠州大亞灣石化工業區的中海殼牌石化聯合工廠,聘請惠生工程做為新建乙烯裂解爐項目的EPC(設計-采購-施工)總承包商,將產能為80萬噸/年的乙烯裂解裝置,擴建為95萬噸/年。
J. 聚乙烯k4003的保護與控制原理
與<<聚乙烯裝置氣體壓縮機啟動及安全停車聯鎖與容量控制>>相似的文獻。
乙烯裝置裂解氣壓縮機的安全保護與邏輯停車 The Safety Protection & Locic Shut down System of the Charge Gas compressor in Ethylene Plant [河南化工 Henan Chemical Instry] 趙紅國
天然氣直燒氣化爐全自動開停車及聯鎖系統的實現 Start and Stop Proction Using Directly-lit Gasification Stove of Natural Gas and Realization of Interlock Control System [儀器儀表標准化與計量 Instrument Standardization and Metrology] 席廣龍 , 陳繼忠
FSC在軸流主風機安全聯鎖控制中的應用 Application and Realization of FSC in Interlock Control for Axial Compressor [石油化工自動化 Automation in Petro-Chemical Instry] 何畋 , HE Tian
汽油加氫裝置聯鎖控制系統的設計 Interlock Control System Design for Gasoline Hydrogenation Unit [石油化工自動化 Automation in Petro-Chemical Instry] 楊晨
新型快開式壓力容器安全聯鎖裝置 Safety Interlock Unit of Novel Type and Quick Start-up Pressure Vessel [化工設計 Chemical Engineering Design] 王敏
空氣壓縮機組防喘振閥聯鎖控制的改進 The Improvement of Air Compressor Anti-surge Interlock Control System [遼寧化工 Liaoning Chemical Instry] 張曉江
可編程序控制器在渦輪膨脹壓縮機工藝報警及聯鎖中的應用 The Application of PLC in Turbo Expander-Compressor Process Alarm and Interlock Control [石油化工自動化 Automation in Petro-Chemical Instry] 劉立忠 , LIU Li-zhong
壓縮機停車信號的捕捉 How to Catch the Shutdown Signal of the Compressor [儀器儀表用戶 Instrumentation Customer] 姜海
染整設備快開門安全聯鎖裝置的安全技術與質量控制 Safety Technology and Quality Control of Interlock Device for Quick Actuating Closure of Dyeing and Finishing Equipments [廣東化工 Guangdong Chemical Instry] 陳佩芳 , Chen Peifang
延遲焦化裝置富氣壓縮機自控系統的設計 The Design of Instrument Automatic Control System for Rich Gas Compressor in Delayed Coke Unit [石油化工自動化 Automation in Petro-Chemical Instry] 楊英 , 尚雲鵬
DCS順控功能在102-J聯鎖系統整體改造中的應用 Application of Sequence Control Function of DCS in the Techincal Reformation of Interlock System 102-J [貴州化工 Guizhou Chemical Instry] 沈光偉
大化肥氣化裝置安全系統 Safety System in Gasification Unit [石油化工自動化 Automation in Petro-Chemical Instry] 強天馳
大型空分裝置中空氣透平壓縮機的自動安全控制 Automatic Safety Control of Air Turbo Compressor for Large Air Separation Plant [工業安全與環保 Instrial Safety and Environmental Protection] 阮艷 , Ruan Yan
德士古氣化爐安全聯鎖的改進 Safety Interlock Sytem Improvement of Texaco Gasifier [煤化工 Coal Chemical Instry] 陳方林 , 夏洪強
可燃性氣體報警自動啟停抽排風裝置的設計介紹 Introction on the design of flammable gas alarm and automatic start and stop pump drainage devices [電氣防爆 Electric Explosion Protection] 陳新