Ⅰ 中科大滲流實驗室的介紹
中國科學技術大學是集前沿科學與高新技術相結合的全國重點大學,以為代表的研究團隊,緊密圍繞我國石油勘探與開發中的力學問題開展基礎研究,研製開發了一系列石油勘探與開發專用軟體。這些軟體在國內許多油田得到廣泛使用,部分軟體在海外油田使用,1983年成立滲流力學實驗室,與石油大學等一起承擔我國第一代試井分析軟體的研製與開發任務,並在此後的數年李連續獲得多個國內外的大獎。
Ⅱ 實驗Ⅱ 滲流槽剖面二維流實驗
一、實驗目的
1.觀察有入滲補給條件下潛水二維穩定流的滲流現象及特徵。
2.求降雨入滲強度W值,並和實測值進行比較。
3.求含水層的滲透系數K值。
二、實驗裝置
圖Ⅱ-1為二維滲流砂槽示意圖,其長為380cm,寬50cm,槽內裝有均勻的砂,頂部設有模擬降雨裝置,由轉子流量計(M)測定總降雨量。
砂槽的兩端裝有活動的溢水裝置,分別用來穩定河A和河B的水位,升、降可以控制兩側水位的高低,並通過進水閥門K控制供水水源。
圖Ⅱ-1 二維滲流實驗裝置示意圖
槽底和後壁面沿流向按一定間距設有多組測壓管(水平方向共24組,編號依次是A,B,C,…,W,X;每組鉛直斷面6個測點,編號依次為1,2,3,4,5,6)。用軟管連接測壓管孔和測壓管板,可以測定滲流場中144個點的測壓水頭。
三、實驗步驟
(1)領取量筒和秒錶。
(2)檢查並排除測壓管內可能存在的氣泡。
(3)觀察有入滲補給、兩河水位相等(HA=HB)條件下,河間地塊分水嶺的位置及潛水面的形狀。
(4)測定向河流的排泄量(用體積法),以求得W值。
(5)由轉子流量計(M)讀降雨量QM。
(6)升降溢水裝置A或B,使HA>HB(高差不要太大),觀察測壓管水位變化及分水嶺移動情況,待穩定後記錄各測壓管讀數。
(7)重復步驟(4)和步驟(5)。
四、實驗成果
1.實驗數據記錄
含水層寬度B= cm,長度L= cm,面積A= cm2,底板高程Z0= cm。其他數據記入表Ⅱ-1,表Ⅱ-2,表Ⅱ-3。
2.數據計算(選擇合適的公式和數據進行計算,結果填入表Ⅱ-4)。
表Ⅱ-1 實驗Ⅱ綜合數據記錄表
表Ⅱ-2 實驗Ⅱ測壓水頭記錄表(HA>HB)
續表
表Ⅱ-3 實驗Ⅱ測壓水頭記錄表(HA=HB)
註:表頭為測壓管編號,括弧內數據表示測點到坐標零點的距離;x以A河右壁為零點,Z以含水層底板為零點。
表Ⅱ-4 實驗Ⅱ數據計算成果表
3.在方格紙上繪制實測潛水面、計算潛水面以及剖面流網。
4.問題討論
(1)同一鉛直面上,各測壓管水頭是否相等?試用流網分析為什麼?
(2)分析計算的W值的誤差來源?
(3)進行步驟(6)時,假如使兩側河流水位高差很大時,滲流可能出現什麼現象?
(4)實驗裝置中A,B,…,W,X共24根測壓管沿流向布置;1~6的6根沿鉛直方向布置,表Ⅱ-2,表Ⅱ-3所記錄的測壓管讀數中,哪一排讀數的連線最接近潛水面?
(5)試分析計算的分水嶺位置a和觀測的分水嶺位置a數值不一致的原因。
(6)在以上計算中,選哪些斷面、哪些測壓管的數據,計算結果最符合實際?
