A. 化工儀表自動化,這個圖上像燈一樣的是什麼東西
那個圖標在電路里才是燈,在這里不是。根據這個系統,猜測應該是溫度感測器,用來提供溫度信號給TC,然後TC自動調節載熱體管路上閥門的大小。這應該是一個簡單的閉環自動控制恆溫換熱系統。TC應該是temperature control的縮寫。
B. 暑假化工原理設計 換熱器 求詳解 給高分的喲
目 錄
一、 概述 3
1. 換熱器的結構形式 3
2.換熱器材質的選擇 3
3. 管板式換熱器的優點 4
4.列管式換熱器的結構 5
5.管板式換熱器的類型及工作原理 7
二、 設計任務與操作條件 7
1.設計題目 7
2. 設計任務與操作條件 7
3.確定設計方案 8
4. 計算傳熱面積並初選換熱器型號 8
1. 計算苯的流量: 8
2. 確定熱流體及冷流體的物理性質: 8
3. 傳熱量計算: 8
4. 確定流體的溫度: 8
5. 計算平均溫度: 8
6. 設定管程流速、選擇K值並估算傳熱面積: 9
5. 核算壓力降: 10
1. 管程壓力降: 10
2. 殼程壓力降: 10
6. 核算總傳熱系數: 11
1、 管程對流傳熱系數 11
2、 殼程對流傳熱系數 12
三、 參考文獻 13
四、 主要符號說明 13
五、 課程設計感想 14
一、 概述
目前管板式換熱器產品達到了一個成熟階段,憑借其高效、節能、環保的優勢,在各行業領域中被頻繁使用, 並被用以替換原有管殼式和翅片式換熱器,取得了很好的效果。
1. 換熱器的結構形式
管殼式換熱器又稱列管式換熱器,是一種通用的標准換熱設備,它具有結構簡單,堅固耐用,造價低廉,用材廣泛,清洗方便,適應性強等優點,應用最為廣泛。管殼式換熱器根據結構特點分為以下幾種:
(1) 固定管板式換熱器
固定管板式換熱器兩端的管板與殼體連在一起,這類換熱器結構簡單,價格低廉,但管外清洗困難,宜處理兩流體溫差小於50℃且殼方流體較清潔及不易結垢的物料。
帶有膨脹節的固定管板式換熱器,其膨脹節的彈性變形可減小溫差應力,這種補償方法適用於兩流體溫差小於70℃且殼方流體壓強不高於600Kpa的情況。
(2) 浮頭式換熱器
浮頭式換熱器的管板有一個不與外殼連接,該端被稱為浮頭,管束連同浮頭可以自由伸縮,而與外殼的膨脹無關。浮頭式換熱器的管束可以拉出,便於清洗和檢修,適用於兩流體溫差較大的各種物料的換熱,應用極為普遍,但結構復雜,造價高;增加了浮頭蓋以及連接件,在該處一旦發生泄漏不易被發現;管束外緣與殼壁之間間隙較大,減少了排管數目,容易引起殼程流體短路。
(3) 填料涵式換熱器
填料涵式換熱器管束一端可以自由膨脹,與浮頭式換熱器相比,結構簡單,造價低,但殼程流體有外漏的可能性,因此殼程不能處理易燃,易爆的流體。
(4) U型管式換熱器
結構簡單,質量輕,適用於高溫和高壓的場合。換熱管束可以抽出,熱應力可以消除。但管程清洗困難,管程流體必須是潔凈和不易結垢的物料。換熱器的內層換熱管一旦發生泄漏損壞,只能堵塞而不能更換。殼程內有一個不能排管的條形空間,影響結構的緊湊,而且要安裝防短路的中間擋板。
2. 換熱器材質的選擇
在進行換熱器設計時,換熱器各種零、部件的材料,應根據設備的操作壓力、操作溫度。流體的腐蝕性能以及對材料的製造工藝性能等的要求來選取。當然,最後還要考慮材料的經濟合理性。一般為了滿足設備的操作壓力和操作溫度,即從設備的強度或剛度的角度來考慮,是比較容易達到的,但材料的耐腐蝕性能,有時往往成為一個復雜的問題。在這方面考慮不周,選材不妥,不僅會影響換熱器的使用壽命,而且也大大提高設備的成本。至於材料的製造工藝性能,是與換熱器的具體結構有著密切關系。
一般換熱器常用的材料,有碳鋼和不銹鋼。
(1)碳鋼
價格低,強度較高,對鹼性介質的化學腐蝕比較穩定,很容易被酸腐蝕,在無耐腐蝕性要求的環境中應用是合理的。如一般換熱器用的普通無縫鋼管,其常用的材料為10號和20號碳鋼。
(2)不銹鋼
奧氏體系不銹鋼以1Crl8Ni9Ti為代表,它是標準的18-8奧氏體不銹鋼,有穩定的奧氏體組織,具有良好的耐腐蝕性和冷加工性能。
正三角形排列結構緊湊;正方形排列便於機械清洗;同心圓排列用於小殼徑換熱器,外圓管布管均勻,結構更為緊湊。我國換熱器系列中,固定管板式多採用正三角形排列;浮頭式則以正方形錯列排列居多,也有正三角形排列。
(2)管板
管板的作用是將受熱管束連接在一起,並將管程和殼程的流體分隔開來。
管板與管子的連接可脹接或焊接。脹接法是利用脹管器將管子擴脹,產生顯著的塑性變形,靠管子與管板間的擠壓力達到密封緊固的目的。脹接法一般用在管子為碳素鋼,管板為碳素鋼或低合金鋼,設計壓力不超過4 MPa,設計溫度不超過 350℃的場合。
(3)封頭和管箱
封頭和管箱位於殼體兩端,其作用是控制及分配管程流體。
①封頭 當殼體直徑較小時常採用封頭。接管和封頭可用法蘭或螺紋連接,封頭與殼體之間用螺紋連接,以便卸下封頭,檢查和清洗管子。
②管箱 換熱器管內流體進出口的空間稱為管箱,殼徑較大的換熱器大多採用管箱結構。由於清洗、檢修管子時需拆下管箱,因此管箱結構應便於裝拆。
③分程隔板 當需要的換熱面很大時,可採用多管程換熱器。對於多管程換熱器,在管箱內應設分程隔板,將管束分為順次串接的若干組,各組管子數目大致相等。這樣可提高介質流速,增強傳熱。管程多者可達16程,常用的有2、4、6程。在布置時應盡量使管程流體與殼程流體成逆流布置,以增強傳熱,同時應嚴防分程隔板的泄漏,以防止流體的短路。
3. 管板式換熱器的優點
(1) 換熱效率高,熱損失小
在最好的工況條件下, 換熱系數可以達到6000W/ m2K, 在一般的工況條件下, 換熱系數也可以在3000~4000 W/ m2K左右,是管殼式換熱器的3~5倍。設備本身不存在旁路,所有通過設備的流體都能在板片波紋的作用下形成湍流,進行充分的換熱。完成同一項換熱過程, 板式換熱器的換熱面積僅為管殼式的1/ 3~1/ 4。
(2) 佔地面積小重量輕
除設備本身體積外, 不需要預留額外的檢修和安裝空間。換熱所用板片的厚度僅為0. 6~0. 8mm。同樣的換熱效果, 板式換熱器比管殼式換熱器的佔地面積和重量要少五分之四。
(3) 污垢系數低
流體在板片間劇烈翻騰形成湍流, 優秀的板片設計避免了死區的存在, 使得雜質不易在通道中沉積堵塞,保證了良好的換熱效果。
(4) 檢修、清洗方便
換熱板片通過夾緊螺柱的夾緊力組裝在一起,當檢修、清洗時, 僅需松開夾緊螺柱即可卸下板片進行沖刷清洗。
(5) 產品適用面廣
設備最高耐溫可達180 ℃, 耐壓2. 0MPa , 特別適應各種工藝過程中的加熱、冷卻、熱回收、冷凝以及單元設備食品消毒等方面, 在低品位熱能回收方面, 具有明顯的經濟效益。各類材料的換熱板片也可適應工況對腐蝕性的要求。
當然板式換熱器也存在一定的缺點, 比如工作壓力和工作溫度不是很高, 限制了其在較為復雜工況中的使用。同時由於板片通道較小,也不適宜用於雜質較多,顆粒較大的介質。
4. 列管式換熱器的結構
介質流經傳熱管內的通道部分稱為管程。
(1)換熱管布置和排列間距
