㈠ 內燃機車按傳動形式分,換向時應注意什麼
為使柴油機的功率傳到動軸上能符合機車牽引要求而在兩者之間設置的媒介裝置。柴油機扭矩—轉速特性和機車牽引力—速度特性完全不同,不能用柴油機來直接驅動機車動輪:柴油機有一個最低轉速,低於這個轉速就不能工作,柴油機因此無法啟動機車;柴油機功率基本上與轉速成正比,只有在最高轉速下才能達到最大功率值,而機車運行的速度經常變化,使柴油機功率得不到充分利用;柴油機不能逆轉,機車也就無法換向。所以,內燃機車必須加裝傳動裝置來滿足機車牽引要求。
常用的傳動方式有機械傳動、液力傳動和電力傳動。
液力傳動箱、車軸齒輪箱、萬向軸等組成。液力變扭器(又稱變矩器)是液力傳動機車最重要的傳動元件,由泵輪、渦輪、導向輪組成。泵輪和柴油機曲軸相連,泵輪葉片帶動工作液體使其獲得能量,並在渦輪葉片流道內流動中將能量傳給渦輪葉片,由渦輪軸輸出機械能做功,通過萬向軸、車軸齒輪箱將柴油機功率傳給機車動輪;工作液體從渦輪葉片流出後,經導向輪葉片的引導,又重新返回泵輪。液力傳動機車(圖2)操縱簡單、可靠,特別適用於多風沙和多雨的地帶。
電力傳動分為三種:(a)直流電力傳動裝置。牽引發電機和電動機均為直流電機,發動機帶動直流牽引發電機,將直流電直接供各牽引直流電動機驅動機車動輪。(b)交—直流電力傳動裝置。發動機帶動三相交流同步發電機,發出的三相交流電經過大功率半導體整流裝置變為直流電,供給直流牽引電動機驅動機車動輪。(c)變—直—交流電力傳動裝置。發動機帶動三相同步交流牽引發電機,發出的交流電通過整流器到達直流中間迴路,中間迴路中恆定的直流電壓通過逆變器調節其振幅和頻率,再將直流電逆變成三相變頻調壓交流電壓,並供給三相非同步牽引電動機驅動機車動輪。電力傳動機車的應用最為廣泛。
㈡ 汽車轉向傳動裝置屬於什麼結構
一.機械轉向系統
l.轉向盤 2.安全轉向軸 3.轉向節 4.轉向輪5.轉向節臂 6.轉向橫拉桿 7.轉向減振器 8.機械轉向器駕駛員對轉向盤1施加的轉向力矩通過轉向軸2輸入轉向器8。從轉向盤到轉向傳動軸這一系列零件即屬於轉向操縱機構。作為減速傳動裝置的轉向器中有1、2級減速傳動副(右圖所示轉向系統中的轉向器為單級減速傳動副)。經轉向器放大後的力矩和減速後的運動傳到轉向橫拉桿6,再傳給固定於轉向節3上的轉向節臂5,使轉向節和它所支承的轉向輪偏轉,從而改變了汽車的行駛方向。這里,轉向橫拉桿和轉向節臂屬於轉向傳動機構。
二.轉向操縱機構
轉向操縱機構由方向盤、轉向軸、轉向管柱等組成,它的作用是將駕駛員轉動轉向盤的操縱力傳給轉向器。
三.機械轉向器
齒輪齒輪齒條式轉向器 齒輪齒條式轉向器分兩端輸出式和中間(或單端)輸出式兩種。
1.轉向橫拉桿 2.防塵套 3.球頭座 4.轉向齒條 5.轉向器殼體 6.調整螺塞 7.壓緊彈簧8.鎖緊螺母 9.壓塊 10.萬向節 11.轉向齒輪軸 12.向心球軸承 13.滾針軸承兩端輸出的齒輪齒條式轉向器如圖d-zx-5所示,作為傳動副主動件的轉向齒輪軸11通過軸承12和13安裝在轉向器殼體5中,其上端通過花鍵與萬向節叉10和轉向軸連接。與轉向齒輪嚙合的轉向齒條4水平布置,兩端通過球頭座3與轉向橫拉桿1相連。彈簧7通過壓塊9將齒條壓靠在齒輪上,保證無間隙嚙合。彈簧的預緊力可用調整螺塞6調整。當轉動轉向盤時,轉向器齒輪11轉動,使與之嚙合的齒條4沿軸向移動,從而使左右橫拉桿帶動轉向節左右轉動,使轉向車輪偏轉,從而實現汽車轉向。
