① 什麼是超聲波是干什麼用的
超聲波
我們知道,當物體振動時會發出聲音。科學家們將每秒鍾振動的次數稱為聲音的頻率,它的單位是赫茲。我們人類耳朵能聽到的聲波頻率為20~20,000赫茲。因此,當物體的振動超過一定的頻率,即高於人耳聽閾上限時,人們便聽不出來了,這樣的聲波稱為「超聲波」。通常用於醫學診斷的超聲波頻率為1~5兆赫。超聲波具有方向性好,穿透能力強,易於獲得較集中的聲能,在水中傳播距離遠等特點。可用於測距,測速,清洗,焊接,碎石等
雖然說人類聽不出超聲波,但不少動物卻有此本領。它們可以利用超聲波「導航」、追捕食物,或避開危險物。大家可能看到過夏天的夜晚有許多蝙蝠在庭院里來回飛翔,它們為什麼在沒有光亮的情況下飛翔而不會迷失方向呢?原因就是蝙蝠能發出2~10萬赫茲的超聲波,這好比是一座活動的「雷達站」。蝙蝠正是利用這種「雷達」判斷飛行前方是昆蟲,或是障礙物的。
我們人類直到第一次世界大戰才學會利用超聲波,這就是利用「聲納」的原理來探測水中目標及其狀態,如潛艇的位置等。此時人們向水中發出一系列不同頻率的超聲波,然後記錄與處理反射回聲,從回聲的特徵我們便可以估計出探測物的距離、形態及其動態改變。醫學上最早利用超聲波是在1942年,奧地利醫生杜西克首次用超聲技術掃描腦部結構;以後到了60年代醫生們開始將超聲波應用於腹部器官的探測。如今超聲波掃描技術已成為現代醫學診斷不可缺少的工具。
醫學超聲波檢查的工作原理與聲納有一定的相似性,即將超聲波發射到人體內,當它在體內遇到界面時會發生反射及折射,並且在人體組織中可能被吸收而衰減。因為人體各種組織的形態與結構是不相同的,因此其反射與折射以及吸收超聲波的程度也就不同,醫生們正是通過儀器所反映出的波型、曲線,或影象的特徵來辨別它們。此外再結合解剖學知識、正常與病理的改變,便可診斷所檢查的器官是否有病。
目前,醫生們應用的超聲診斷方法有不同的形式,可分為A型、B型、M型及D型四大類。
A型:是以波形來顯示組織特徵的方法,主要用於測量器官的徑線,以判定其大小。可用來鑒別病變組織的一些物理特性,如實質性、液體或是氣體是否存在等。
B型:用平面圖形的形式來顯示被探查組織的具體情況。檢查時,首先將人體界面的反射信號轉變為強弱不同的光點,這些光點可通過熒光屏顯現出來,這種方法直觀性好,重復性強,可供前後對比,所以廣泛用於婦產科、泌尿、消化及心血管等系統疾病的診斷。
M型:是用於觀察活動界面時間變化的一種方法。最適用於檢查心臟的活動情況,其曲線的動態改變稱為超聲心動圖,可以用來觀察心臟各層結構的位置、活動狀態、結構的狀況等,多用於輔助心臟及大血管疫病的診斷。
D型:是專門用來檢測血液流動和器官活動的一種超聲診斷方法,又稱為多普勒超聲診斷法。可確定血管是否通暢、管腔有否狹窄、閉塞以及病變部位。新一代的D型超聲波還能定量地測定管腔內血液的流量。近幾年來科學家又發展了彩色編碼多普勒系統,可在超聲心動圖解剖標志的指示下,以不同顏色顯示血流的方向,色澤的深淺代表血流的流速。現在還有立體超聲顯象、超聲CT、超聲內窺鏡等超聲技術不斷涌現出來,並且還可以與其他檢查儀器結合使用,使疾病的診斷准確率大大提高。超聲波技術正在醫學界發揮著巨大的作用,隨著科學的進步,它將更加完善,將更好地造福於人類。
頻率高於20000 Hz(赫茲)的聲波。研究超聲波的產生、傳播 、接收,以及各種超聲效應和應用的聲學分支叫超聲學。產生
超聲波的裝置有機械型超聲發生器(例如氣哨、汽笛和液哨等)、利用電磁感應和電磁作用原理製成的電動超聲發生器、
以及利用壓電晶體的電致伸縮效應和鐵磁物質的磁致伸縮效應製成的電聲換能器等。
超聲效應 當超聲波在介質中傳播時,由於超聲波與介質的相互作用,使介質發生物理的和化學的變化,從而產生
一系列力學的、熱的、電磁的和化學的超聲效應,包括以下4種效應:
①機械效應。超聲波的機械作用可促成液體的乳化、凝膠的液化和固體的分散。當超聲波流體介質中形成駐波時 ,懸浮在流體中的微小顆粒因受機械力的作用而凝聚在波節處,在空間形成周期性的堆積。超聲波在壓電材料和磁致伸縮材料中傳播時,由於超聲波的機械作用而引起的感生電極化和感生磁化(見電介質物理學和磁致伸縮)。
②空化作用。超聲波作用於液體時可產生大量小氣泡 。一個原因是液體內局部出現拉應力而形成負壓,壓強的降低使原來溶於液體的氣體過飽和,而從液體逸出,成為小氣泡。另一原因是強大的拉應力把液體「撕開」成一空洞,稱為空化。空洞內為液體蒸氣或溶於液體的另一種氣體,甚至可能是真空。因空化作用形成的小氣泡會隨周圍介質的振動而不斷運動、長大或突然破滅。破滅時周圍液體突然沖入氣泡而產生高溫、高壓,同時產生激波。與空化作用相伴隨的內摩擦可形成電荷,並在氣泡內因放電而產生發光現象。在液體中進行超聲處理的技術大多與空化作用有關。
③熱效應。由於超聲波頻率高,能量大,被介質吸收時能產生顯著的熱效應。
④化學效應。超聲波的作用可促使發生或加速某些化學反應。例如純的蒸餾水經超聲處理後產生過氧化氫;溶有氮氣的水經超聲處理後產生亞硝酸;染料的水溶液經超聲處理後會變色或退色。這些現象的發生總與空化作用相伴隨。超聲波還可加速許多化學物質的水解、分解和聚合過程。超聲波對光化學和電化學過程也有明顯影響。各種氨基酸和其他有機物質的水溶液經超聲處理後,特徵吸收光譜帶消失而呈均勻的一般吸收,這表明空化作用使分子結構發生了改變 。
超聲應用 超聲效應已廣泛用於實際,主要有如下幾方面:
①超聲檢驗。超聲波的波長比一般聲波要短,具有較好的方向性,而且能透過不透明物質,這一特性已被廣泛用於超聲波探傷、測厚、測距、遙控和超聲成像技術。超聲成像是利用超聲波呈現不透明物內部形象的技術 。把從換能器發出的超聲波經聲透鏡聚焦在不透明試樣上,從試樣透出的超聲波攜帶了被照部位的信息(如對聲波的反射、吸收和散射的能力),經聲透鏡匯聚在壓電接收器上,所得電信號輸入放大器,利用掃描系統可把不透明試樣的形象顯示在熒光屏上。上述裝置稱為超聲顯微鏡。超聲成像技術已在醫療檢查方面獲得普遍應用,在微電子器件製造業中用來對大規模集成電路進行檢查,在材料科學中用來顯示合金中不同組分的區域和晶粒間界等。聲全息術是利用超聲波的干涉原理記錄和重現不透明物的立體圖像的聲成像技術,其原理與光波的全息術基本相同,只是記錄手段不同而已(見全息術)。用同一超聲信號源激勵兩個放置在液體中的換能器,它們分別發射兩束相乾的超聲波:一束透過被研究的物體後成為物波,另一束作為參考波。物波和參考波在液面上相干疊加形成聲全息圖,用激光束照射聲全息圖,利用激光在聲全息圖上反射時產生的衍射效應而獲得物的重現像,通常用攝像機和電視機作實時觀察。
②超聲處理。利用超聲的機械作用、空化作用、熱效應和化學效應,可進行超聲焊接、鑽孔、固體的粉碎、乳化 、脫氣、除塵、去鍋垢、清洗、滅菌、促進化學反應和進行生物學研究等,在工礦業、農業、醫療等各個部門獲得了廣泛應用。
③基礎研究。超聲波作用於介質後,在介質中產生聲弛豫過程,聲弛豫過程伴隨著能量在分子各自電度間的輸運過程,並在宏觀上表現出對聲波的吸收(見聲波)。通過物質對超聲的吸收規律可探索物質的特性和結構,這方面的研究構成了分子聲學這一聲學分支。普通聲波的波長遠大於固體中的原子間距,在此條件下固體可當作連續介質 。但對頻率在1012赫以上的 特超聲波 ,波長可與固體中的原子間距相比擬,此時必須把固體當作是具有空間周期性的點陣結構。點陣振動的能量是量子化的 ,稱為聲子(見固體物理學)。特超聲對固體的作用可歸結為特超聲與熱聲子、電子、光子和各種准粒子的相互作用。對固體中特超聲的產生、檢測和傳播規律的研究,以及量子液體——液態氦中聲現象的研究構成了近代聲學的新領域——
量子聲學。
超聲波還可以進行雷達探測.清洗較為精細的物品,如鍾表,可以利用超聲波來擊碎病人體內膽結石,還可以利用超聲波測距.