常用換熱管規格有ф19×2 mm、ф25×2 mm(1Crl8Ni9Ti)、ф25×2.5 mm(碳鋼10)。小直徑的管子可以承受更大的壓力,而且管壁較薄;同時,對於相同的殼徑,可排列較多的管子,因此單位體積的傳熱面積更大,單位傳熱面積的金屬耗量更少。換熱管管板上的排列方式有正方形直列、正方形錯列、三角形直列、三角形錯列和同心圓排列。
(A) (B) (C)
(D) (E)
圖 1-4 換熱管在管板上的排列方式
(A) 正方形直列 (B)正方形錯列 (C) 三角形直列
(D)三角形錯列 (E)同心圓排列
正三角形排列結構緊湊;正方形排列便於機械清洗;同心圓排列用於小殼徑換熱器,外圓管布管均勻,結構更為緊湊。我國換熱器系列中,固定管板式多採用正三角形排列;浮頭式則以正方形錯列排列居多,也有正三角形排列。
(2)管板
管板的作用是將受熱管束連接在一起,並將管程和殼程的流體分隔開來。
管板與管子的連接可脹接或焊接。脹接法是利用脹管器將管子擴脹,產生顯著的塑性變形,靠管子與管板間的擠壓力達到密封緊固的目的。脹接法一般用在管子為碳素鋼,管板為碳素鋼或低合金鋼,設計壓力不超過4 MPa,設計溫度不超過350℃的場合。
(3)封頭和管箱
封頭和管箱位於殼體兩端,其作用是控制及分配管程流體。
①封頭 當殼體直徑較小時常採用封頭。接管和封頭可用法蘭或螺紋連接,封頭與殼體之間用螺紋連接,以便卸下封頭,檢查和清洗管子。
②管箱 換熱器管內流體進出口的空間稱為管箱,殼徑較大的換熱器大多採用管箱結構。由於清洗、檢修管子時需拆下管箱,因此管箱結構應便於裝拆。
③分程隔板 當需要的換熱面很大時,可採用多管程換熱器。對於多管程換熱器,在管箱內應設分程隔板,將管束分為順次串接的若干組,各組管子數目大致相等。這樣可提高介質流速,增強傳熱。管程多者可達16程,常用的有2、4、6程。在布置時應盡量使管程流體與殼程流體成逆流布置,以增強傳熱,同時應嚴防分程隔板的泄漏,以防止流體的短路。
5. 管板式換熱器的類型及工作原理
板式換熱器按照組裝方式可以分為可拆式、焊接式、釺焊式等形式;按照換熱板片的波紋可以分為人字波、平直波、球形波等形式; 按照密封墊可以分為粘結式和搭扣式。各種形式進行組合可以滿足不同的工況需求,在使用中更有針對性。比如同樣是人字形波紋的板片還因採用粘結式還是搭扣式密封墊而有所不同, 採用搭扣式密封墊可以有效的避免膠水中可能含有的氯離子對板片的腐蝕, 並且設備拆裝更加方便。又如焊接式板式換熱器的耐溫耐壓明顯好於可拆式板式換熱器, 可以達到250 ℃、2. 5MPa 。因此同樣是板式換熱器, 因其形式的多樣性,可以應用於較為廣泛的領域,在大多數熱交換工藝過程都可以使用。
雖然板式換熱器有多種形式, 但其工作原理大致相同。板式換熱器主要是通過外力將換熱板片夾緊組裝在一起, 介質通過換熱板片上的通孔在板片表面進行流動, 在板片波紋的作用下形成激烈的湍流, 猶如用筷子攪動杯中的熱水, 加大了換熱的面積。冷熱介質分別在換熱板片的兩側流動,湍流形成的大量換熱面與板片接觸, 通過板片來進行充分的熱傳遞,達到最終的換熱效果。冷熱介質的隔離主要通過密封墊的分割, 或者通過大量的焊縫來保證, 在換熱板片不開裂穿孔的情況下, 冷熱介質不會發生混淆。
二、 設計任務與操作條件
1. 設計題目
1.5萬噸/年石腦油冷卻器的設計
2. 設計任務與操作條件
1) 石腦油:入口溫度140℃,出口溫度40℃
2) 冷卻介質:自來水,入口溫度25℃,出口溫度45℃
3) 允許壓強降:不大於100kPa
4) 每年按300天24小時連續運行。
兩流體在定性溫度下的物性數據
物性
流體 密度 ㎏/m3 比熱KJ/(㎏•oC) 粘度 mPa•s 導熱系W/(m•oC)
石腦油 825 2.22 0.715 0.140
水 994.0 4.17 0.727 0.626
3. 確定設計方案
1) 選擇換熱器的類型
兩流體溫的變化情況:熱流體進口溫度140℃出口溫度40℃;冷體進口溫度25℃出口溫度為45℃,該換熱器用循環冷卻水冷卻,冬季操作時,其進口溫度會降低,考慮到這一因素,估計該換熱器的管壁溫度和殼體溫度之差較大,因此初步確定選用列管式換熱器。
2) 管程安排
循環冷卻水易結垢,若其流速太低,將會加快污垢增長速度,使換熱器的熱流量下降。但是由於石腦油是一種有毒且易燃易爆具有一定危險性的輕質油品,考慮到安全性和兩物流的操作壓力方面,應該讓石腦油走管程,所以從總體考慮,應使石腦油走管程,循環冷卻水走殼程。
4. 計算傳熱面積並初選換熱器型號
1.計算石腦油的流量:
根據《化工原理課程設計任務書》中的數據可以計算出石腦油的流量
2.確定熱流體及冷流體的物理性質:
物性
流體 密度 ㎏/m3 比熱KJ/(㎏•oC) 粘度 mPa•s 導熱系W/(m•oC)
石腦油 825 2.22 0.715 0.140
水 994.0 4.17 0.727 0.626
3.傳熱量計算:
忽略熱損失,冷卻水耗量為
4.確定流體的溫度:
本設計中熱流體為石腦油,冷流體為水,故為使石腦油可以盡可能快的通過管壁面向冷卻水中散熱,可以增加傳熱面積提高冷卻效果,令石腦油走管程而水走殼程。
5.計算平均溫度:
按換熱器中苯與水逆流來計算平均溫度,以單殼程來考慮其溫度校正系數 。
石腦油:140℃→40℃
水: 45℃←25℃
: 95℃ 15℃
計算R和P:
由R、P值,查《化工原理(上冊)》(天津大學化工學院夏清主編,修訂版)(以下所提《化工原理》均指本書)P232頁,圖5-11(b)
得 =0.85>0.8 , 故可以選用。
6.設定管程流速、選擇K值並估算傳熱面積:
參照P280頁表4-14管殼式換熱器中易燃,易爆液體的安全允許速度
可取管程的流速為
由此可以確定所需單管程數 ,故取雙管程管數為4
根據兩流體的情況,取K值為200W/(m2 •℃),則可以計算出單程換熱器的管長為
取單管管長為6.0m,則管程 =10,由此可得總管數 =4n=40
且
查找《化工原理(上冊)》書後附錄十九固定管板式換熱器(TB/T 4715—92),
並考慮到兩流體溫度差 ,為減少溫差所引起的熱應力,可選用帶有膨脹節的固定管板式換熱器,初選換熱器型號為:G325Ⅳ-1.6-19,主要參數如下:
外殼直徑:325mm
公稱壓力:1.6MPa
公稱面積:19m2
管子尺寸:
管子數:40
管長:6m
管中心距:32mm
管程數 :4
管子排列方式:正三角形
管程流通面積:0.0031
實際傳熱面積
通過計算可知, ,即採用此換熱面積的換熱器要求過程的總傳熱系數為 。
5. 核算壓力降:
1.管程壓力降:
,其中 =1.4, =1, =2。
管程流速:
雷諾系數為:
對於碳鋼管,取管壁粗糙度 ,則相對粗糙度為 。
在《化工原理(上冊)》P54頁查圖1—27知,摩擦系數
,將其帶入前式,計算得
管程的壓力降滿足設計條件。
2.殼程壓力降:
管子為正三角形排列,F=0.5
取折流擋板間距z=0.15m,D=0.7m,
折流擋板數為
殼程流通面積
殼程流速
故
計算結果表明,管程和殼程的壓力降都能滿足設計條件。
6. 核算總傳熱系數:
1、管程對流傳熱系數
(湍流)
普朗特數
對流傳熱系數
2、殼程對流傳熱系數
管子為正三角形排列,則