中間輸出的齒輪齒條式轉向器如圖d-zx-6所示,其結構及工作原理與兩端輸出的齒輪齒條式轉向器基本相同,不同之處在於它在轉向齒條的中部用螺栓6與左右轉向橫拉桿7相連。在單端輸出的齒輪齒條式轉向器上,齒條的一端通過內外托架與轉向橫拉桿相連。
1.萬向節叉 2.轉向齒輪軸 3.調整螺母 4.向心球軸承 5.滾針軸承 6.固定螺栓 7.轉向橫拉桿 8.轉向器殼體 9.防塵套 10.轉向齒條 11.調整螺塞 12.鎖緊螺母 13.壓緊彈簧 14.壓塊
循環球式轉向器
循環球式轉向器是目前國內外應用最廣泛的結構型式之一, 一般有兩級傳動副,第一級是螺桿螺母傳動副,第二級是齒條齒扇傳動副。
為了減少轉向螺桿轉向螺母之間的摩擦,二者的螺紋並不直接觸,其間裝有多個鋼球,以實現滾動摩擦。轉向螺桿和螺母上都加工出斷面輪廓為兩段或三段不同心圓弧組成的近似半圓的螺旋槽。二者的螺旋槽能配合形成近似圓形斷面的螺旋管狀通道。螺母側面有兩對通孔,可將鋼球從此孔塞入螺旋形通道內。轉向螺母外有兩根鋼球導管,每根導管的兩端分別插入螺母側面的一對通孔中。導管內也裝滿了鋼球。這樣,兩根導管和螺母內的螺旋管狀通道組合成兩條各自獨立的封閉的鋼球"流道"。
轉向螺桿轉動時,通過鋼球將力傳給轉向螺母,螺母即沿軸向移動。同時,在螺桿及螺母與鋼球間的摩擦力偶作用下,所有鋼球便在螺旋管狀通道內滾動,形成"球流"。在轉向器工作時,兩列鋼球只是在各自的封閉流道內循環,不會脫出。
㈢ 機車傳動裝置的分類
利用原動機驅動離心泵,使獲得能量的工作液體(機車用油)沖擊渦輪從而驅動車輪來實現傳遞動力的裝置。1902年德國的費廷格提出了液力循環元件(液力耦合器和液力變扭器)的方案,即將泵輪和渦輪組合在同一殼體內,工作液體在殼體內循環流動。採用這種元件大大提高了液力傳動裝置的效率。液力傳動首先用於船舶。1932年製成第一台約60千瓦的液力傳動柴油動車。
液力耦合器有相對布置的一個泵輪和一個渦輪。泵輪軸和渦輪軸的扭矩相等。渦輪轉速略低於泵輪轉速,二者轉速之比即為液力耦合器的效率。液力耦合器用於機車主傳動時,效率約為97%。液力變扭器除泵輪和渦輪外,還有固定的導向輪。渦輪與泵輪的扭矩之比稱變扭比,轉速比越小則變扭比越大。在同樣的泵輪轉速下,渦輪轉速越低則渦輪扭矩越大。因此機車速度越低則牽引力越大,機車起動時的牽引力最大。液力變扭器的效率只在最佳工況下達到最大值。現代機車用的液力變扭器效率可達90%~91%。但當轉速比低於或高於最佳工況時,效率曲線即呈拋物線形狀下降。為使機車在常用速度范圍內都有較高的傳動效率,機車的液力傳動裝置一般採用不止一個簡單的液力變扭器。機車液力傳動裝置如梅基特羅型、克虜伯型、蘇里型、SRM型、ΓΤК型等,都是將一個液力變扭器與某種機械傳動裝置結合使用。福伊特型則是採用 2~3個液力變扭器(最佳工況點的轉速比一般並不相同)或液力耦合器(圖1),利用充油和排油換檔,在各種機車速度下都使當時效率最佳的那一液力循環元件充油工作。換檔時,前一元件排油和後一元件充油有一段重疊時間,所以換檔過程中的機車牽引力只是稍有起伏而不中斷。和其他類型相比,福伊特型液力傳動裝置的重量較大,但有結構簡單、可靠性較高的優點。到60年代,經驗證明:對於1500千瓦以上的液力傳動裝置,福伊特型較為適用。中國機車所用的液力傳動裝置都是這一類型的。