五、試驗性實驗設計參考
(1)分段降雨條件下的剖面二維滲流實驗。調節降雨進水閥,形成分段降雨穩定入滲條件,觀察兩河水位相等條件下,河間地塊分水嶺位置、潛水面形狀、水頭分布及流網特徵等。
(2)河岸出滲面及地表徑流的觀測。調節降雨進水閥逐漸加大或減小降雨強度,觀察不同降雨條件下地表產流情況及河岸出滲面現象。
Ⅲ 達西滲流定律的達西定律
達西在1856年通過了大量的實驗研究,總結得出滲流能量損失與滲流速度之間的關系,即達西定律。
達西定律:
達西實驗裝置如圖所示。圓筒橫斷面積為A,其中充填均勻的砂粒,砂層厚度為l,由金屬網支托。水由穩壓水箱經水管A流入圓筒中,再經砂層滲濾後由出水管B流出。其流量由量筒C量測,在砂層上下兩端裝測壓管以量測滲流的水頭損失。由於滲流流速極小,所以流速水頭可以忽略不計,總水頭可用測壓管水頭來表示,水力坡度可以用測壓管坡度來表示:
達西分析了大量實驗資料,得到圓筒內的滲流量Q與圓筒橫斷面積A和水力坡度J成正比,並和砂層的透水性能有關。達西建立的基本關系為:Q=kAJ,也可以寫成V=Q/A=kJ,式中 k為滲流系數,反映了土壤的透水性能。
實驗發現,隨著雷諾數Re的增加,多孔介質(砂層)中的流動狀態經歷三個區域:①線性層流區:粘性力占優勢,達西定律成立,上限約在Re=10左右;②非線性層流區(過渡區):為主要被慣性力制約的層流,達西定律不成立,上限約在Re=100左右,在上限附近開始有層流到湍流的過渡;③湍流區:慣性力占優勢,達西定律不成立。由此可見,從上限雷諾數方面偏離達西定律與層流到湍流的過渡不是完全等價的。
在滲流速度很低時,流體與介質間的表面分子力作用顯得更為重要。部分液體的滯流現象使孔隙度發生變化,從而引起滲透率的相應變化。實驗表明,這時孔隙度和滲透率均隨滲流速度的增加而增加,速度到某一臨界值後不再變化,因此不遵循達西定律。
在雷諾數大於上限Re數的情況下,應該用「滲流的二項式定律」代替達西定律,即
,
式中A、B為決定於流體和介質性質的常數。
在雷諾數小於下限Re數情況下,非線性滲流定律的一般形式可寫為:
式中f(J)為小雷諾數情況下滲透率隨水力坡度的變化函數關系,由實驗確定。
以上主要是單相流體達西滲流定律;對於多相流體,達西定律對每一相仍然成立,只需將滲透率修正為該相的相滲透率即可。
Ⅳ 達西滲流實驗中為什麼在測壓管穩定後測流量
測得流量結果准確可信
您好!
您提出的問題,我的答案已經給出,請您瀏專覽一遍!
有什麼不屬懂的地方歡迎回復我!
希望我的答案對您有所幫助!
如果滿意請及時點擊【採納為滿意答案】按鈕
若是客戶端的朋友在右上角評價點【滿意】
您的採納!
是我答題的動力
也同時給您帶來知識和財富值
O(∩_∩)O謝謝您!!!
Ⅳ 實驗二 達西滲流實驗
一、實驗目的
1. 通過穩定流滲流實驗,進一步理解滲流基本定律———達西定律。
2. 加深理解滲透流速、水力梯度、滲透系數之間的關系,並熟悉實驗室測定滲透系數的方法。
二、實驗內容
1. 了解達西實驗裝置與原理。
2. 測定 3 種砂礫石試樣的滲透系數。
3. 設計性實驗: 橫卧變徑式達西滲流實驗。
三、達西儀實驗原理
達西公式的表達式如下:
水文地質學基礎實驗實習教程
式中: Q 為滲透流量; K 為滲透系數; A 為過水斷面面積; ΔH 為上、下游過水斷面的水頭差; L 為滲透途徑; I 為水力梯度。
式中各項水力要素可以在實驗中直接測量,利用達西定律即可求取試樣的滲透系數 (K) 。
四、實驗儀器和用品
1. 達西儀 (見圖Ⅰ2-1) 。
2. 試樣: ①礫石 (粒徑為 5 ~ 10 mm) ; ②粗砂 (粒徑為 0. 6 ~ 0. 9 mm) ; ③砂礫混合 (試樣①與試樣②的混合樣) 。
