A. 數控機床對位置檢測裝置的要求有哪些 詳細
直接測量和間接測量
1.直接測量
直接測量是將檢測裝置直接安裝在執行部件上,如光柵、感應同步器等用來直接測量工作台的直線位移,位置檢測裝置安裝在執行部件(即末端件)上直接測量執行部件末端件的直線位移或角位移,可以構成閉環進給伺服系統。測量方式有直線光柵、直線感應同步器、磁柵、激光干涉儀等測量執行部件的直線位移。由於此種檢測方式是採用直線型檢測裝置對機床的直線位移進行測量,因此,其優點是直接反映工作台的直線位移量;缺點是要求檢測裝置與行程等長,對大型的數控機床來說,這是一個很大的限制。
2.間接測量
間接測量裝置是將檢測裝置安裝在滾珠絲杠或驅動電動機軸上,通過檢測轉動件的角位移來間接測量執行部件的直線位移。
位置檢測裝置安裝在執行部件前面的傳動元件或驅動電動機軸上,測量其角位移,經過傳動比變換以後才能得到執行部件的直線位移量,這樣可以構成閉環伺服進給系統,如將脈沖編碼器裝在電動機軸上。
間接測量使用可靠、方便,無長度限制;其缺點是,在檢測信號中加入了直線轉變為旋轉運動的傳動鏈誤差,從而影響測量精度。一般需對數控機床的傳動誤差進行補償,才能提高定位精度。
除了以上位置檢測裝置,伺服系統中往往還包括檢測速度的元件,用以檢測和調節發動機的轉速。常用的元件是測速發電機。
位置檢測裝置是數控機床伺服系統的重要組成部分。它的作用是檢測位移和速度,發送反饋信號,構成閉環或半閉環控制。數控機床的加工精度主要由檢測系統的精度決定。不同類型的數控機床,對位置檢測元件,檢測系統的精度要求和被測部件的最高移動速度各不相同。現在檢測元件與系統的最高水平是:被測部件的最高移動速度高至240m/min時,其檢測位移的解析度(能檢測的最小位移量)可達1μm,如24m/min時可達0.1μm。最高解析度可達到 0.01μm。
數控機床對位置檢測裝置有如下要求:
(1)受溫度,濕度的影響小,工作可靠,能長期保持精度,抗干擾能力強。
(2)在機床執行部件移動范圍內,能滿足精度和速度的要求。
(3)使用維護方便,適應機床工作環境。
(4)成本低。
B. 數控機床位置檢測裝置的分類是什麼#數控機床
C. 檢測裝置的分類
增量式檢測方式只測量位移增量,每移動一個測量單位就發出一個測量信號。其優點是檢測裝置比較簡單,任何一個對中點都可以作為測量起點。移動距離是靠對測量信號計數後讀出的,一旦計數有誤,此後的測量結果將全錯。另外在發生故障時(如斷電等)不能再找到事故前的正確位置,事故排除後,必須將工作台移至起點重新計數才能找到事故前的正確位置。
絕對值式測量方式可以避免上述缺點,它的被測量的任一點的位置都以一個固定的零點作基準,每一被測點都有一個相應的測量值。採用這種方式,解析度要求愈高,結構也愈復雜。 數字式檢測是將被測量單位量化以後以數字形式表示,它的特點是:
①被測量量化後轉換成脈沖個數,便於顯示處理;
②測量精度取決於測量單位,與量程基本無關;
③檢測裝置比較簡單,脈沖信號抗干擾能力強。
模擬式檢測是將被測量用連續的變數來表示。在大量程內作精確的模擬式檢測在技術上有較高要求,數控機床中模擬式檢測主要用於小量程測量。它的主要特點是:
①直接對被測量進行檢測,無須量化;
②在小量程內可以實現高精度測量;
③可用於直接檢測和間接檢測。
對機床的直線位移採用直線型檢測裝置測量,稱為直接檢測。其測量精度主要取決於測量元件的精度,不受機床傳動精度的直接影響。但檢測裝置要與行程等長,這對大型數控機床來說,是一個很大的限制。