② 超聲波在生活中還有什麼用途呢
利用超聲的機械作用、空化作用、熱效應和化學效應,可進行超聲焊接、鑽孔、固體的粉碎、乳化、脫氣、除塵、去鍋垢、清洗、滅菌、促進化學反應和進行生物學研究等,在工礦業、農業、醫療等各個部門獲得了廣泛應用。
超聲波是一種機械振動在媒質中的傳播過程,其頻率一般在20kHz以上。超聲波的應用很廣泛,利用超聲的機械作用、空化作用、熱效應和化學效應,可進行超聲焊接、鑽孔、固體的粉碎、乳化、脫氣、除塵、去鍋垢、清洗、滅菌、促進化學反應和進行生物學研究等,在工礦業、農業、醫療等各個部門獲得了廣泛應用。
超聲波的用途
1、醫學超聲波檢查:醫學超聲波檢查的工作原理與聲納有一定的相似性,即將超聲波發射到人體內,當它在體內遇到界面時會發生反射及折射,並且在人體組織中可能被吸收而衰減。因為人體各種組織的形態與結構是不相同的,因此其反射與折射以及吸收超聲波的程度也就不同,醫生們正是通過儀器所反映出的波型、曲線,或影象的特徵來辨別它們。此外再結合解剖學知識、正常與病理的改變,便可診斷所檢查的器官是否有病。
2、超聲除油:將黏附有油污的製件放在除油液中,並使除油過程處於一定頻率的超聲波場作用下的除油過程,稱為超聲波除油。引入超聲波可以強化除油過程、縮短除油時間、提高除油質量、降低化學葯品的消耗量。尤其對復雜外形零件、小型精密零件、表面有難除污物的零件及絕緣材料製成的零件有顯著的除油效果,可以省去費時的手工勞動,防止零件的損傷。
③ 超聲波是什麼意思
超聲波是一種頻率高於20000Hz(赫茲)的聲波,它的方向性好,反射能力強,易於獲得較集中的聲能,在水中傳播距離比空氣中遠,可用於測距、測速、清洗、焊接、碎石、殺菌消毒等。在醫學、軍事、工業、農業上有很多的應用。超聲波因其頻率下限超過人的聽覺上限而得名。
科學家們將每秒鍾振動的次數稱為聲音的頻率,它的單位是赫茲(Hz)。我們人類耳朵能聽到的聲波頻率為20Hz~20000Hz。因此,我們把頻率高於20000Hz的聲波稱為「超聲波」。通常用於醫學診斷的超聲波頻率為1MHz~30MHz。
(3)肺癌做超聲波檢查什麼擴展閱讀:
超聲波特點
1)超聲波在傳播時,波長短,方向性強,能量易於集中。
2)超聲波能在各種不同媒質中傳播,且可傳播足夠遠的距離。
3)超聲波與傳聲媒質的相互作用適中,易於攜帶有關傳聲媒質狀態的信息診斷或對傳聲媒質產生效用及治療。
4)超聲波可在氣體、液體、固體、固熔體等介質中有效傳播。
5)超聲波可傳遞能量。
6)超聲波會產生反射、干涉、疊加和共振現象。
④ 癌症檢查方法有哪些
首先是血液檢查,這種檢查非常方便,只要去檢驗科或者找病房護士抽幾管血,就可以等待結果出來,這是因為如果身體上長癌,癌細胞會向四周散發特定的分子,比如可以促進血管生長的因子(因為癌症組織也需要血管供給它營養物質)等,所以這些物質都叫做「腫瘤標志物」,下面的表格展示了常見的腫瘤標志物:
腫瘤標志物
相關腫瘤
腫瘤標志物
相關腫瘤
腫瘤標志物
相關腫瘤
AFP(甲胎蛋白)
肝細胞癌
CEA (癌胚抗原)
常見的癌症
CA125(癌抗原125)
卵巢癌
CA199(糖基抗原)
胰腺癌、膽管癌、結直腸癌
CA153
乳腺癌
CA724
胃癌
CA50
胰腺、結直腸癌
NSE
小細胞癌
PSA
前列腺癌
SCCA
宮頸鱗癌
CA242
胰腺癌、胃癌
CYFRA21-1
肺鱗癌、宮頸癌、食管癌