殼程中水被加熱 (液體被加熱時 )
3、總傳熱系數K:
管壁熱阻和污垢熱阻可忽略時,總傳熱系數K為:
與 ,故所選換熱器是合適的,安全系數是
設計結果為:選用帶有膨脹節的固定管板式換熱器,型號為G325Ⅳ-1.6-19。
三、 參考文獻
[1]《化工原理》天津大學化工原理教研室編 天津:天津大學出版社. (1999)
[2]《換熱器》秦叔經、葉文邦等 ,化學工業出版社(2003)
[3]《化工原理(第三版)上、下冊》譚天恩、竇梅、周明華等,化學工業出版社(2006)
[4]《化工過程及設備設計》華南工學院化工原理教研室(1987)
[5]《 化工原理課程設計》賈紹義等,天津大學出版社(2003)
四、 主要符號說明
硝基苯的定性溫度 T 冷卻水定性溫度 t
硝基苯密度 ρo 冷卻水密度 ρi
硝基苯定壓比熱容 cpo 冷卻水定壓比熱容 cpi
硝基苯導熱系數 λo 冷卻水導熱系數 λi
硝基苯粘度 μo 冷卻水粘度 μi
熱流量 Wo 冷卻水流量
熱負荷 Qo 平均傳熱溫差
總傳熱系數
管程雷諾數
溫差校正系數
管程、殼程傳熱系數
初算初始傳熱面積
傳熱管數
初算實際傳熱面積 S 管程數
殼體內徑 D 橫過中心線管數
折流板間距 B 管心距 t
折流板數
NB 接管內徑
管程壓力降
當量直徑
殼程壓力降
面積裕度 H
五、 課程設計感想
經過一個星期的奮戰,終於完成了一個還算可以的換熱器設計,這幾天我過的很充實,是我大學生活里繼兩次實習後又一次最充實的生活,看著我們小組的勞動成果,心裡有種說不出的感覺。畢竟我們的努力還算有所回報,我為自己的努力感到自豪,當然我也認識到了自己學習中的不足。
我想說:功夫不負有心人,為完成這次課程設計我們確實很辛苦,但苦中仍有樂。我們一邊忙著復習備考,一邊還要做課程設計,時間對我們來說一下子變得很寶貴,真是恨不得睡覺的時間也拿來用了。當自己越過一個又一個難題時,笑容在臉上綻放。當我看到設計終於完成的時候,我樂了。對我而言,知識上的收獲重要,精神上的豐收更加可喜。從這次的課程設計中,我不僅鞏固了課本的知識,還學到了許許多多其他的知識。我知道了每一個課程之間是融會貫通的。在化工原理的課程設計中也用到了機械制圖基礎的知識,可是自己的機械制圖基礎沒有學好,於是就要重新翻書來確定自己的一些設計是否正確。
其次了解到團隊合作很重要,每個人都有分工,但是又不能完全分開來,還要合作,所以設計的成敗因素中還有團隊的合作好壞。
這次設計讓我知道了學無止境的道理。我們每一個人永遠不能滿足於現有的成就,人生就像在爬山,一座山峰的後面還有更高的山峰在等著你。挫折是一份財富,經歷是一份擁有。這次課程設計必將成為我人生旅途上一個非常美好的回憶!
當然我的設計肯定有不足之處,希望老師批評指正,下次一定會做得更好。
C. 化工生產對換熱設備有哪些要求
附合工藝要求就行了,
D. 化工原理浮頭式換熱器的課程設計!!!100分要具體過程(計算過程)
我畢業設計就做的浮頭式換熱器,但是現在已經忘了具體步驟了,很多,但是我記得書上都會有主要步驟的,很簡單,自己看書結合例子做一下吧。只要自己從頭到尾把這個做出來,你會感覺收獲很大的,還是建議自己做!
E. 什麼是化學工程與工藝
化學工程
研究化學工業和其他過程工業 (process instry) 生產中所進行的化學過程和物理過程共同規律的一門工程學科。這些工業包括石油煉制工業、冶金工業、建築材料工業、食品工業、造紙工業等。它們從石油、煤、天然氣、鹽、石灰石、其他礦石和糧食、木材、水、空氣等基本的原料出發,藉助化學過程或物理過程,改變物質的組成、性質和狀態,使之成為多種價值較高的產品,如化肥、汽油、潤滑油、合成纖維、合成橡膠、塑料、燒鹼、純鹼、水泥、玻璃、鋼、鐵、鋁、紙漿等等。化學過程是指物質發生化學變化的反應過程,如柴油的催化裂化制備高辛烷值汽油是一個化學反應過程。物理過程系指物質不經化學反應而發生的組成、性質、狀態、能量變化過程,如原油經過蒸餾的分離而得到汽油、柴油、煤油等產品。至於其他一些領域 , 諸如礦石冶煉 , 燃料燃燒,生物發酵,皮革製造,海水淡化等等,雖然過程的表現形式多種多樣,但均可以分解為上述化學過程和物理過程。實際上,化學過程往往和物理過程同時發生。例如催化裂化是一個典型的化學過程,但輔有加熱、冷卻和分離,並且在反應進行過程中,也必伴隨有流動、傳熱和傳質。所有這些過程,都可通過化學工程的研究,認識和闡釋其規律性,並使之應用於生產過程和裝置的開發、設計、操作,以達到優化和提高效率的目的。
上述工業生產的共同特點是,從實驗室到工業生產特別是大規模的生產,都要解決一個裝置的放大問題。生產規模擴大和經濟效益提高的重要途徑是裝置的放大,以節省投資,降低消耗,減少佔地 , 節約人力。但是 , 在大裝置上所能達到的某些指標,通常低於小型試驗結果,原因是隨著裝置的放大,物料的流動、傳熱、傳質等物理過程的因素和條件發生了變化。這種起源於放大過程的效應,長期以來被籠統地稱作「放大效應」,它包含了很多已查明或未查明的物理因素(或稱工程因素)的影響。化學工程的一個重要任務就是研究有關工程因素對過程和裝置的效應,特別是在放大中的效應,以解決關於過程開發、裝置設計和操作的理論和方法等問題。它以物理學、化學和數學的原理為基礎,廣泛應用各種實驗手段,與化學工藝相配合,去解決工業生產問題。
化學工程包括單元操作、化學反應工程、傳遞過程、化工熱力學、化工系統工程、過程動態學及控制等方面。
單元操作 構成多種化工產品生產的物理過程都可歸納為有限的幾種基本過程,如流體輸送、換熱(加熱和冷卻)、蒸餾、吸收、蒸發、萃取、結晶、乾燥等。這些基本過程稱為單元操作。對單元操作的研究,得到具有共性的結果,可以用來指導各類產品的生產和化工設備的設計。在 20 世紀初,對化學工程的認識雖只限於單元操作,但卻開拓了一個嶄新的領域和出現了一些從事嶄新職業的化學工程師。這些化學工程師不同於以往的化工生產工作者,他們經歷過化學工程這一專門學科的訓練,故有能力使化工生產過程和設備設計、製造和操作控制更為合理。直到今天,各個單元操作的研究還是有著極為重要的理論意義和應用價值,而且是為了適應新的技術要求,一些新的單元操作不斷出現並逐步充實進來。
化學反應工程 化學反應是化工生產的核心部分,它決定著產品的收率,對生產成本有著重要影響。盡管如此,在早期因其復雜性而阻礙了對它的系統研究。直到 20 世紀中葉,在單元操作和傳遞過程研究成果的基礎上,在各種反應過程中,如氧化、還原、硝化、磺化等發現了若干具有共性的問題,如反應器內的返混、反應相內傳質和傳熱、反應相外傳質和傳熱、反應器的穩定性等。對於這些問題的研究,以及它們對反應動力學的各種效應的研究,構成了一個新的學科分支即化學反應工程,從而使化學工程的內容和方法得到了充實和發展。
傳遞過程 是單元操作和反應工程的共同基礎。在各種單元操作設備和反應裝置中進行的物理過程不外乎三種傳遞:動量傳遞、熱量傳遞和質量傳遞。例如,以動量傳遞為基礎的流體輸送、反應器中的氣流分布;以熱量傳遞為基礎的換熱操作 , 聚合釜中聚合熱的移出 ; 以質量傳遞為基礎的吸收操作,反應物和產物在催化劑內部的擴散等。有些過程有兩種或兩種以上的傳遞現象同時存在 , 如氣體增減濕等。作為化學工程的學科分支 , 傳遞過程著重研究上述三種傳遞的速率及相互關系,連貫起一些本質類同但表現形式各異的現象。