大功率增壓柴油機車的液力傳動裝置都不用液力耦合器,但燃氣輪機車的液力傳動裝置則用一個啟動變扭器,並在高速時用一個液力耦合器。
液力循環元件傳遞功率P的能力也像其他液力機械一樣,與工作液體重度r的一次方、泵輪轉速n的三次方和元件尺寸D的五次方成正比,即P∝rnD。在柴油機車上,為了減小傳動裝置的尺寸,柴油機都不直接驅動液力循環元件的泵輪,而是通過一對增速齒輪,在軸承和其他旋轉件容許線速度的限制范圍內,盡可能提高泵輪轉速。燃氣輪機車由於轉速很高,所以用一級甚至兩級減速齒輪來驅動泵輪。同一種傳動裝置,只要改變這種齒輪的增速比或減速比,即可在經濟合理的范圍內應用於不同功率的機車。
液力傳動裝置通常包括一組使輸出軸能改變轉向的換向齒輪和離合器機構。輸出軸通過適當的機械部件(萬向軸和車軸齒輪箱,或曲拐和連桿等)驅動機車車輪。液力傳動系統還可包括一組工況機構,使機車具有兩種最高速度,在高速檔有較高的行車速度,在低速檔有較高的效率和較大的起動牽引力和加速能力。因此同一機車既可用於客運,也可用於貨運,或者既可用於調車,也可用作小運轉機車。而當調車工況的最高速度定得較低時,機車在起動和低速運行時的牽引力可以超過同功率的電力傳動柴油調車機車。
1965年出現的液力換向柴油調車機車,傳動裝置有兩組液力變扭器,每個行車方向各用一組,換向動作也用充油排油的方式來完成。當機車正在某一方向行駛時改用另一方向的液力變扭器充油工作,由於變扭器的渦輪轉向與泵輪相反,對機車即起制動作用。機車換向不必先停車。只要司機改換行車方向手把的位置,機車即可自動地完成從牽引狀態經過制動、停車,又立即改換行車方向的全部過程。
液力傳動裝置不用銅,重量輕,成本低,可靠性高,維修量少,並具有隔振、無級調速和恆功率特性好等優點,因而得到廣泛採用。聯邦德國和日本的柴油機車全部採用液力傳動。 把機車原動機的動力變換成電能,再變換成機械能以驅動車輪而實現傳遞動力的裝置。電力傳動裝置按發展的順序有直-直流電力傳動裝置、交-直流電力傳動裝置、交-直-交流電力傳動裝置、交-交流電力傳動裝置四種。它們所用的牽引發電機、變換器(指整流器、逆變器、循環變頻器等)和牽引電動機類型各不相同。
直-直流電力傳動裝置
1906年美國製造的150千瓦汽油動車最先採用了直-直流電力傳動裝置。1965年以前,世界各國單機功率75~2200千瓦的電傳動機車都採用這種電力傳動裝置。這是因為同步牽引發電機無法高效變流,非同步牽引電動機難於變頻調速,只能採用直流電機。直-直流電力傳動原理是基於直流電機是一種電能和機械能的可逆換能器,其原理見圖 2。原動機G為柴油機,通過聯軸器驅動直流牽引發電機ZF,後者把柴油機軸上的機械能變換成可控的直流電能,通過電線傳送給1台或多台串並聯或全並聯接線的直流牽引電動機ZD,直流牽引電動機將電能變換成轉速和轉矩都可調節的機械能,經減速齒輪驅動機車動輪,實現牽引。此外設有自控裝置。自控裝置由既對柴油機調速又對牽引發電機調磁的聯合調節器、牽引發電機磁場和牽引電動機磁場控制裝置等組成,用來保證直-直流電力傳動裝置接近理想的工作特性。