影像檢查,最常見的是X光照相,它成本低廉然,但提供的信息比較有限,CT是更常用的檢查手段,此外還有PET/CT檢查和磁共振成像,對於早期癌症篩查來說,CT、X片以及超聲最為常見,磁共振成像有自身的優勢,如在腦部檢查時可以提供豐富的信息,有助於醫生診斷。對於乳腺檢查,還有專門的鉬靶檢查成像。
內鏡檢查,如檢查腸胃的腸鏡、胃鏡,診斷鼻咽癌的鼻咽鏡等,內鏡可以直接觀察到人體內豐富的信息:形態、色澤、紋理。如果能發現病變,還可以同時採集某些組織,為進一步做病理活檢提供幫助,可以為臨床診斷提供更加准確的信息。
其他檢查,其他零零散散的檢查方法可以歸入此類,比如宮頸癌的細胞塗片檢查,直腸癌檢查的肛門指檢,新型的技術還有基因檢測,可以發現特定基因片段的突變情況。
上面只是說了早期發現癌症的手段,並非「方法」,因為CT和血檢只是檢查的工具,不是早期發現的策略。正如問題「在拳擊場上如何擊倒對手?」回答顯然不是「用拳頭」,而是「如何使用鉤拳,擺拳等拳法配合技巧抓住時機以取得勝利」,同樣的,人們最想要明白的是,什麼情況下「我去抽血化驗?」,什麼情況下「我去放射科拍一張CT片?」否則,身體沒有任何症狀,人們為什麼要無緣無故去做檢查呢?無論是時間還是金錢,看起來都不太劃算。
還有兩個值得我們注意的問題:一是癌症本身不是一種病,而是多種疾病的集合。因為不同人體器官產生的癌症性質不同,對於同一種病不同人產生的特徵也是不同的,所以早期癌症的檢測方法應隨部位的不同、病人的不同而進行調整,試圖用一種手段一勞永逸地發現所有早期癌症,是非常困難的,至少目前看來有相當長的路要走;二是以上的手段均無法100%確定「得癌」或者「不得癌」,因為醫學上有所謂「假陽性」和「假陰性」之說,即會出現這樣的情況:不是癌症的病人,被診斷成癌症了,或者反過來,本來出現了病變卻沒查出來,這些源於檢查手段的局限性。
正是一些檢查手段的「假陽性」和「假陰性」率較高,所以對於一些癌症檢測方法帶來的整體收益是否有利於病人,還存在一些爭議。假陽性是一種「過度診斷」,被誤診為癌症的病人會帶來疾病的重壓,親朋好友也會焦慮恐慌,進一步會導致更多的檢查,乃至侵襲性的治療,在《眾病之王:癌症傳》中有一個很好的比喻:蜘蛛耗盡體力來織出完美的網來捕獲空中的蒼蠅,如果網的密度增加,雖然捕獲蒼蠅的可能也會增加,但同樣,捕獲到空中的垃圾和碎屑的概率也會增加(假陽性),如果把網織得稀鬆一些,那麼會出現一些漏網的蒼蠅(假陰性)。
同時,就上面提及的檢查手段來說,血液檢查的准確性其實不高,因為很多癌症分子可以釋放的,我們體內正常的細胞也能釋放,所以就算是「腫瘤標志物」也有很高的錯誤率;對影像檢查來說,從CT影像上早期辨別癌症也是相當困難的工作,所以很多腫瘤臨床部門往往是多個醫生各自提出意見,共同下最後的診斷。國外曾經有研究得出的結論是乳腺癌早期鉬靶檢查,並沒有使病人的生存時間延長,反而大大了「致乳腺癌」的可能性,大量放射性檢查(如CT,PETCT)也對患病兒童的健康很不利,在患病兒童的癌症預後方面,復查頻率和劑量有嚴格的限制。
這樣說來,什麼樣的方法才能算早期發現癌症的方法呢?它至少要滿足以下幾個特性:
1.時效性。能把控時機,我們剛好能在癌前病變或者局部病灶時就能發現,不會在檢查時讓我們撲個空,不會讓我們發現已經很大或者轉移,就是提高醫療實踐中的「投入產出比」。一些早期的「體征」,如「長時間」的咳嗽和便血等,這樣的現象值得我們多加註意;女性朋友也可以對乳腺進行自檢,可以發現早期的包塊等;
2. 准確性。太高的「假陽性率」和「假陰性率」是無法接受的,這種方法應有令人滿意的准確度,否則會得不償失;