化工熱力學 是單元操作和反應工程的理論基礎,研究傳遞過程的方向和極限,提供過程分析和設計所需的有關基礎數據。因此,化學工程的學科分支也可以分兩個層次:單元操作和反應工程較多地直接面向工業實際,傳遞過程和化工熱力學較多地從基礎研究角度,支持前兩個分支。通過這兩個層次使理論和實際得以密切結合。
隨著生產規模的擴大和資源、能源的大量耗用,使得早先並不顯得很重要的問題逐漸突出起來。例如能量利用問題,設計和操作優化問題,在大型生產中都十分重要。由於化工過程中,各個過程單元相互影響,相互制約,因此很有必要將化工過程看作一個綜合系統,並建立起整體優化的概念。於是系統工程這一學科在化學工程中得到了迅速的發展,也取得了明顯的效果,形成了化工系統工程。它是系統工程方法與單元操作和化學反應工程這兩個學科分支相結合的產物。為了保持操作的合理和優化,過程動態特性和控制方法也是化學工程的重要內容。
化學工程的研究對象 通常是非常復雜的,主要表現在:①過程本身的復雜性:既有化學的,又有物理的,並且兩者時常同時發生 , 相互影響。②物系的復雜性 : 既有流體(氣體和液體),又有固體,時常多相共存。流體性質可有大幅度變化,如低粘度和高粘度、牛頓型和非牛頓型等。有時,在過程進行中有物性顯著改變,如聚合過程中反應物系從低粘度向高粘度的轉變。③物系流動時邊界的復雜性:由於設備(如塔板、攪拌槳、檔板等)的幾何形狀是多變的,填充物(如催化劑、填料等)的外形也是多變的,使流動邊界復雜且難以確定和描述。
化學工程的研究方法 由於化學工程對象的這些特點,使得解析方法在化學工程研究中往往失效。也從而形成了自己的研究方法(化學工程研究方法),其中有些方法並非首創,而由別的領域移植而來。
早期的研究方法 化學工程初期的主要方法是經驗放大,通過多層次的、逐級擴大的試驗,探索放大的規律。這種經驗方法耗資大、費時長、效果差,人們一直努力試圖擺脫這種處境。但是時至今日,對於一些特別復雜,人們迄今尚知之甚少的過程,還不得不求助於或部分求助於此法。
20 世紀初的研究方法 相當盛行的是相似論和因次分析,其特點是將影響過程的眾多變數通過相似變換或因次分析歸納成為數較少的無因次數(無量綱)群形式,然後設計模型試驗,求得這些數群的關系。用這兩種方法歸納實驗結果,甚為有效。
對於反應過程,逐級的經驗方法沿用了很長時間。由於不可能在滿足幾何相似和物理量相似的同時滿足化學相似條件,用無因次數群關聯實驗結果以獲得反應過程規律的思路歸於無效。
50 年代以後的研究方法 直至 50 年代,才在化學反應工程領域中廣泛應用數學模型方法。這一方法的影響波及到化學工程的其他分支,使研究方法出現了一個革新。但即使採用了這個方法 , 實驗工作仍占重要地位 , 基礎數據要依靠實驗測定,模型要通過實驗得到鑒別,模型參數要由實驗求取,模型可靠性要由實驗驗證。
各種化學工程研究方法的基礎是實驗工作,不論採用哪一種研究方法,都應力求使實驗工作有效、可靠和簡易可行。各種理論、各種方法以及計算機的應用,目的都是為使實驗工作更能揭示事物的規律,更為節省時間、人力和費用。在上述方法的應用中,多方面體現了過程分解(將一個復雜過程分解為兩個或幾個較簡單過程),過程簡化(較復雜過程忽略次要因素而以較簡單過程簡化處理)和過程綜合(在分別處理分解了的過程後,再將這些過程綜合為一)的思想。
重要作用
現代工業生產的規模常要求一套裝置的年產量達數十萬噸或更高。這些裝置必然面臨大量的工程問題,而且指標稍有下降,就會帶來很大的經濟損失。
科學技術的進步,時時刻刻在創造新的產品和新的工藝。但這些新的產品必須藉助工程的手段才能實現工業生產,新的工藝要有經濟和技術的合理性才能取代原有工藝。
上述裝置大型化和新產品、新工藝工業化的問題都屬於化學工程的研究范圍。化學工程在國民經濟中的重要作用是十分明顯的。
例如將大量煙氣中硫、氮氧化物等有害組分脫除後再排放,在實驗室達到要求後,進而要在工業規模中實現大量煙氣的凈化,就必須考慮大規模凈化的經濟性和可行性,著眼點與實驗室研究很不相同。
又如化工生產中 , 要求十分純凈的產品作為原料 , 如高分子化工中常要求聚合前單體的雜質含量是在百萬分之幾 (ppm) 數量級。對於實驗室工作來說 , 這一點並不一定困難,而且小實驗也不要求提純的經濟指標。但是要求大型生產裝置在低消耗和設備簡易可行的條件下做到這一點 , 卻是一個完全不同的課題。這種課題的解決 , 有賴於單元操作的研究。假使在實驗反應器中確定了優選的溫度、濃度和反應時間,獲得了滿意的效果。而在放大過程中,由於流動的不均勻性,物料在反應器中的停留時間(反應時間)出現不均勻,偏離了優選的反應時間。由於反應熱效應,大裝置中因傳熱的限制而出現的溫度不均勻,使反應溫度偏離了優選溫度。溫度的不均勻必然導致濃度的不均勻。這些效應引起大裝置中效率下降,產品成本提高,甚至可能因此失去工業價值而不宜用於生產。這個例子說明化學反應工程研究的作用和意義。
另一個例子是工業生產中為適應各過程的需要,時而需要加熱,時而需要冷卻。在實驗室中能耗指標並不重要,但大生產就必須考慮熱量的合理利用,應盡可能使加熱和冷卻相匹配,盡可能利用低位熱能。如何合理利用熱量,如何合理安排眾多的設備,這一課題,是無法用實驗方法解決的,而是通過化工系統工程的研究解決的。
上述數例說明生產大型化後人們對化學工程知識的緊迫需要。化學工程的成就已能在相當程度上解決這些問題。
發展方向
化學工程面臨著新的挑戰和新的課題,解決這些新課題的過程,必然使化學工程學科得到發展。它的研究范圍和應用前景已遠遠越過了它原有的含義。
化學工程正向兩個方向發展:一方面隨著學科的成熟,不斷向學科的深度發展;另一方面是不斷向新的領域滲透,研究和解決新領域中的新問題。
學科的縱深方向 為了深入掌握過程的規律,對化學工程中經常遇到的多相物系、高粘度流體和非牛頓型流體的傳遞規律進行深入系統研究。這些研究不但有利於解決傳統研究領域的問題,也有助於了解諸如人體內血液流動等新興課題。對反應過程中多重定常穩定態問題的研究,既是反應器設計和操作的需要,也是從另一側面對非線性系統穩定性問題研究所作的貢獻。為了使大型裝置的設計更為迅速可靠,研究了各種物系物性參數、熱力學參數與熱化學參數以及相平衡與化學平衡數據,推動了化工熱力學研究進一步與實際的結合。
在研究方法方面,數學模型方法不斷完善,與之相配合的是,以統計理論和資訊理論為基礎的實驗設計、數據處理、模型的篩選和鑒別以及模型參數估計等方法。為了進行過程的模擬及多方案計算,發展了多種計算機模擬系統,建立了模型庫和資料庫,並從定態模擬發展到為過程式控制制所需要的動態模擬。