交-直流電力傳動裝置
直流牽引發電機受整流子限制,不能製造出大功率電力傳動裝置。60年代前期,美國發明大功率硅二極體和可控硅,為製造大功率的電力傳動裝置准備了條件。1965年法國研製成 1765千瓦交-直流電力傳動裝置,它是世界各國單機功率 700~4400千瓦機車普遍採用的電力傳動裝置。
交-直流和直-直流電力傳動原理相似。由圖3可以看出兩者差異在於柴油機 G驅動同步牽引發電機TF,經硅二極體整流橋ZL,把增頻三相交流電變換成直流電,事實上TF和ZL組成等效無整流子直流電機。其餘部分和自控裝置主要工作原理與直-直流電力傳動裝置相同。
交-直-交流電力傳動裝置
非同步牽引電動機結構簡單,體積小,工作可靠,在變頻調壓電源控制下,能提供優良調速性能。聯邦德國於 1971年研製成實用的交-直-交流電力傳動裝置,如圖4所示。
交-直-交流電力傳動原理如下:柴油機 G驅動同步牽引發電機TF,產生恆頻可調壓三相交流電(柴油機恆速時),經硅整流橋ZL變換成直流電,再經過可控硅逆變器 N(具有分諧波調制功能)再將直流電逆變成三相變頻調壓交流電,通過三根電線傳輸給多台全並聯接線的非同步牽引電動機AD。AD將交流電能變換成轉速和轉矩可調的機械能,驅動機車動軸,實現牽引。它的自控裝置由聯合調節器以及對同步牽引發電機磁場、變換器、非同步牽引電動機作脈沖、數模或邏輯控制的裝置組成,從而提供接近理想的工作特性。
交-交流電力傳動裝置
交-直-交變頻調壓電能經二次變換,降低了傳動裝置的效率,而且逆變器用可控硅需要強迫關斷,對主電路技術有較高的要求。為提高效率,在交-交流電力傳動裝置中採用了自然關斷可控硅相控循環變頻器(圖5)。60~70年代,美國在重型汽車上,蘇聯在電力機車上都採用了交-交流電力傳動裝置。不過美國用的是非同步牽引電動機牽引,蘇聯用的是同步牽引電動機牽引。
交-交流電力傳動原理如圖5所示。柴油機G驅動同步牽引發電機TF,發出增頻可調壓交流電,經相控循環變頻器FB變換成可變頻調壓的三相交流電(降頻),輸給多台全並聯接線的非同步牽引電動機AD。AD將交流電能變換成轉速和轉矩可調的機械能,驅動動輪實現牽引。它的自控裝置也是由聯合調節器、脈沖、數模、邏輯電路等裝置構成(但對可控硅導通程序要求嚴格),同樣能保證優良的工作特性。
㈣ 常見的幾種旋轉機構
常用旋轉機構如下:
1、螺旋式旋轉機構:由螺桿、螺母和機架組成 通常它是將旋轉運動轉換為直線運動。但當導程角大於當量摩擦角時,通常它是將旋轉運動轉換為直線運動。
特點:能獲得很多的減速比和刀的增益;選擇合適的螺旋機構導程角,可獲得機構的自鎖性。
2、凸輪式旋轉機構:凸輪機構是由凸輪,從動件和機架三個基本構件組成的高副機構。
凸輪是一個具有曲線輪廓或凹槽的構件,一般為主動件,作等速回轉運動或往復直線運動。凸輪機構廣泛地應用於輕工、紡織、食品、交通運輸、機械傳動等領域。
3、曲柄式旋轉機構:曲柄連桿機構(crank train) 發動機的主要運動機構。
