❶ 單片機pid演算法控制步進電機的電路圖和程序
//P1.1(T0):Count They Distance
//P0.4:Tx
//P0.5:Rx
#include <C8051F310.h> //SFR declarations
#include <stdio.h> //Standard I/O definition file
#include <math.h> //Math library file
#include <Intrins.h>
#include <absacc.h>
unsigned int j,i;
char a=0;
unsigned int t=0;
//sbit led=P0^2;
//P0.0(PWM0):給定左輪速度.
sbit vls=P0^4; //P0.4(GPIO):給定左輪方向.
sbit vlf=P0^6; //P0.6(T0) :反饋左輪速度.
sbit dlf=P1^0; //P1.0(GPIO):反饋左輪方向.
//P0.2(PWM0):給定右輪速度.
sbit vrs=P0^5; //P0.5(GPIO):給定右輪方向.
sbit vrf=P0^7; //P0.7(T0) :反饋右輪速度.
sbit drf=P1^1; //P1.1(GPIO):反饋右輪方向.
int ol; //左輪給定值
int len;
int len_1,len_2;
int lyn_1,lyn_2;
int vl1,vl2; //反饋左輪速度值(取樣周期內的方波數)
int lfz; //運算後賦給PWM的值
int lyn,lynn;
int lun=0,lun_1=0; //偏差校正值 即校正PWM輸出
int lunp,luni,lund; //PID 校正值
int or; //右輪給定值
int ren;
int ren_1,ren_2;
int ryn_1,ryn_2;
int vr1,vr2; //反饋右輪速度值(取樣周期內的方波數)
int rfz; //運算後賦給PWM的值
int ryn,rynn;
int run=0,run_1=0; //偏差校正值 即校正PWM輸出
int runp,runi,rund; //PID 校正值
float kp=2.0; //比例系數1.8
float kd=0.2; //微分系數0.4
float lki; //積分系數
void pio_init(void);
void sys_init(void);
void t01_init(void);
void TIME3_INT(void);
void PID(void);
void interrupt_init(void);
void delay(unsigned int x);
void pwm1_1(void);
void main(void)
{
PCA0MD &= ~0x40; //關閉
pio_init(); //P11為測距輸入端
sys_init();
t01_init();
pwm1_1();
TIME3_INT();
interrupt_init();
vls=1;vrs=0;
while(1)
{
ol=50;
or=50;
delay(1000);
ol=100;
or=100;
delay(1000);
ol=-50;
or=50;
delay(1000);
}
}
void PID(void)
{
/****************左輪PID調節******************/
if(dlf==1)
{
lyn=(vl2*256+vl1); //dlf是左輪反饋方向,0表示向前 vl=TL0
}
else
{
lyn=-(vl2*256+vl1); //dlf=1表示是向後退,速度應該為負值
}
len=ol-lyn; //誤差=給定速度-反饋速度(取樣周期內的方波數)
if(abs(len)<8)//30
{
lki=1.4; //ki值的確定1.4
}
else
{
lki=0.05; //積分系數:如果 | 給定值-反饋值 | 太大
} //則就可以不引入積分,或者引入的很小0.05
lunp=kp*(len-len_1); //比例校正
luni=lki*len; //積分校正
lund=kd*(len-2*len_1+len_2); //微分校正
lun=lunp+luni+lund+lun_1; //總校正
/*************新舊數據更新*************************/
len_2=len_1;
len_1=len; //len:當前取樣周期內出現的速度偏差;len_1:上次取樣周期內出現的速度偏差
lun_1=lun; //lun:當前取樣周期內得出的PWM校正值;lun_1:上次取樣周期內得出的PWM校正值
/*************新舊數據更新*************************/
if(lun>255)
{
lun=255; //正速度
}
if(lun<-255)
{
lun=-255; //負速度
}
if(lun<0)
{
vls=1;
PCA0CPH0=-lun;
}
if(lun>=0)
{
vls=0;
PCA0CPH0=lun;
}
/****************右輪PID調節******************/
if(drf==0)
{
ryn=(vr2*256+vr1); //drf是右輪反饋方向,0表示向前 vl=TL0
}
else
{
ryn=-(vr2*256+vr1); //dlf=1表示是向後退,速度應該為負值
}
ren=or-ryn; //誤差=給定速度-反饋速度(取樣周期內的方波數)
if(abs(ren)<8)//30
{
lki=1.4; //ki值的確定1.4
}
else
{
lki=0.05; //積分系數:如果 | 給定值-反饋值 | 太大
} //則就可以不引入積分,或者引入的很小0.05
runp=kp*(ren-ren_1); //比例校正
runi=lki*ren; //積分校正
rund=kd*(ren-2*ren_1+ren_2); //微分校正
run=runp+runi+rund+run_1; //總校正
/*************新舊數據更新*************************/
ren_2=ren_1;