3. 經濟性。時間短,成本低,最好能讓我們自己在家裡測,國外很多城市已經實現家庭醫療的遠程數據分析,以減少交通支出,採集對象可以使用血液,這樣採集快速方便,一般影像設備都復雜精密,決定了其檢查費用很難降低。希望伴隨著基因檢測的普及化,相關檢測費用會降低。
根據以上的特性,我們可以歸納「早發現」的一些建議:
1. 正是因為血液檢查的不確定性,我們需要做動態監測,以減少「假陽性」和「假陰性」的可能;最好將自己之前的檢查資料留存,建立自己的健康資料庫,這樣通過「健康曲線」的走勢,我們會發現一些端倪;
2. 情況允許的條件下,建議做基因檢測,了解基因缺陷可能導致的癌症傾向,醫學上這叫做「易感基因」。有必要了解自己家裡的家族病史,如結直腸癌,現在已經有孕前基因檢測,據觀察,在家庭中如果父母患結腸息肉導致的結腸癌,那麼子女患上同類癌症的可能性高達50%;家族中姐妹患有乳腺癌,那麼其患乳腺癌的幾率會加倍;視網膜母細胞瘤大約有90%發生在3歲之前,有家族遺傳性,與遺傳缺陷有關系;
3. 建立符合經濟和時間要求的癌症篩查策略,對此請看下面的表格:
1次/年
<30歲
>30歲
>40歲
>50歲
男 性
直腸指檢
痰液細胞學檢查(肺癌)
胸部低劑量CT
乙狀結腸鏡檢查
大便潛血試驗
前列腺癌篩查(PSA,超聲)
女 性
宮頸刮片檢查
盆腔檢查
B超乳腺檢查
直腸指檢
鉬靶檢查結合超聲
乙狀結腸鏡檢查
大便潛血試驗
當然科研人員不會滿足於現有的手段,最新出現的一些技術給我們帶來新的曙光,如清華大學去年發現的新的腫瘤標志物Hsp90α(熱休克蛋白),對於早期肺癌的檢測會帶來幫助(注意,媒體據此解讀成「一滴血」檢測癌症是很不準確的)。美國的一個研究團隊最近設計了一個檢測早期癌症的原型機,通過特質的生物制劑與人體血液中一種特別的核苷酸序列反應,可以檢測一些早期的癌症;美國Google公司著名的前沿創新實驗室(GoogleX,曾設計出無人駕駛汽車,Google Class等產品)今年開始了一個新項目,利用納米粒子融入我們每個人的血液中,讓它無時不刻檢測我們的血液,也許不遠的將來,人們可以只是戴著一個監測腕帶,幫助我們早期發現癌症,提醒我們及時就醫。
最後值得一提的是,雖說早期發現可以提高癌症的治療療效,其實癌症預防是更加睿智的抗癌方法,舉例來說,煙草是避免癌症最大可以避免的因素,所以世界衛生組織提倡「無煙草運動」,因為煙草不僅僅與肺癌,還與食管癌、喉癌、口腔癌等密切相關,世界衛生組織估計煙草使用每年導致22%的癌症死亡,2004年,全球740癌症死亡者中,有160萬為煙草使用導致的,因此要是論效用,改善生活方式,積極預防是更加有效地抗癌策略。
⑤ 超聲波的介紹
超聲波
我們知道,當物體振動時會發出聲音。科學家們將每秒鍾振動的次數稱為聲音的頻率,它的單位是赫茲。我們人類耳朵能聽到的聲波頻率為20~20,000赫茲。因此,當物體的振動超過一定的頻率,即高於人耳聽閾上限時,人們便聽不出來了,這樣的聲波稱為「超聲波」。通常用於醫學診斷的超聲波頻率為1~5兆赫。超聲波具有方向性好,穿透能力強,易於獲得較集中的聲能,在水中傳播距離遠等特點。可用於測距,測速,清洗,焊接,碎石等
雖然說人類聽不出超聲波,但不少動物卻有此本領。它們可以利用超聲波「導航」、追捕食物,或避開危險物。大家可能看到過夏天的夜晚有許多蝙蝠在庭院里來回飛翔,它們為什麼在沒有光亮的情況下飛翔而不會迷失方向呢?原因就是蝙蝠能發出2~10萬赫茲的超聲波,這好比是一座活動的「雷達站」。蝙蝠正是利用這種「雷達」判斷飛行前方是昆蟲,或是障礙物的。