其功用是將活塞的往復運動轉變為曲軸的旋轉運動,同時將作用於活塞上的力轉變為曲軸對外輸出的轉矩,以驅動汽車車輪轉動。曲柄連桿機構由活塞組、連桿組和曲軸、飛輪組等零部件組成。
(4)換向傳動裝置擴展閱讀:
一般來說,旋轉機構驅動裝置主要由以下三部分組成:
1、主動機,如電力驅動中的電動機,液壓驅動中的液壓馬達(包括液壓動力源),內燃機驅動中的內燃機等。
2、傳動裝置主要包括減速、換向和制動裝置等。
3、回轉小齒輪與回轉支承裝置上的大齒圈嚙合傳動,以實現回轉部分作回轉運動。
為了保證回轉機械可靠工作和防止過載,在傳動系統中一般還需裝設極限力矩限制器。主動機大多採用電動機,但移動式回轉起重機則多數採用內燃機。回轉驅動元件大多採用齒輪(或針輪),也有個別起重機採用驅動滾輪或採用繩索牽引。
凸輪機構原理:
凸輪機構是由凸輪的回轉運動或往復運動推動從動件作規定往復移動或擺動的機構。
凸輪具有曲線輪廓或凹槽,有盤形凸輪、圓柱凸輪和移動凸輪等,其中圓柱凸輪的凹槽曲線是空間曲線,因而屬於空間凸輪。
從動件與凸輪作點接觸或線接觸,有滾子從動件、平底從動件和尖端從動件等。尖端從動件能與任意復雜的凸輪輪廓保持接觸,可實現任意運動,但尖端容易磨損,適用於傳力較小的低速機構中。為了使從動件與凸輪始終保持接觸,可採用彈簧或施加重力。
㈤ 傳動裝置都有哪些分類
傳動裝置是指把動力源的運動和動力傳遞給執行機構的裝置,介於動力源和執行機構之間,可以改變運動速度,運動方式和力或轉矩的大小。
任何一部完整的機器都由動力部分、傳動裝置和工作機構組成,能量從動力部分經過傳動裝置傳遞到工作機構。根據工作介質的不同,傳動裝置可分為四大類:機械傳動、電力傳動、氣體傳動和液體傳動。
(1)機械傳動
機械傳動是通過齒輪、皮帶、鏈條、鋼絲繩、軸和軸承等機械零件傳遞能量的。它具有傳動准確可靠、製造簡單、設計及工藝都比較成熟、受負荷及溫度變化的影響小等優點,但與其他傳動形式比較,有結構復雜笨重、遠距離操縱困難、安裝位置自由度小等缺點。
(2)電力傳動
電力傳動在有交流電源的場合得到了廣泛的應用,但交流電動機若實現無級調速需要有變頻調速設備,而直流電動機需要直流電源,其無級調速需要有可控硅調速設備,因而應用范圍受到限制。電力傳動在大功率及低速大轉矩的場合普及使用尚有一段距離。在工程機械的應用上,由於電源限制,結構笨重,無法進行頻繁的啟動、制動、換向等原因,很少單獨採用電力傳動。
(3)氣體傳動
氣體傳動是以壓縮空氣為工作介質的,通過調節供氣量,很容易實現無級調速,而且結構簡單、操作方便、高壓空氣流動過程中壓力損失少,同時空氣從大氣中取得,無供應困難,排氣及漏氣全部回到大氣中去,無污染環境的弊病,對環境的適應性強。氣體傳動的致命弱點是由於空氣的可壓縮性致使無法獲得穩定的運動,因此,一般只用於那些對運動均勻性無關緊要的地方,如氣錘、風鎬等。此外為了減少空氣的泄漏及安全原因,氣體傳動系統的工作壓力一般不超過0.7~0.8MPa,因而氣動元件結構尺寸大,不宜用於大功率傳動。在工程機械上氣動元件多用於操縱系統,如制動器、離合器的操縱等。
(4)液體傳動
以液體為工作介質,傳遞能量和進行控制的叫液體傳動,它包括液力傳動、液黏傳動和液壓傳動。
1)液力傳動