對機床的直線位移採用回轉型檢測元件測量,稱為間接測量。間接檢測可靠方便,無長度限制,缺點是在檢測信號中加大了直線轉變為旋轉運動的傳動鏈誤差,從而影響檢測精度。因此,為了提高定位精度,常常需要對機床的傳動誤差進行補償。
D. 常用位置檢測裝置是如何進行分類的
常用位置檢測裝置分為位移、速度和電流三品種型。按安裝的位置及耦合右式分為間接丈量和間接丈量;按丈量方式分為增量式和絕對式;按檢測信號的類型分為模仿式和數字式;按活動體例分為反轉展轉式和直線式檢測安裝;按信號轉換的原型可分為光電效應、光柵效應、電磁感應道理、電壓效應、電阻效應和磁阻效應等類檢測安裝。數控機床中採用的位置檢測安裝根基分為直線式和扭轉式兩大類。直線式位置檢測安裝用來檢測活動部件的直線位移量;扭轉式位置檢測安裝用來檢測反轉展轉部件的動彈位移量。
(1)數字式和模仿式檢測。從檢測信號的類型來分,檢測元件可分為數字式和模仿式。統一種檢測元件既能夠做成數字式,也能夠做成模仿式,次要取決於利用體例和丈量線路。所謂數字式是指將機械位移量改變為數字脈沖的丈量安裝,而模仿式是指將機械位移量改變為電壓幅值或相位的丈量安裝。
(2)增量式和絕對式檢測。從丈量的體例來分,檢測元件可分為增量式和絕對式。增量式檢測的是相對位移量,即位移的增量值,工作台挪動的距離是靠對丈量信號的計數後給出的。所以,數控機床上往往要給出一個固定的參考點,增量式檢測元件就是反映相對此參考點的增量值。增量式安裝比力簡單,使用較廣。
絕對式檢測的是位移的絕對位置,每一被測點均有一個響應的信號作為丈量值。檢測沒有累積誤差,一旦堵截電源後位相信息也不丟失,但布局復雜。
(3)扭轉型和直線型。就檢測元件的本身來分,可分為扭轉型和直線型。扭轉型也稱間接檢測,因為機床工作台的直線位移與驅動電動機的扭轉角度有固定的比例關系,因而,能夠採用檢測驅動電動機的扭轉角度來間接測得工作台的挪動量,由此所形成的位置檢測系統是半閉環節制系統。扭轉型無檢測長度的限制,利用便利靠得住。但丈量信號插手了直線活動改變為扭轉活動的傳動鏈誤差,丈量精度略低些。
直線型也稱間接檢測,就是對機床工作台的直線挪動採用間接直線檢測,直觀地反映其位移量,其所形成的位置檢測系統是全閉環節制系統,其檢測安裝要與行程等長。對於大型數控機床來說,遭到了必然限制,常用於精度要求較高的中小型數控機床上。
E. 位置檢測裝置的種類和它們分別安裝在機床哪些部位
位置檢測裝置
一、位置檢測裝置的分類和要求
位置檢測裝置是閉環進給伺服系統的重要組成部分,其精度在很大程度上由位置檢測裝置的進度決定。現在,檢測元件與系統的最高水平:被測部件的最高移動速度240m/min時,檢測位移解析度1um;24m/min時,解析度0.1um;最高解析度可達0.01um。
對位置檢測裝置的要求:
1) 受溫度、濕度的影響小,工作可靠,能長期保持精度,抗干擾能力強;
2) 在機床執行部件移動范圍內,能滿足精度和速度要求;
3) 使用維護方便,適應機床工作環境。
4) 成本低。
(一)數字式和模擬式測量(所獲得的信號不同)
1.數字式測量
將被測量以數字的方式表示。測量信號一般為電脈沖,可直接送到數控裝置進行比較處理和顯示。這樣的檢測裝置有:光柵檢測裝置、脈沖編碼器。裝置比較簡單,抗干擾能力強。
2.模擬式測量