向新領域的滲透 這是客觀需要,也是學科發展的動力。在歷史上,化學工程就在各種新過程的開發和優化,在無機化工和石油化工等裝置大型化的推動下得到發展,如大型徑向固定床反應器和催化裂化用流化床反應器的開發技術。在解決石油加工中多組分反應物系處理方法時,發展了集總動力學處理方法,這一方法反過來又可用於處理生物反應過程。在向材料工業滲透過程中,出現了將化學反應工程原理用於聚合過程的聚合反應工程,對於高粘物系傳遞特性的研究則有了實際應用的課題。隨著生物技術的進展 , 出現了生物化學工程 , 以解決生物反應器和生物制劑分離等問題,如超過濾技術等。能源短缺的情況,使人們重視低溫熱源的利用,出現了新型換熱器。為了保護環境,也為了開發海洋資源,要求研究低濃度混合物的分離技術,於是出現了新的分離技術,如膜分離、泡沫分離等。用化學工程的觀點和方法,研究人體內的生理過程,如葯物在人體中的擴散,以及研究人工臟器等,形成了生物醫學工程這一新的研究領域。為了探索在離心力場、電場、磁場等作用下的過程規律,出現了場致化學工程。化學工程的原理甚至被應用於研究高純電子器件的制備,噴氣技術等等方面。也就是說,在化工生產領域之外,凡是存在反應過程或傳遞過程並值得重視的場合,幾乎都可以找到化學工程的用武之地。這一認識反映了當今化學工程的概貌。
F. 化工原理管殼式換熱器的課程設計!!!100分要具體過程
這只是個模板,你還要自己修改數據,其中有些公式顯示不出來。不明白的問我。qq83229427
一.設計任務和設計條件
某生產過程的流程如圖所示,反應器的混合氣體經與進料物流患熱後,用循環冷卻水將其從110℃進一步冷卻至60℃之後,進入吸收塔吸收其中的可溶組分。已知混和氣體的流量為227301㎏/h,壓力為6.9MPa ,循環冷卻水的壓力為0.4MPa ,循環水的入口溫度為29℃,出口溫度為39℃ ,試設計一台列管式換熱器,完成該生產任務。
物性特徵:
混和氣體在35℃下的有關物性數據如下(來自生產中的實測值):
密度
定壓比熱容 =3.297kj/kg℃
熱導率 =0.0279w/m
粘度
循環水在34℃ 下的物性數據:
密度 =994.3㎏/m3
定壓比熱容 =4.174kj/kg℃
熱導率 =0.624w/m℃
粘度
二. 確定設計方案
1. 選擇換熱器的類型
兩流體溫的變化情況:熱流體進口溫度110℃ 出口溫度60℃;冷流體進口溫度29℃,出口溫度為39℃,該換熱器用循環冷卻水冷卻,冬季操作時,其進口溫度會降低,考慮到這一因素,估計該換熱器的管壁溫度和殼體溫度之差較大,因此初步確定選用浮頭式換熱器。
2. 管程安排
從兩物流的操作壓力看,應使混合氣體走管程,循環冷卻水走殼程。但由於循環冷卻水較易結垢,若其流速太低,將會加快污垢增長速度,使換熱器的熱流量下賤,所以從總體考慮,應使循環水走管程,混和氣體走殼程。
三. 確定物性數據
定性溫度:對於一般氣體和水等低黏度流體,其定性溫度可取流體進出口溫度的平均值。故殼程混和氣體的定性溫度為
T= =85℃
管程流體的定性溫度為
t= ℃
根據定性溫度,分別查取殼程和管程流體的有關物性數據。對混合氣體來說,最可靠的無形數據是實測值。若不具備此條件,則應分別查取混合無辜組分的有關物性數據,然後按照相應的加和方法求出混和氣體的物性數據。
混和氣體在35℃下的有關物性數據如下(來自生產中的實測值):
密度
定壓比熱容 =3.297kj/kg℃
熱導率 =0.0279w/m
粘度 =1.5×10-5Pas
循環水在34℃ 下的物性數據:
密度 =994.3㎏/m3
定壓比熱容 =4.174kj/kg℃
熱導率 =0.624w/m℃
粘度 =0.742×10-3Pas
四. 估算傳熱面積
1. 熱流量
Q1=
=227301×3.297×(110-60)=3.75×107kj/h =10416.66kw
2.平均傳熱溫差 先按照純逆流計算,得
=
3.傳熱面積 由於殼程氣體的壓力較高,故可選取較大的K值。假設K=320W/(㎡k)則估算的傳熱面積為
Ap=
4.冷卻水用量 m= =
五. 工藝結構尺寸
1.管徑和管內流速 選用Φ25×2.5較高級冷拔傳熱管(碳鋼),取管內流速u1=1.3m/s。
2.管程數和傳熱管數 可依據傳熱管內徑和流速確定單程傳熱管數
Ns=
按單程管計算,所需的傳熱管長度為
L=
按單程管設計,傳熱管過長,宜採用多管程結構。根據本設計實際情況,採用非標設計,現取傳熱管長l=7m,則該換熱器的管程數為
Np=
傳熱管總根數 Nt=612×2=1224
3.平均傳熱溫差校正及殼程數 平均溫差校正系數按式(3-13a)和式(3-13b)有 R=
P=
按單殼程,雙管程結構,查圖3-9得
平均傳熱溫差 ℃
由於平均傳熱溫差校正系數大於0.8,同時殼程流體流量較大,故取單殼程合適。
4.傳熱管排列和分程方法 採用組合排列法,即每程內均按正三角形排列,隔板兩側採用正方形排列。見圖3-13。
取管心距t=1.25d0,則 t=1.25×25=31.25≈32㎜
隔板中心到離其最.近一排管中心距離按式(3-16)計算
S=t/2+6=32/2+6=22㎜
各程相鄰管的管心距為44㎜。
管數的分成方法,每程各有傳熱管612根,其前後關鄉中隔板設置和介質的流通順序按圖3-14選取。
5.殼體內徑 採用多管程結構,殼體內徑可按式(3-19)估算。取管板利用率η=0.75 ,則殼體內徑為
D=1.05t
按卷制殼體的進級檔,可取D=1400mm
6.折流板 採用弓形折流板,去弓形之流板圓缺高度為殼體內徑的25%,則切去的圓缺高度為
H=0.25×1400=350m,故可 取h=350mm
取折流板間距B=0.3D,則 B=0.3×1400=420mm,可取B為450mm。
折流板數目NB=
折流板圓缺面水平裝配,見圖3-15。
7.其他附件
拉桿數量與直徑按表3-9選取,本換熱器殼體內徑為1400mm,故其拉桿直徑為Ф12拉桿數量不得少於10。
殼程入口處,應設置防沖擋板,如圖3-17所示。
8.接管
殼程流體進出口接管:取接管內氣體流速為u1=10m/s,則接管內徑為
圓整後可取管內徑為300mm。
管程流體進出口接管:取接管內液體流速u2=2.5m/s,則接管內徑為
圓整後去管內徑為360mm
六. 換熱器核算
1. 熱流量核算
(1)殼程表面傳熱系數 用克恩法計算,見式(3-22)
當量直徑,依式(3-23b)得
=
殼程流通截面積,依式3-25 得
殼程流體流速及其雷諾數分別為
普朗特數
粘度校正
(2)管內表面傳熱系數 按式3-32和式3-33有
管程流體流通截面積
管程流體流速
普朗特數
(3)污垢熱阻和管壁熱阻 按表3-10,可取
管外側污垢熱阻
管內側污垢熱阻
管壁熱阻按式3-34計算,依表3-14,碳鋼在該條件下的熱導率為50w/(m•K)。所以
(4) 傳熱系數 依式3-21有
(5)傳熱面積裕度 依式3-35可得所計算傳熱面積Ac為
該換熱器的實際傳熱面積為Ap
該換熱器的面積裕度為
傳熱面積裕度合適,該換熱器能夠完成生產任務。
2. 壁溫計算
因為管壁很薄,而且壁熱阻很小,故管壁溫度可按式3-42計算。由於該換熱器用循環水冷卻,冬季操作時,循環水的進口溫度將會降低。為確保可靠,取循環冷卻水進口溫度為15℃,出口溫度為39℃計算傳熱管壁溫。另外,由於傳熱管內側污垢熱阻較大,會使傳熱管壁溫升高,降低了殼體和傳熱管壁溫之差。但在操作初期,污垢熱阻較小,殼體和傳熱管間壁溫差可能較大。計算中,應該按最不利的操作條件考慮,因此,取兩側污垢熱阻為零計算傳熱管壁溫。於是,按式4-42有