我們人類直到第一次世界大戰才學會利用超聲波,這就是利用「聲納」的原理來探測水中目標及其狀態,如潛艇的位置等。此時人們向水中發出一系列不同頻率的超聲波,然後記錄與處理反射回聲,從回聲的特徵我們便可以估計出探測物的距離、形態及其動態改變。醫學上最早利用超聲波是在1942年,奧地利醫生杜西克首次用超聲技術掃描腦部結構;以後到了60年代醫生們開始將超聲波應用於腹部器官的探測。如今超聲波掃描技術已成為現代醫學診斷不可缺少的工具。
醫學超聲波檢查的工作原理與聲納有一定的相似性,即將超聲波發射到人體內,當它在體內遇到界面時會發生反射及折射,並且在人體組織中可能被吸收而衰減。因為人體各種組織的形態與結構是不相同的,因此其反射與折射以及吸收超聲波的程度也就不同,醫生們正是通過儀器所反映出的波型、曲線,或影象的特徵來辨別它們。此外再結合解剖學知識、正常與病理的改變,便可診斷所檢查的器官是否有病。
目前,醫生們應用的超聲診斷方法有不同的形式,可分為A型、B型、M型及D型四大類。
A型:是以波形來顯示組織特徵的方法,主要用於測量器官的徑線,以判定其大小。可用來鑒別病變組織的一些物理特性,如實質性、液體或是氣體是否存在等。
B型:用平面圖形的形式來顯示被探查組織的具體情況。檢查時,首先將人體界面的反射信號轉變為強弱不同的光點,這些光點可通過熒光屏顯現出來,這種方法直觀性好,重復性強,可供前後對比,所以廣泛用於婦產科、泌尿、消化及心血管等系統疾病的診斷。
M型:是用於觀察活動界面時間變化的一種方法。最適用於檢查心臟的活動情況,其曲線的動態改變稱為超聲心動圖,可以用來觀察心臟各層結構的位置、活動狀態、結構的狀況等,多用於輔助心臟及大血管疫病的診斷。
D型:是專門用來檢測血液流動和器官活動的一種超聲診斷方法,又稱為多普勒超聲診斷法。可確定血管是否通暢、管腔有否狹窄、閉塞以及病變部位。新一代的D型超聲波還能定量地測定管腔內血液的流量。近幾年來科學家又發展了彩色編碼多普勒系統,可在超聲心動圖解剖標志的指示下,以不同顏色顯示血流的方向,色澤的深淺代表血流的流速。現在還有立體超聲顯象、超聲CT、超聲內窺鏡等超聲技術不斷涌現出來,並且還可以與其他檢查儀器結合使用,使疾病的診斷准確率大大提高。超聲波技術正在醫學界發揮著巨大的作用,隨著科學的進步,它將更加完善,將更好地造福於人類。
頻率高於20000 Hz(赫茲)的聲波。研究超聲波的產生、傳播 、接收,以及各種超聲效應和應用的聲學分支叫超聲學。產生
超聲波的裝置有機械型超聲發生器(例如氣哨、汽笛和液哨等)、利用電磁感應和電磁作用原理製成的電動超聲發生器、
以及利用壓電晶體的電致伸縮效應和鐵磁物質的磁致伸縮效應製成的電聲換能器等。
超聲效應 當超聲波在介質中傳播時,由於超聲波與介質的相互作用,使介質發生物理的和化學的變化,從而產生
一系列力學的、熱的、電磁的和化學的超聲效應,包括以下4種效應:
①機械效應。超聲波的機械作用可促成液體的乳化、凝膠的液化和固體的分散。當超聲波流體介質中形成駐波時 ,懸浮在流體中的微小顆粒因受機械力的作用而凝聚在波節處,在空間形成周期性的堆積。超聲波在壓電材料和磁致伸縮材料中傳播時,由於超聲波的機械作用而引起的感生電極化和感生磁化(見電介質物理學和磁致伸縮)。