它實際上是一組離心泵一渦輪機系統,發動機帶動離心泵旋轉,離心泵從液槽吸入液體並帶動液體旋轉,最後將液體以一定的速度排入導管。這樣,離心泵便把發動機的機械能變成了液體的動能。從泵排出的高速液體經導管噴到渦輪機的葉片上,使渦輪轉動,從而變成渦輪軸的機械能。這種只利用液體動能的傳動叫液力傳動。現代液力傳動裝置可以看成是由上述離心泵一渦輪機組演化而來。
液力傳動多在工程機械中作為機械傳動的一個環節,組成液力機械傳動而被廣泛應用著,它具有自動無級變速的特點,無論機械遇到怎樣大的阻力都不會使發動機熄火,但由於液力機械傳動的效率比較低,一般不作為一個獨立完整的傳動系統被應用。
2)液黏傳動
它是以黏性液體為工作介質,依靠主、從動摩擦片間液體的黏性來傳遞動力並調節轉速與力矩的一種傳動方式。液黏傳動分為兩大類,一類是運行中油膜厚度不變的液黏傳動,如硅油風扇離合器;另一類是運行中油膜厚度可變的液黏傳動,如液黏調速離合器、液黏制動器、液黏測功器、液黏聯軸器、液黏調速裝置等。
3)液壓傳動
它是利用密閉工作容積內液體壓力能的傳動。液壓千斤頂就是一個簡單的液壓傳動的實例。
液壓千斤頂的小油缸l、大油缸2、油箱6以及它們之間的連接通道構成一個密閉的容器,裡面充滿著液壓油。在開關5關閉的情況下,當提起手柄時,小油缸1的柱塞上移使其工作容積增大形成部分真空,油箱6里的油便在大氣壓作用下通過濾網7和單向閥3進入小油缸;壓下手柄時,小油缸的柱塞下移,擠壓其下腔的油液,這部分壓力油便頂開單向閥4進入大油缸2,推動大柱塞從而頂起重物。再提起手柄時,大油缸內的壓力油將力圖倒流入小油缸,此時單向閥4自動關閉,使油不致倒流,這就保證了重物不致自動落下;壓下手柄時,單向閥3自動關閉,使液壓油不致倒流入油箱,而只能進入大油缸頂起重物。這樣,當手柄被反復提起和壓下時,小油缸不斷交替進行著吸油和排油過程,壓力油不斷進入大油缸,將重物一點點地頂起。當需放下重物時,打開開關5,大油缸的柱塞便在重物作用下下移,將大油缸中的油液擠回油箱6。可見,液壓千斤頂工作需有兩個條件:一是處於密閉容器內的液體由於大小油缸工作容積的變化而能夠流動,二是這些液體具有壓力。能流動並具有一定壓力的液體具有壓力能。液壓千斤頂就是利用油液的壓力能將手柄上的力和位移轉變為頂起重物的力和位移。
㈥ 傳動器的組成
答:一、傳動器的組成
傳動器一般由離合器、變速器、萬向傳動裝置、主減速器、差速器和半軸等組成。
二、傳動器的功能
其基本功用是將發動機發出的動力傳給汽車的驅動車輪,產生驅動力,使汽車能在一定速度上行駛。
㈦ 機械傳動主要有哪些部分組成
機械傳動主要由離合器、變速箱、換向箱、傳動軸、車軸齒輪箱等組成
㈧ 軌道車為什麼採用萬向傳動裝置
萬向傳動裝置抄的作用是連接襲不在同一直線上的變速器輸出軸和主減速器輸入軸,並保證在兩軸之間的夾角和距離經常變化的情況下,仍能可靠地傳遞動力。
它主要由萬向節、傳動軸和中間支承組成。安裝時必須使傳動軸兩端的萬向節叉處於同一平面。
㈨ 傳動系統有哪些部件組成
傳動系統一般由離合器、變速器、萬向傳動裝置、主減速器、差速器和半軸等組成。其基本功用是將發動機發出的動力傳給汽車的驅動車輪,產生驅動力,使汽車能在一定速度上行駛。