3. 秒錶。
4. 量筒 (100 mL,500 mL 各 1 個) 。
5. 計算器。
6. 水溫計。
圖Ⅰ2-1 達西儀裝置圖
五、實驗步驟
1.測量儀器的幾何參數(實驗教員准備)。分別測量過水斷面的面積(A),測壓管a、b、c的間距或滲透途徑(L),記入表格「實驗二達西滲流實驗記錄表」中。
2.調試儀器。打開進水開關,待水緩慢充滿整個試樣筒,且出水管有水流出後,慢慢擰動進水開關,調節進水量,使a、c兩測壓管讀數之差最大;同時注意打開排氣口,排盡試樣中的氣泡,使測壓管a、b的水頭差與測壓管b、c的水頭差相等(實驗教員准備,學生檢查)。
3.測定水頭。待a、b、c三個測壓管的水位穩定後,讀出a、c兩個測壓管的水頭值(分別記為Ha和Hc),記入實驗記錄表中。
4.測定流量。在進行步驟3的同時,利用秒錶和量筒測量t時間內出水管流出的水體積,及時計算流量(Q)。連測兩次,使流量的相對誤差小於5% ,取平均值記入實驗記錄表。
5.由大到小調節進水量,改變a、b、c三個測壓管的讀數,重復步驟3~4。
6.重復第5步驟2~4次,即完成3~5次試驗,取得某種試樣3~5組數據。
7.換一種試樣,選擇另外一台儀器重復上述步驟3~6進行實驗,將結果記入實驗記錄表中。
8.按記錄表計算實驗數據,並抄錄其他實驗小組不同試樣的實驗數據(有條件的,可用3種試樣做實驗)。
9.實驗中應注意的問題。
1)實驗過程中要及時排除氣泡。
2)為使滲透流速-水力梯度(v-I)曲線的測點分布均勻,流量(或水頭差)的變化要控制合適。
六、實驗成果
1.提交實驗報告表,即達西滲流實驗記錄表。
2.在同一坐標系內繪出3種試樣的v-I曲線(實驗二用紙),並分別用這些曲線求出滲透系數(K),與根據實驗記錄表中的實驗數據計算結果進行對比。
七、思考題(任選2題回答)
1)為什麼要在測壓管水位穩定後測定流量?
2)討論3種試樣的v-I曲線是否符合達西定律?試分析其原因。
3)將達西儀平放或斜放進行實驗時,結果是否相同?為什麼?
4)比較不同試樣的K值,分析影響滲透系數(K)的因素。
水文地質學基礎實驗實習教程
實驗二 達西滲流實驗記錄表
水文地質學基礎實驗實習教程
實驗一用紙
實驗二用紙
附 設計性實驗
橫卧變徑式達西滲流實驗
一、實驗目的
1. 測定穩定流、變過水斷面條件下砂性土的滲透系數。
2. 通過實驗加深對穩定流條件下達西定律的理解,加深理解滲透流速、過水斷面、水力梯度和滲透系數之間的關系。
二、設計性實驗內容 (供參考)
1. 將兩個砂樣柱裝同一種砂樣,求取砂樣的滲透系數。
2. 將兩個砂樣柱分別裝兩種砂樣,求取兩種砂樣的滲透系數。
三、實驗儀器與用品
1. 橫卧變徑式達西滲流儀 (圖Ⅰ2-2) 。
2. 不同粒徑的砂樣。
圖Ⅰ2-2 橫卧變徑式達西滲流儀裝置圖
四、橫卧變徑式達西滲流儀簡介
本儀器主體結構包括橫卧變徑式有機玻璃試樣柱兩個,可升降的供水裝置以及測壓板。每一個試樣柱上設有兩個測壓點與測壓板相連,可以測定試樣土層對應點的測壓水頭,了解同一砂樣柱或不同砂樣柱的水力梯度變化特徵。儀器通過升降裝置可調節供水裝置 (穩定供水箱) 水位,通過進水開關控制流量大小。
五、設計實驗要求
1. 查閱相關文獻,實驗前詳細地寫出一種砂性土滲透系數測量的實驗方案。
2. 根據實驗方案設計實驗記錄表格,要求表達直觀,內容齊全,有利於計算分析。
3. 根據設計方案自己動手裝樣與實驗,實驗中詳細記錄實驗步驟、數據和現象。
4. 對實驗數據、計算結果和觀察到的現象進行必要的討論,並撰寫實驗報告。報告內容包括: 實驗目的、實驗原理、實驗內容、實驗步驟、實驗注意事項、實驗成果。