ren_1=ren; //len:當前取樣周期內出現的速度偏差;len_1:上次取樣周期內出現的速度偏差
run_1=run; //lun:當前取樣周期內得出的PWM校正值;lun_1:上次取樣周期內得出的PWM校正值
/*************新舊數據更新*************************/
if(run>255)
{
run=255; //正速度
}
if(run<-255)
{
run=-255; //負速度
}
if(run<0)
{
vrs=1;
PCA0CPH1=-run;
}
if(run>=0)
{
vrs=0;
PCA0CPH1=run;
}
//因為這里的PCA0CPH0越大,對應的電機速度越小,所以要255來減一下
}
void pio_init(void)
{
XBR0=0x00; //0000 0001
XBR1=0x72; //0111 0010 時能弱上拉 T0T1連接到腳口P06、P07 CEX0、CEX1連接到腳口P00、P01
P0MDIN=0xff; //模擬(0);數字(1) 1111 0011
P0MDOUT=0xc3;//開漏(0);推挽(1) 1111 1111
P0SKIP=0x3c; //0011 1100
P1MDIN=0xff; //1111 1111
P1MDOUT=0xfc;//
P1SKIP=0x00; //1111 1111
}
void sys_init(void) //12MHz
{
OSCICL=0x43;
OSCICN=0xc2;
CLKSEL=0x00;
}
void pwm1_1(void) //PWM的初始化
{
PCA0MD=0x08; //PCA時鍾為12分頻
PCA0CPL0=200; //左輪
PCA0CPM0=0x42; //設置左輪為8位PWM輸出
PCA0CPH0=200;
PCA0CPL1=200; //平衡校正
PCA0CPM1=0x42; //設置為8位PWM輸出
PCA0CPH1=200;
PCA0CN=0x40; //允許PCA工作
}
void t01_init(void)
{
TCON=0x50; //計數器1、2允許
TMOD=0x55; //定時器1、2採用16位計數功能
CKCON=0x00;
TH1=0x00; //用於採集左輪的速度
TL1=0x00;
TH0=0x00; //用於採集右輪的速度
TL0=0x00;
}
void TIME3_INT(void)
{
TMR3CN = 0x00; //定時器3為16位自動重載
CKCON &= ~0x40;
TMR3RLL = 0xff;
TMR3RLH = 0xd7;
TMR3L = 0xff;
TMR3H = 0xd7;
TMR3CN |= 0x04;
}
void T3_ISR() interrupt 14 //定時器3中斷服務程序
{
//led=~led;
EA=0;
TCON &=~0x50; //關閉計數器0、1
vl1=TL0; //取左輪速度值
vl2=TH0;
vr1=TL1; //取右輪速度值
vr2=TH1;
TH1=0x00;
TL1=0x00;
TH0=0x00;
TL0=0x00;
PID(); //PID處理
TMR3CN &=~0x80; //清中斷標志位
TCON |=0x50; //重新開計數器0、1
EA=1;
}
void interrupt_init(void)
{ IE=0x80;
IP=0x00;
EIE1|=0x80;
EIP1|=0x80;
}
void delay(unsigned int m) //延時程序
{
for(i=0;i<2000;i++)
{
for(j=0;j<m;j++){_nop_(); _nop_();}
}
}
❷ 請問模擬PID的實用電路有哪些不使用MCU的,只由模擬器件組成的PID電路,請教高手!
可由運算放大器組成PID電路
❸ 求通過Multisim模擬軟體實現的PID電路模擬圖,重謝!
這里非常多的,看看吧
http://ishare.iask.sina.com.cn/search.php?key=+pid%B7%C2%D5%E6&format=
❹ pid控制器的構成方式有哪幾種
PID運算電路是實現控制器運算規律的關鍵部分,它的構成方式有以下幾種。
1.由放大器和PID反饋電路構成
PID運算電路的構成方框如圖1-9(a) 所示。
圖中,放大器是由晶體管(或集成運算放大器)等器件組成的直流放大器,PID反饋電路是由RC微分和積分環節串聯組成的復合電路。DDZ-II型控制器以及一些基地式模擬控制儀表均採用這種組成方式。這種運算電路構成簡單,但相互干擾系數較大。
2.由PD和PI電路串聯構成
PID運算電路的構成框圖如圖1-9(b)所示。圖中PD和PI電路均由集成運算放大器和RC電路所組成。DDZ-II型控制器採用這種組成方式。對這種電路的組成方式稍加變動,可以構成測量值微分先行的控制器,如圖1-9(c)所示。測量值經PD電路(比例增益為1)後再與給定值比較,差值送人PI電路。這樣,給定值不經過微分,故在改變給定值時,控制器輸出不會發生大幅度的變化,從而避免了給定值擾動。PD、PI串聯運算電路的相互干擾系數F較第一種運算電路要小。但由於電路串聯,各級的誤差將累積放大。為保證整機精度,對各部分電路的精度要求較高。
這種構成方式具有與並聯方式同樣的優點,同時從上式可知,它將不存在控制器變數間的相互影響。
PID運算電路的構成方式多種多樣,各具特點。
❺ PID控制電路實現
PID控制用放大器,電容,電感,電阻就可以實現,這個就是一個簡單的PID控制電路 模擬中模糊自整定控制器中KP,KI,KD三個待整定參數的初始值均為零
❻ 求PID控制器的比例(P)控制原理圖或者電路圖,解釋PID原理圖的各組成部分
PID期望輸入產偏差拉負反饋調節要加入原始輸入基礎進行調節
:讓電機3000轉每秒速度運行理論應該加5V輸入電壓電機獲5v 電壓才能達轉速要求實際加電機電壓5v通測電機實際電壓與期望電壓間差值乘負系數累加輸入端進行調節即電機端讀電壓4.5V於5V用(4.5-5)*3=1.5,1.5+5=6.5輸電機電壓比4.5高低相反形直自調節系統達態平衡通要結合I,D起調節才能使系統迅速平衡狀態並較超調量,增量式PID系數重組前三E(t)表示道理
望採納
❼ 求PD、PI、PID控制器電路圖
模電書上有