式中液體的平均溫度 和氣體的平均溫度分別計算為
0.4×39+0.6×15=24.6℃
(110+60)/2=85℃
5887w/㎡•k
925.5w/㎡•k
傳熱管平均壁溫
℃
殼體壁溫,可近似取為殼程流體的平均溫度,即T=85℃。殼體壁溫和傳熱管壁溫之差為 ℃。
該溫差較大,故需要設溫度補償裝置。由於換熱器殼程壓力較大,因此,需選用浮頭式換熱器較為適宜。
3.換熱器內流體的流動阻力
(1)管程流體阻力
, ,
由Re=35002,傳熱管對粗糙度0.01,查莫狄圖得 ,流速u=1.306m/s,
,所以,
管程流體阻力在允許范圍之內。
(2)殼程阻力 按式計算
, ,
流體流經管束的阻力
F=0.5
0.5×0.2419×38.5×(14+1)× =75468Pa
流體流過折流板缺口的阻力
, B=0.45m , D=1.4m
Pa
總阻力
75468+43218=1.19× Pa
由於該換熱器殼程流體的操作壓力較高,所以殼程流體的阻力也比較適宜。
(3)換熱器主要結構尺寸和計算結果見下表:
參數 管程 殼程
流率 898560 227301
進/出口溫度/℃ 29/39 110/60
壓力/MPa 0.4 6.9
物性 定性溫度/℃ 34 85
密度/(kg/m3) 994.3 90
定壓比熱容/[kj/(kg•k)] 4.174 3.297
粘度/(Pa•s) 0.742×
1.5×
熱導率(W/m•k) 0.624 0.0279
普朗特數 4.96 1.773
設備結構參數 形式 浮頭式 殼程數 1
殼體內徑/㎜ 1400 台數 1
管徑/㎜ Φ25×2.5 管心距/㎜ 32
管長/㎜ 7000 管子排列 △
管數目/根 1224 折流板數/個 14
傳熱面積/㎡ 673 折流板間距/㎜ 450
管程數 2 材質 碳鋼
主要計算結果
管程 殼程
流速/(m/s) 1.306 4.9
表面傳熱系數/[W/(㎡•k)] 5887 925.5
污垢熱阻/(㎡•k/W) 0.0006 0.0004
阻力/ MPa 0.04325 0.119
熱流量/KW 10417
傳熱溫差/K 48.3
傳熱系數/[W/(㎡•K)] 400
裕度/% 24.9%
七. 參考文獻:
1. 劉積文主編,石油化工設備及製造概論,哈爾濱;哈爾濱船舶工程學院出版社,1989年。
2. GB4557.1——84機械制圖圖紙幅面及格式
3. GB150——98鋼制壓力容器
4. 機械工程學會焊接學會編,焊接手冊,第3卷,焊接結構,北京;機械工業出版社 1992年。
5. 杜禮辰等編,工程焊接手冊,北京,原子能出版社,1980
6. 化工部六院編,化工設備技術圖樣要求,化學工業設備設計中心站,1991年。
G. 化工原理課程設計實習換熱器
《化工原理課程設計》教學大綱(2005)0 一、 課程的性質、目的與任務 性質:課程設計是化工原理課程教學中綜合性和實踐性較強的教學環節,是理論聯系實際的橋梁,是使學生體察工程實際問題復雜性的初次嘗試;是對學生在規定的時間內完成指定的化工單元操作設計任務的初步訓練。 目的、任務: (1)通過化工原理課程設計,培養學生能綜合運用本課程和前修課程的基礎知識,進行融會貫的獨立思考能力,鞏固和強化化工原理有關課程的基本理論和基本知識; (2)培養學生化工工程設計的技能以及獨立分析問題、解決問題的能力,了解工程設計的基本內容,掌握化工設計的主要程序和方法,在規定的時間內完成指定的化工設計任務,從而得到化工工程設計的初步訓練; (3)培養學生分析和解決工程實際問題的能力,樹立正確的設計思想,培養實事求是、嚴肅認真、高度負責的工作作風,為學生後續課程及畢業設計打下一定的基礎。 (4)使學生熟悉查閱並能綜合運用各種有關的設計手冊、規范、標准、圖冊等設計技術資料;進一步掌握識圖、制圖、運算、編寫設計說明書等基本技能;完成作為工程技術人員在工藝設計方面所必備的設計能力的基本訓練。 二、 課程設計的內容與安排 1. 課程設計課題目的選擇 本課程的設計包括列管式換熱器、板式精餾塔、板式吸收塔、填料精餾塔、填料吸收塔或其它典型化工設備的設計,學生可從中選擇一種化工設備進行設計。 2.課程設計的內容及要求 2.1內容 A.列管式換熱器(或其它換熱器)的設計 ①主要技術要求和指標 a. 選擇列管式換熱器的結構 b. 計算傳熱平均溫差 c. 計算總傳熱系數 d. 計算總傳熱面積 ②方案選擇及原理 e. 列管式換熱器型式的選擇:主要依據換熱系數及流過管殼程流體的溫差來確定。 f. 流體流動空間的選擇:主要從傳熱系數、設備結構、清洗方便來確定。 g. 流體流速的選擇:由設備費和操作費的總和決定,即由經濟衡算確定,同時流速的選擇還應使管長和管程適當。 h. 流體流動管程的選擇:主要從操作費用、設備費用綜合考慮。 i. 流體的出口溫度:主要依據操作費用及設備參數來確定。 j. 管程數與殼程數的確定:管內流體流量較小時,管內流速較低,對流傳熱系數較小,為提高管內流速可採用多管程數,但程數過多,流體流動阻力增大且平均溫差下降,故設計時應綜合考慮各因素來確定程數。 B. 板式塔的設計:篩板塔、浮閥塔或其它塔(精餾或吸收) ①主要技術要求和指標 a. 塔徑 b.理論塔板數 c.實際塔板數 d.塔高、塔板的設計,溢流裝置與流體流型、篩板的流體力學驗算 ②方案選擇及原理 a. 裝置流程的確定:要較全面、合理地兼顧設備費用、操作費用、操作控制方便及安全因素。 b. 操作壓強的選擇:根據冷凝溫度決定。 c. 進料狀態的選擇:原則上,在供熱量一定的情況下,熱量應盡可能由塔底進入,使產生的氣相迴流在全塔發揮作用,即宜冷進料。但為使塔的操作穩定,免受季節氣溫影響,提餾段採用相同塔徑以便於製造,則常採用飽和液體(泡點)進料,但需增設原料預熱器。若工藝要求減少塔釜加熱量避免釜溫過高,料液產生結焦或聚合,則應採用氣態進料。 d. 加熱方式的選擇:大多採用間接蒸汽加熱,設置再沸器;當塔釜殘留液的主要成分為水分時,可以用直接水蒸氣加熱,此時可省掉加熱設備,但需要增加提餾段的塔扳數。 e. 迴流比的選擇:力求使總費用最低,一般經驗值為R=(1.1~1.2)Rmin,對特殊物系與場合應根據實際情況選擇迴流比。 C. 填料塔的設計(精餾或吸收) 主要技術要求和指標 a. 合理選擇填料種類、規格、材質; b. 塔徑、填料層高度; c. 填料層壓降計算; d. 填料塔內件選擇,液體分布器設計,液體分布器布液能力的計算 2.2設計成果 (1)完成主要設備的工藝設計,設計說明書1份,按要求完成課程設計說明書。 (2)完成主要設備設計(包括外形圖和剖面圖各1張,零部件圖1-2張)。 2.3設計成果要求 a. 按要求認真、仔細、完成課程設計說明書。說明書書面整潔,結構力求合理、完整; b. 設計合理、實用、經濟、工藝性好,能理論聯系實際,綜合考慮問題, c. 查閱、計算、處理數據准確; d. 所繪圖紙要求表達清晰、圖面整潔,符合制圖標准; 3.教學安排 本課程設計時間一周。 