Ⅵ 實驗二 達西滲透實驗
1.實驗目的
1)通過穩定流條件下的滲透實驗,進一步加深理解線性滲透定律———達西定律。
2)加深理解滲透流速(v)、水力坡度(I)、滲透系數(K)之間的關系,並熟悉實驗室測定滲透系數(K)的方法。
2.實驗內容
1)了解達西滲透實驗裝置(圖B-2、圖B-3)。
2)驗證達西滲透定律。
3)測定不同試樣的滲透系數。
3.實驗原理
在岩石空隙中,由於水頭差的作用,水將沿著岩石的空隙運動。由於空隙的大小不同,水在其中運動的規律也不相同。實踐證明,在自然界絕大多數情況下,地下水在岩石空隙中的運動服從線性滲透定律:
圖B-2 達西儀裝置圖(底部進水)
水文地質學概論
式中:Q為滲透流量,m3/d或cm3/s;K為滲透系數,m/d或cm/s;ω為過水斷面面積,m2或cm2;Δh為上、下游過水斷面的水頭差,m或cm;L為滲透途徑的長度,m或cm;I為水力坡度(或稱水力梯度), ;v為滲透流速,m/d或cm/s。
利用該實驗可驗證達西線性滲透定律:Q=KωI或v=KI。其主要內容為:流量(Q)(或v)與水力坡度(I)的一次方成正比。在實驗時多次調整水力坡度(改變水頭),看其流量(Q)(或v)的變化是否與水力坡度一次方成正比關系。
實驗時,可直接測定流量(Q)、過水斷面面積(ω)和水力坡度(I),從而可求出滲透系數(K)值
室內測定滲透系數,主要採用達西儀。其實驗方法有兩種:①達西儀由底部供水,出水口在上部(圖B-2)。實驗過程中,低水頭固定,調節高水頭;②達西儀是由頂部供水,水流經砂柱,由下端流出(圖B-3)。實驗過程中,高水頭固定,調節低水頭,即調節排水口的高低位置。由底部供水的優點是容易排出試樣中的氣泡,缺點是試樣易被沖動。由頂部供水的優缺點與前一種正好相反。本實訓以頂部供水的達西儀為例進行介紹。
4.實驗儀器及用品
1)達西儀(圖B-3)。
2)量筒(500mL)1個。
3)秒錶。
圖B-3 達西儀裝置圖(頂部進水)(編號說明見圖B-2)
4)搗棒。
5)試樣:①礫石(粒徑5~10mm);②砂(粒徑0.6~0.9mm);③砂礫混合(①與②混合)樣。
5.實驗步驟
(1)實驗前的准備工作
1)測量:分別測量金屬圓筒的內徑(d),根據 計算出過水斷面面積(ω)和各測壓管的間距或滲透途徑(L),將所得ω、L數據填入表B-2中。
2)裝樣:先在金屬圓筒底部金屬網上裝2~3cm厚的小砂石(防止細粒試樣被水沖走),再將欲實驗的試樣分層裝入金屬圓筒中,每層3~6cm厚,搗實,使其盡量接近天然狀態的結構,然後自上而下進行注水(排水管2和水源5連接),使砂逐漸飽和,但水不能超出試樣層面,待飽和後,停止注水。如此繼續分層裝入試樣並飽和,直至試樣高出上測壓管孔3~4cm為止,在試樣上再裝厚3~4cm小礫石作緩沖層,防止沖動試樣。
3)調試儀器:在每次試驗前,先給試樣注水,使試樣全部飽水(此時溢水管7有水流出)待滲流穩定後,停止注水。然後檢查3個測壓管中水面與金屬圓筒溢水面是否保持水平,如水平,說明管內無氣泡,可做實驗。如不水平,說明管內有氣泡,需排出。排氣泡的方法是用吸耳球對准水頭偏高的測壓管緩慢吸水,使管內氣泡和水流一起排出。用該方法使3個測壓管中水面水平,此時儀器方可進行實驗。
以上工作也可由實驗室教師在實驗課前完成。
(2)正式進行實驗
1)測定水頭:把水源5與排水管2分開,將排水管2放在一定高度上,打開水源5使金屬圓管內產生水頭差,水在試驗中從上往下滲透,並經排水口流出,此時溢水管7要有水溢出(保持常水頭)。當3個測壓管水頭穩定後,測得各測壓管的水頭,並計算出相鄰兩測壓管水頭差,填入表B-2中。