②空化作用。超聲波作用於液體時可產生大量小氣泡 。一個原因是液體內局部出現拉應力而形成負壓,壓強的降低使原來溶於液體的氣體過飽和,而從液體逸出,成為小氣泡。另一原因是強大的拉應力把液體「撕開」成一空洞,稱為空化。空洞內為液體蒸氣或溶於液體的另一種氣體,甚至可能是真空。因空化作用形成的小氣泡會隨周圍介質的振動而不斷運動、長大或突然破滅。破滅時周圍液體突然沖入氣泡而產生高溫、高壓,同時產生激波。與空化作用相伴隨的內摩擦可形成電荷,並在氣泡內因放電而產生發光現象。在液體中進行超聲處理的技術大多與空化作用有關。
③熱效應。由於超聲波頻率高,能量大,被介質吸收時能產生顯著的熱效應。
④化學效應。超聲波的作用可促使發生或加速某些化學反應。例如純的蒸餾水經超聲處理後產生過氧化氫;溶有氮氣的水經超聲處理後產生亞硝酸;染料的水溶液經超聲處理後會變色或退色。這些現象的發生總與空化作用相伴隨。超聲波還可加速許多化學物質的水解、分解和聚合過程。超聲波對光化學和電化學過程也有明顯影響。各種氨基酸和其他有機物質的水溶液經超聲處理後,特徵吸收光譜帶消失而呈均勻的一般吸收,這表明空化作用使分子結構發生了改變 。
超聲應用 超聲效應已廣泛用於實際,主要有如下幾方面:
①超聲檢驗。超聲波的波長比一般聲波要短,具有較好的方向性,而且能透過不透明物質,這一特性已被廣泛用於超聲波探傷、測厚、測距、遙控和超聲成像技術。超聲成像是利用超聲波呈現不透明物內部形象的技術 。把從換能器發出的超聲波經聲透鏡聚焦在不透明試樣上,從試樣透出的超聲波攜帶了被照部位的信息(如對聲波的反射、吸收和散射的能力),經聲透鏡匯聚在壓電接收器上,所得電信號輸入放大器,利用掃描系統可把不透明試樣的形象顯示在熒光屏上。上述裝置稱為超聲顯微鏡。超聲成像技術已在醫療檢查方面獲得普遍應用,在微電子器件製造業中用來對大規模集成電路進行檢查,在材料科學中用來顯示合金中不同組分的區域和晶粒間界等。聲全息術是利用超聲波的干涉原理記錄和重現不透明物的立體圖像的聲成像技術,其原理與光波的全息術基本相同,只是記錄手段不同而已(見全息術)。用同一超聲信號源激勵兩個放置在液體中的換能器,它們分別發射兩束相乾的超聲波:一束透過被研究的物體後成為物波,另一束作為參考波。物波和參考波在液面上相干疊加形成聲全息圖,用激光束照射聲全息圖,利用激光在聲全息圖上反射時產生的衍射效應而獲得物的重現像,通常用攝像機和電視機作實時觀察。
②超聲處理。利用超聲的機械作用、空化作用、熱效應和化學效應,可進行超聲焊接、鑽孔、固體的粉碎、乳化 、脫氣、除塵、去鍋垢、清洗、滅菌、促進化學反應和進行生物學研究等,在工礦業、農業、醫療等各個部門獲得了廣泛應用。
③基礎研究。超聲波作用於介質後,在介質中產生聲弛豫過程,聲弛豫過程伴隨著能量在分子各自電度間的輸運過程,並在宏觀上表現出對聲波的吸收(見聲波)。通過物質對超聲的吸收規律可探索物質的特性和結構,這方面的研究構成了分子聲學這一聲學分支。普通聲波的波長遠大於固體中的原子間距,在此條件下固體可當作連續介質 。但對頻率在1012赫以上的 特超聲波 ,波長可與固體中的原子間距相比擬,此時必須把固體當作是具有空間周期性的點陣結構。點陣振動的能量是量子化的 ,稱為聲子(見固體物理學)。特超聲對固體的作用可歸結為特超聲與熱聲子、電子、光子和各種准粒子的相互作用。對固體中特超聲的產生、檢測和傳播規律的研究,以及量子液體——液態氦中聲現象的研究構成了近代聲學的新領域——
聲波是屬於聲音的類別之一,屬於機械波,聲波是指人耳能感受到的一種縱波,其頻率范圍為16Hz-20KHz。當聲波的頻率低於16Hz時就叫做次聲波,高於20KHz則稱為超聲波聲波。