向學生布置課程設計有關任務, 學生也可以自己立題(相同題目少於5人),提出有關要求,講解與設計有關的主要內容(2學時);熟悉設計內容並查詢有關資料(1天);從事課程設計具體工作(2天);繪制課程設計圖紙(1天);整理課程設計說明書(1天)。 課程設計的步驟和進度: 3.1准備階段 1)設計前應預先准備好設計資料、手冊、圖冊、計算和繪圖工具、圖紙及報告紙等; 2)認真研究設計任務書,分析設計題目的原始數據和工藝條件,明確設計要求和設計內容; 3)設計前應認真復習有關教科書、熟悉有關資料和設計步驟; 4)應結合現場參觀,熟悉典型設備的結構,比較其優缺點。 3.2設計階段 化工原理課程設計主要是對單元操作中主要設備進行工藝設計。根據單元操作中的工藝條件(壓力、溫度、介質特性、物料量等)及原始數據,查取有關數據,進行物料衡算;圍繞著設備內、外附件的工藝尺寸進行選型、設計;並對設計結果進行校核。這一步往往通過「邊算、邊選、邊改」的做法來進行。 3.3設計說明書 設計計算說明書是圖紙設計的理論依據,是設計計算的整理和總結,是審核設計的技術文件之一。其內容大致包括: 1) 封面: 包括課程設計題目、系別、班級、學生姓名、設計時間等。 2) 目錄 3) 設計任務 4) 概述與設計方案的分析和和擬定, 工藝流程簡圖與主體設備工藝條件圖 5) 設計條件及主要物性參數表 6) 按設計任務順序說明(有關參數計算、物料衡算,主要設備各部分工藝尺寸的確定和設計計算、設計結果校核) 7) 設計結果匯總表 8) 對本設計的評述 本部分主要介紹設計者對本設計的評價及設計者的學習體會。 9 )參考文獻 10) 附錄 3.4制圖 根據計算結果,選取一定比例,按要求進行制圖。 3.5課程設計答辯 課程設計的圖樣及說明書全部完成後,須經指導教師審閱,得到認可後,方能參加答辯。 4.課程設計的成績評定 課程設計的成績要根據圖樣、說明書和答辯所反映的設計質量和能力,以及設計過程中的學習態度綜合加以評定。 總體表現:態度認真,積極思考,獨力分析問題、解決問題能力強 20% 設計說明書: 40% 其中 書寫工整,結構合理、完整 10% 設計方案正確,思路清晰 10% 設計計算正確,條理清楚 20% 設計圖圖紙正確、清晰、整潔 25% 答辯 15% 教學建議: 希望能將課程設計與生產實習、畢業實習相結合,使該課程更好地發揮其作用。 四.教材及教學參考資料 教材:柴誠敬,劉國維,李阿娜主編.化工原理課程設計,天津:天津科學技術出版社,2002 (4) 參考資料: [1] 鄭幟等.化工工藝設計手冊,北京:化學工業出版社,1994(8) [2] 時鈞等.化學工程手冊 ,北京:化學工業出版社,1996(2) [3] 姚玉英主編.化工原理,天津:天津大學出版社,1999(1) 責 任 表 執筆人 鄒麗霞 專業負責人 熊國宣 院長 羅明標 參加 討論 人員 黃國林、熊國宣、劉峙嶸、許文苑、黃海清、陳中勝、孟利娜、梁喜珍,楊婥 日期 2005年1月10日
H. 化工原理列管式換熱器課程設計
轉載,供參考:列管式換熱器的設計和選用(1) 列管式換熱器的設計和選用應考慮的問題
◎ 冷、熱流體流動通道的選擇
具體選擇冷、熱流體流動通道的選擇
在換熱器中,哪一種流體流經管程,哪一種流經殼程,下列幾點可作為選擇的一般原則:
a) 不潔凈或易結垢的液體宜在管程,因管內清洗方便。
b) 腐蝕性流體宜在管程,以免管束和殼體同時受到腐蝕。
c) 壓力高的流體宜在管內,以免殼體承受壓力。
d) 飽和蒸汽宜走殼程,因飽和蒸汽比較清潔,表面傳熱系數與流速無關,而且冷凝液容易排出。
e) 流量小而粘度大( )的流體一般以殼程為宜,因在殼程Re>100即可達到湍流。但這不是絕對的,如流動阻力損失允許,將這類流體通入管內並採用多管程結構,亦可得到較高的表面傳熱系數。
f) 若兩流體溫差較大,對於剛性結構的換熱器,宜將表面傳熱系數大的流體通入殼程,以減小熱應力。
g) 需要被冷卻物料一般選殼程,便於散熱。
以上各點常常不可能同時滿足,應抓住主要方面,例如首先從流體的壓力、防腐蝕及清洗等要求來考慮,然後再從對阻力降低或其他要求予以校核選定。
◎ 流速的選擇
常用流速范圍流速的選擇
流體在管程或殼程中的流速,不僅直接影響表面傳熱系數,而且影響污垢熱阻,從而影響傳熱系數的大小,特別對於含有泥沙等較易沉積顆粒的流體,流速過低甚至可能導致管路堵塞,嚴重影響到設備的使用,但流速增大,又將使流體阻力增大。因此選擇適宜的流速是十分重要的。根據經驗,表4.7.1及表4.7.2列出一些工業上常用的流速范圍,以供參考。
表4.7.1 列管換熱器內常用的流速范圍流體種類流速 m/s管程殼程一般液體
宜結垢液體
氣 體0.5~0.3
>1
5~300.2~1.5
>0.5
3~15
表4.7.2 液體在列管換熱器中流速(在鋼管中)液體粘度 最大流速 m/s>1500
1000~500
500~100
100~53
35~1
>10.6
0.75
1.1
1.5
1.8
2.4◎ 流動方式的選擇
流動方式選擇流動方式的選擇
除逆流和並流之外,在列管式換熱器中冷、熱流體還可以作各種多管程多殼程的復雜流動。當流量一定時,管程或殼程越多,表面傳熱系數越大,對傳熱過程越有利。但是,採用多管程或多殼程必導致流體阻力損失,即輸送流體的動力費用增加。因此,在決定換熱器的程數時,需權衡傳熱和流體輸送兩方面的損失。
當採用多管程或多殼程時,列管式換熱器內的流動形式復雜,對數平均值的溫差要加以修正,具體修正方法見4.4節。
◎ 換熱管規格和排列的選擇
具體選擇 換熱管規格和排列的選擇
換熱管直徑越小,換熱器單位體積的傳熱面積越大。因此,對於潔凈的流體管徑可取小些。但對於不潔凈或易結垢的流體,管徑應取得大些,以免堵塞。考慮到製造和維修的方便,加熱管的規格不宜過多。目前我國試行的系列標准規定採用 和 兩種規格,對一般流體是適應的。此外,還有 ,φ57×2.5的無縫鋼管和φ25×2, 的耐酸不銹鋼管。
按選定的管徑和流速確定管子數目,再根據所需傳熱面積,求得管子長度。實際所取管長應根據出廠的鋼管長度合理截用。我國生產的鋼管長度多為6m、9m,故系列標准中管長有1.5,2,3,4.5,6和9m六種,其中以3m和6m更為普遍。同時,管子的長度又應與管徑相適應,一般管長與管徑之比,即L/D約為4~6。
管子的排列方式有等邊三角形和正方形兩種(圖4.7.11a,圖4.7.11b)。與正方形相比,等邊三角形排列比較緊湊,管外流體湍動程度高,表面傳熱系數大。正方形排列雖比較鬆散,傳熱效果也較差,但管外清洗方便,對易結垢流體更為適用。如將正方形排列的管束斜轉45°安裝(圖4.7.11c),可在一定程度上提高表面傳熱系數。
圖4.7.11 管子在管板上的排列
◎ 折流擋板
折流擋板間距的具體選擇折流擋板
安裝折流擋板的目的是為提高管外表面傳熱系數,為取得良好的效果,擋板的形狀和間距必須適當。
對圓缺形擋板而言,弓形缺口的大小對殼程流體的流動情況有重要影響。由圖4.7.12可以看出,弓形缺口太大或太小都會產生"死區",既不利於傳熱,又往往增加流體阻力。
a.切除過少b.切除適當 c.切除過多
圖4.7.12擋板切除對流動的影響