有主要可分為兩類:①靠機件間的摩擦力傳遞動力和運動的摩擦傳動,包括帶傳動、繩傳動和摩擦輪傳動等。②靠主動件與從動件嚙合或藉助中間件嚙合傳遞動力或運動的嚙合傳動,包括齒輪傳動、鏈傳動、螺旋傳動和諧波傳動等。
傳動方式分類
機械傳動按傳力方式分,可分為 :
1 摩擦傳動。
2 鏈條傳動。
3 齒輪傳動。
4 皮帶傳動。
5 渦輪渦桿傳動。
6 棘輪傳動。
7 曲軸連桿傳動
8 氣動傳動。
9 液壓傳動(液壓刨)
10 萬向節傳動
11 鋼絲索傳動(電梯中應用最廣)
12 聯軸器傳動
13 花鍵傳動。
基本分類:減速機、制動器、離合器、連軸器、無級變速機、絲杠、滑軌等
舉例:液壓傳動系統中最基本的組成機構裝置如圖1所示。這個液壓傳動系統中主要由過濾網、輸油管、油泵、溢流閥、節流閥、換向閥和液壓油缸等零部件組成。
㈩ 汽車換向器是什麼
轉向器
轉向器(也常稱為轉向機)是完成由旋轉運動到直線運動(或近似直線運動)的一組齒輪機構,同時也是轉向系中的減速傳動裝置。 目前較常用的有齒輪齒條式、循環球曲柄指銷式、蝸桿曲柄指銷式、循環球-齒條齒扇式、蝸桿滾輪式等。我們主要介紹前幾種。
1)齒輪齒條式轉向器
齒輪齒條式轉向器分兩端輸出式和中間(或單端)輸出式兩種。
兩端輸出的齒輪齒條式轉向器如圖4所示,作為傳動副主動件的轉向齒輪軸11通過軸承12和13安裝在轉向器殼體5中,其上端通過花鍵與萬向節叉10和轉向軸連接。與轉向齒輪嚙合的轉向齒條4水平布置,兩端通過球頭座3與轉向橫拉桿1相連。彈簧7通過壓塊9將齒條壓靠在齒輪上,保證無間隙嚙合。彈簧的預緊力可用調整螺塞6調整。當轉動轉向盤時,轉向器齒輪11轉動,使與之嚙合的齒條4沿軸向移動,從而使左右橫拉桿帶動轉向節左右轉動,使轉向車輪偏轉,從而實現汽車轉向。中間輸出的齒輪齒條式轉向器如圖5所示,其結構及工作原理與兩端輸出的齒輪齒條式轉向器基本相同,不同之處在於它在轉向齒條的中部用螺栓6與左右轉向橫拉桿7相連。在單端輸出的齒輪齒條式轉向器上,齒條的一端通過內外托架與轉向橫拉桿相連。
2)循環球式轉向器
循環球式轉向器是目前國內外應用最廣泛的結構型式之一, 一般有兩級傳動副,第一級是螺桿螺母傳動副,第二級是齒條齒扇傳動副。為了減少轉向螺桿轉向螺母之間的摩擦,二者的螺紋並不直接接觸,其間裝有多個鋼球,以實現滾動摩擦。轉向螺桿和螺母上都加工出斷面輪廓為兩段或三段不同心圓弧組成的近似半圓的螺旋槽。二者的螺旋槽能配合形成近似圓形斷面的螺旋管狀通道。螺母側面有兩對通孔,可將鋼球從此孔塞入螺旋形通道內。轉向螺母外有兩根鋼球導管,每根導管的兩端分別插入螺母側面的一對通孔中。導管內也裝滿了鋼球。這樣,兩根導管和螺母內的螺旋管狀通道組合成兩條各自獨立的封閉的鋼球"流道"。轉向螺桿轉動時,通過鋼球將力傳給轉向螺母,螺母即沿軸向移動。同時,在螺桿及螺母與鋼球間的摩擦力偶作用下,所有鋼球便在螺旋管狀通道內滾動,形成"球流"。在轉向器工作時,兩列鋼球只是在各自的封閉流道內循環,不會脫出。
3)蝸桿曲柄指銷式轉向器
蝸桿曲柄指銷式轉向器的傳動副(以轉向蝸桿為主動件,其從動件是裝在搖臂軸曲柄端部的指銷。轉向蝸桿轉動時,與之嚙合的指銷即繞搖臂軸軸線沿圓弧運動,並帶動搖臂軸轉動。