2)測定流量:在進行上述步驟的同時,利用秒錶和量筒測量時間(t)內排水管流出的水體積,及時計算流量(Q)。連續兩次,使流量的相對誤差小於5%(相對誤差(δ)= ,Q1、Q2分別為兩次實驗流量值,取平均值填入表B-2中。
表B-2 達西滲流實驗報告表
3)按由高到低或由低到高的順序,依次調節排水管口的高度位置,改變Ⅰ、Ⅱ、Ⅲ3個測壓管的水頭管讀數。重復步驟1和2,做2~4次,即完成3~5次實驗,取得3~5組實驗數據。
實驗過程中注意:①實驗過程中要及時排除氣泡,並保持常水頭;②為准確繪制v-I曲線,要求測點分布均勻,即流量(水頭差)的變化要控制適度。
(3)資料整理
依據以上實驗數據,按達西公式計算出滲透系數值,並求出其平均值,填入表B-2中。
6.實驗成果
1)提交實驗報告(表B-2)。
2)抄錄其他小組另外兩種不同試樣的實驗數據(有時間時,可自己動手做)。在同一坐標系內,以v(滲透流速)為縱坐標,I(水力坡度)為橫坐標,繪出3種試樣的v-I曲線,驗證達西定律。
復習思考題
1.當試樣中水未流動時,3個測壓管的水頭與溢水口水面保持在同一高度,為什麼?
2.為什麼要在測壓管水頭穩定後再測定流量?
3.三種試樣的v-I曲線是否符合達西定律?試分析其原因。
4.比較不同試樣的滲透系數(K)值,分析影響K值的因素?
5.在實驗過程中為什麼要保持常水頭?
6.將達西儀平放或斜放進行實驗時,其實驗結果是否相同?為什麼?
Ⅶ 達西滲流實驗中為什麼在測壓管穩定後測流量
達西滲流定律流體在多孔介質內運動的基本規律,也是從宏觀角度描述滲流過程的統計規律,這個定律是1856年法國水利工程師達西為解決水的凈化問題從大量實驗中總結出來的。
達西在1856年通過了大量的實驗研究,總結得出滲流能量損失與滲流速度之間的關系,即達西定律。
達西定律:
滲流的達西定律
滲流的達西定律
達西實驗裝置如圖所示。圓筒橫斷面積為A,其中充填均勻的砂粒,砂層厚度為l,由金屬網支托。水由穩壓水箱經水管A流入圓筒中,再經砂層滲濾後由出水管B流出。其流量由量筒C量測,在砂層上下兩端裝測壓管以量測滲流的水頭損失。由於滲流流速極小,所以流速水頭可以忽略不計,總水頭可用測壓管水頭來表示,水力坡度可以用測壓管坡度來表示:
達西分析了大量實驗資料,得到圓筒內的滲流量Q與圓筒橫斷面積A和水力坡度J成正比,並和砂層的透水性能有關。達西建立的基本關系為:Q=kAJ,也可以寫成V=Q/A=kJ,式中 k為滲流系數,反映了土壤的透水性能。
實驗發現,隨著雷諾數Re的增加,多孔介質(砂層)中的流動狀態經歷三個區域:①線性層流區:粘性力占優勢,達西定律成立,上限約在Re=10左右;②非線性層流區(過渡區):為主要被慣性力制約的層流,達西定律不成立,上限約在Re=100左右,在上限附近開始有層流到湍流的過渡;③湍流區:慣性力占優勢,達西定律不成立。由此可見,從上限雷諾數方面偏離達西定律與層流到湍流的過渡不是完全等價的。
在滲流速度很低時,流體與介質間的表面分子力作用顯得更為重要。部分液體的滯流現象使孔隙度發生變化,從而引起滲透率的相應變化。實驗表明,這時孔隙度和滲透率均隨滲流速度的增加而增加,速度到某一臨界值後不再變化,因此不遵循達西定律。
在雷諾數大於上限Re數的情況下,應該用「滲流的二項式定律」代替達西定律,即式中A、B為決定於流體和介質性質的常數。在雷諾數小於下限Re數情況下,非線性滲流定律的一般形式可寫為:
式中f(J)為小雷諾數情況下滲透率隨水力坡度的變化函數關系,由實驗確定。
以上主要是單相流體達西滲流定律;對於多相流體,達西定律對每一相仍然成立,只需將滲透率修正為該相的相滲透率即可。