擋板的間距對殼體的流動亦有重要的影響。間距太大,不能保證流體垂直流過管束,使管外表面傳熱系數下降;間距太小,不便於製造和檢修,阻力損失亦大。一般取擋板間距為殼體內徑的0.2~1.0倍。我國系列標准中採用的擋板間距為:
固定管板式有100,150,200,300,450,600,700mm七種
浮頭式有100,150,200,250,300,350,450(或480),600mm八種。(2)流體通過換熱器時阻力的計算
換熱器管程及殼程的流動阻力,常常控制在一定允許范圍內。若計算結果超過允許值時,則應修改設計參數或重新選擇其他規格的換熱器。按一般經驗,對於液體常控制在104~105Pa范圍內,對於氣體則以103~104Pa為宜。此外,也可依據操作壓力不同而有所差別,參考下表。換熱器操作允許壓降△P換熱器操作壓力P(Pa)允許壓降△P<105 (絕對壓力)
0~105 (表壓)
>105 (表壓)0.1P
0.5P
>5×104 Pa◎ 管程阻力
管程阻力可按一般摩擦阻力計算式求得。
具體計算公式管程阻力損失
管程阻力損失可按一般摩擦阻力計算式求得。但管程總的阻力 應是各程直管摩擦阻力 、每程回彎阻力 以及進出口阻力 三項之和。而 相比之下常可忽略不計。因此可用下式計算管程總阻力損失 :
式中 每程直管阻力 ;
每程回彎阻力 ;
Ft-結構校正系數,無因次,對於 的管子,Ft=1.4,對於 的管子Ft=1.5;
Ns-串聯的殼程數,指串聯的換熱器數;
Np-管程數;
由此式可以看出,管程的阻力損失(或壓降)正比於管程數Np的三次方,即
∝
對同一換熱器,若由單管程改為兩管程,阻力損失劇增為原來的8倍,而強制對流傳熱、湍流條件下的表面傳熱系數只增為原來的1.74倍;若由單管程改為四管程,阻力損失增為原來的64倍,而表面傳熱系數只增為原來的3倍。由此可見,在選擇換熱器管程數目時,應該兼顧傳熱與流體壓降兩方面的得失。
◎ 殼程阻力
對於殼程阻力的計算,由於流動狀態比較復雜,計算公式較多,計算結果相差較大。
埃索法計算公式殼程阻力損失
對於殼程阻力損失的計算,由於流動狀態比較復雜,提出的計算公式較多,所得計算結果相差不少。下面為埃索法計算殼程阻力損失的公式:
式中 -殼程總阻力損失, ;
-流過管束的阻力損失, ;
-流過折流板缺口的阻力損失, ;
Fs-殼程阻力結垢校正系數,對液體可取Fs=1.15,對氣體或可凝蒸汽取Fs=1.0;
Ns-殼程數;
又管束阻力損失
折流板缺口阻力損失
式中 -折流板數目;
-橫過管束中心的管子數,對於三角形排列的管束, ;對於正方形排列的管束, , 為每一殼程的管子總數;
B-折流板間距,m;
D-殼程直徑,m;
-按殼程流通截面積或按其截面積 計算所得的殼程流速,m/s;
F-管子排列形式對壓降的校正系數,對三角形排列F=0.5,對正方形排列F=0.3,對正方形斜轉45°,F=04;
-殼程流體摩擦系數,根據 ,由圖4.7.13求出(圖中t為管子中心距),當 亦可由下式求出:
因 , 正比於 ,由式4.7.4可知,管束阻力損失 ,基本上正比於 ,即
∝
若擋板間距減小一半, 劇增8倍,而表面傳熱系數 只增加1.46倍。因此,在選擇擋板間距時,亦應兼顧傳熱與流體壓降兩方面的得失。同理,殼程數的選擇也應如此。
圖4.7.13 殼程摩擦系數f0與Re0的關系列管式換熱器的設計和選用(續)(3)列管式換熱器的設計和選用的計算步驟
設有流量為去qm,h的熱流體,需從溫度T1冷卻至T2,可用的冷卻介質入口溫度t1,出口溫度選定為t2。由此已知條件可算出換熱器的熱流量Q和逆流操作的平均推動力 。根據傳熱速率基本方程:
當Q和 已知時,要求取傳熱面積A必須知K和 則是由傳熱面積A的大小和換熱器結構決定的。可見,在冷、熱流體的流量及進、出口溫度皆已知的條件下,選用或設計換熱器必須通過試差計算,按以下步驟進行。
◎ 初選換熱器的規格尺寸
◆ 初步選定換熱器的流動方式,保證溫差修正系數 大於0.8,否則應改變流動方式,重新計算。
◆ 計算熱流量Q及平均傳熱溫差△tm,根據經驗估計總傳熱系數K估,初估傳熱面積A估。
◆ 選取管程適宜流速,估算管程數,並根據A估的數值,確定換熱管直徑、長度及排列。 ◎ 計算管、殼程阻力
在選擇管程流體與殼程流體以及初步確定了換熱器主要尺寸的基礎上,就可以計算管、殼程流速和阻力,看是否合理。或者先選定流速以確定管程數NP和折流板間距B再計算壓力降是否合理。這時NP與B是可以調整的參數,如仍不能滿足要求,可另選殼徑再進行計算,直到合理為止。
◎ 核算總傳熱系數
分別計算管、殼程表面傳熱系數,確定污垢熱阻,求出總傳系數K計,並與估算時所取用的傳熱系數K估進行比較。如果相差較多,應重新估算。
◎ 計算傳熱面積並求裕度
根據計算的K計值、熱流量Q及平均溫度差△tm,由總傳熱速率方程計算傳熱面積A0,一般應使所選用或設計的實際傳熱面積AP大於A020%左右為宜。即裕度為20%左右,裕度的計算式為:
換熱器的傳熱強化途徑如欲強化現有傳熱設備,開發新型高效的傳熱設備,以便在較小的設備上獲得更大的生產能力和效益,成為現代工業發展的一個重要問題。
依總傳熱速率方程:
強化方法:提高 K、A、 均可強化傳熱。
◎提高傳熱系數K
熱阻主要集中於 較小的一側,提高 小的一側有效。
◆ 降低污垢熱阻
◆ 提高表面傳熱系數
提高 的方法:
無相變化傳熱:
1) 加大流速;
2)人工粗造表面;
3)擾流元件。 有相變化傳熱:
蒸汽冷凝 :
1)滴狀冷凝,
2)不凝氣體排放,
3)氣液流向一致 ,
4)合理布置冷凝面,
5)利用表面張力 (溝槽 ,金屬絲)液體沸騰:
1)保持核狀沸騰,
2) 製造人工表面,增加汽化核心數。
◎ 提高傳熱推動力
加熱蒸汽P ,
◎ 改變傳熱面積A
關於傳熱面積A的改變,不以增加換熱器台數,改變換熱器的尺寸來加大傳熱面積A,而是通過對傳熱面的改造,如開槽及加翅片、以不同異形管代替光滑圓管等措施來加大傳熱面積以強化傳熱過程。
I. 換熱實驗 化工原理
換熱實驗中,抽氣速率管路特性泵的有效功率泵效率最大允許安裝高度風機全壓換算液體的攪拌攪拌目的均相液體的混合,多相物體 ( 液液,氣液,液固 ) 的分散和接觸,強化傳熱。攪拌器按工作原理分類攪拌器按工作原理可分為旋槳式,渦輪式兩大類。旋槳式大流量,低壓頭;渦輪式小流量,高壓頭。混合效果攪拌器的混合效果可以用調勻度、分隔尺度來度量。宏觀混合總體流動是大尺度的宏觀混合;強烈的湍動或強剪切力場是小尺度的宏觀混合。微觀混合只有分子擴散才能達到微觀混合。總體流動和強剪切力場雖然本身不是微觀混合,但是可以促進微觀混合,縮短分子擴散的時間。攪拌器的兩個功能產生總體流動;同時形成湍動或強剪切力場。改善攪拌效果的工程措施改善攪拌效果可採取增加攪拌轉速、加擋板、偏心安裝攪拌器、裝導流筒等措施。流體通過顆粒層的流動非球形顆粒的當量直徑球形顆粒與實際非球形顆粒在某一方面相等,該球形的直徑為非球形顆粒的當量直徑,如體積當量直徑、面積當量直徑、比表面積當量直徑等。形狀系數等體積球形的表面積與非球形顆粒的表面積之比。分布函數小於某一直徑的顆粒占總量的分率。頻率函數某一粒徑范圍內的顆粒占總量的分率與粒徑范圍之比。