將被測量用連續變數表示。如:電壓的幅值變化、相位變化。對相位變化的量可直接送數控裝置與移相的指令電壓進行比較,對幅值變化的量,可先將其轉換為數字脈沖信號,再送數控裝置進行比較和顯示。這類裝置有:旋轉變壓器、感應同步器。
(二)增量式和絕對式測量(測量方式不同)
1.增量式測量
只測出位移的增量,並用數字脈沖的個數來表示單位位移的數量。
由於位移的距離是由增量值累積求得,所以,一旦某處測量有誤,則其後所得的位移距離都是錯誤的。
由於不能指示絕對坐標位置,當因事故斷電停機檢查,執行部件的位置發生變化後,不能由檢修後的位置直接回到停機時的原位,而要先回到加工程序的起始位置,並計算出起點到停機位置的距離,才能用位移指令,令執行部件移回停機時的位置,以便繼續加工。光柵、脈沖編碼器、旋轉變壓器、感應同步器、磁尺都是增量式檢測裝置。
2.絕對式測量
能測出被測部件在某一絕對坐標系中的絕對坐標值,並以二進制或二十進制數碼信號表示。需要轉換成脈沖數字信號才能送去比較和顯示。有:絕對式脈沖編碼盤、三速式絕對編碼盤。結構復雜,解析度與位移量都受限制。
此外,根據安裝測量位置,有直接測量和間接測量。
F. 位置檢測裝置的主要性能指標包括哪些內容
粘度、抗磨性、抗極壓性、閃點、傾點、抗氧化性、抗乳化性等。
檢測和判斷這些指標,用肉眼是很難的。應該到專業的檢測機構去檢測,如當地的質檢局。
G. 簡述位置檢測裝置在數控機床中的作用和重要性,常用的類型有哪些
這個我 不懂
H. 測量檢具如何分類,針對這些分類都進行哪些方面和方法的測量系統分析
成本:
檢具測量的一次性投資成本低於三坐標測量的投資,
但是如果從長遠考慮,三坐標測量的成本會低於檢具測量.檢具測量需要對所有的測量對象製作檢具,而且是針對車型的一次性投資.而三坐標測量結合柔性夾具,雖然初始投資較大,而且有一定的日常維護費用.但是長遠考慮還是有價格優勢的就不做了.
價格一項
三坐標勝
柔性:
檢具是針對零件/總成的特殊測量設備,沒有柔性.三坐標結合柔性夾具可以對幾乎所有的零件總成進行測量.柔性非常好.
柔性一項
三坐標勝
測量便利性:
檢具的測量便利性非常好,三坐標與柔性夾具配合,教差.
測量便利性
檢具勝
測量精度:
檢具的製造精度一般比較好的也就是+/-0.15(孔,銷)
~
+/-0.2(面)
,
配合游標卡尺級別的測量工具,測量的精度最多達到
+/-0.1的級別.
而三坐標(普通級別,測量精度可以達到
+/-0.05.
測量精度一項
三坐標勝
但三座標成本一項,除了三座標設備本身的投資外,還需要考慮檢測支架的投資,畢竟絕大部分的零件柔性還是比較大的(機加工零件除外),需要支架幫助定位及測量。
雖然檢測支架的結構會比檢具簡單很多,投資也節省很多,但支架的存在模式與檢具仍然很類似,這種投資不僅增加了三座標的成本,同時也一定程度影響其測量柔性。
一般要求的檢具是在線測量的快速判斷零件質量的檢驗量具。在離線測量時又是零件的三坐標測量支架,可以方便獲得零件及與車身系統精確的坐標值。
檢具可以檢查以下特性:關鍵產品特性檢查、特性線檢查、功能孔檢查、裝配過程易於產生較大變形的區域檢測、用於樣車組裝、生產前期功能匹配檢測。
尤其是匹配檢測的功能更貼近工程調試和整車製造,三坐標和柔性支架是完全不能勝任的。相對而言,整車匹配檢具造價也是非常昂貴的,目前國內工藝裝備廠家尚未完全掌握這項技術。對於單個零件的校核是檢具與三坐標並用。對於整車生產廠來說,整合設備的優勢、人力資源的優勢、配套資源的優勢,以高的質量保證和分析能力,相對地的投入為原則。