超聲波具有如下特性:
1) 超聲波可在氣體、液體、固體、固熔體等介質中有效傳播。
2) 超聲波可傳遞很強的能量。
3) 超聲波會產生反射、干涉、疊加和共振現象。
4) 超聲波在液體介質中傳播時,可在界面上產生強烈的沖擊和空化現象。
超聲波是聲波大家族中的一員。
聲波是物體機械振動狀態(或能量)的傳播形式。所謂振動是指物質的質點在其平衡位置附近進行的往返運動。譬如,鼓面經敲擊後,它就上下振動,這種振動狀態通過空氣媒質向四面八方傳播,這便是聲波。
超聲波是指振動頻率大於20KHz以上的,人在自然環境下無法聽到和感受到的聲波。
超聲波治療的概念:
超聲治療學是超聲醫學的重要組成部分。超聲治療時將超聲波能量作用於人體病變部位,以達到治療疾患和促進機體康復的目的。
在全球,超聲波廣泛運用於診斷學、治療學、工程學、生物學等領域。賽福瑞家用超聲治療機屬於超聲波治療學的運用范疇。
(一)工程學方面的應用:水下定位與通訊、地下資源勘查等
(二)生物學方面的應用:剪切大分子、生物工程及處理種子等
(三)診斷學方面的應用:A型、B型、M型、D型、雙功及彩超等
(四)治療學方面的應用:理療、治癌、外科、體外碎石、牙科等
超聲波的特點:
1、超聲波在傳播時,方向性強,能量易於集中。
2、超聲波能在各種不同媒質中傳播,且可傳播足夠遠的距離。
3、超聲與傳聲媒質的相互作用適中,易於攜帶有關傳聲媒質狀態的信息(診斷或對傳聲媒質產生效應。(治療)
超聲波是一種波動形式,它可以作為探測與負載信息的載體或媒介(如B超等用作診斷);超聲波同時又是一種能量形式,當其強度超過一定值時,它就可以通過與傳播超聲波的媒質的相互作用,去影響,改變以致破壞後者的狀態,性質及結構(用作治療)。
超聲波的發展史:
一、國際方面:
自19世紀末到20世紀初,在物理學上發現了壓電效應與反壓電效應之後,人們解決了利用電子學技術產生超聲波的辦法,從此迅速揭開了發展與推廣超聲技術的歷史篇章。
1922年,德國出現了首例超聲波治療的發明專利。
1939年發表了有關超聲波治療取得臨床效果的文獻報道。
40年代末期超聲治療在歐美興起,直到1949年召開的第一次國際醫學超聲波學術會議上,才有了超聲治療方面的論文交流,為超聲治療學的發展奠定了基礎。1956年第二屆國際超聲醫學學術會議上已有許多論文發表,超聲治療進入了實用成熟階段。
二、國內方面:
國內在超聲治療領域起步稍晚,於20世紀50年代初才只有少數醫院開展超聲治療工作,從1950年首先在北京開始用800KHz頻率的超聲治療機治療多種疾病,至50年代開始逐步推廣,並有了國產儀器。公開的文獻報道始見於1957年。到了70年代有了各型國產超聲治療儀,超聲療法普及到全國各大型醫院。
40多年來,全國各大醫院已積累了相當數量的資料和比較豐富的臨床經驗。特別是20世紀80年代初出現的超聲體外機械波碎石術和超聲外科,是結石症治療史上的重大突破。如今已在國際范圍內推廣應用。高強度聚焦超聲無創外科,已使超聲治療在當代醫療技術中占據重要位置。而在21世紀(HIFU)超聲聚焦外科已被譽為是21世紀治療腫瘤的最新技術。
超聲波治病機理:
1.機械效應:超聲在介質中前進時所產生的效應。(超聲在介質中傳播是由反射而產生的機械效應)它可引起機體若干反應。超聲振動可引起組織細胞內物質運動,由於超聲的細微按摩,使細胞漿流動、細胞震盪、旋轉、摩擦、從而產生細胞按摩的作用,也稱為「內按摩」這是超聲波治療所獨有的特性,可以改變細胞膜的通透性,刺激細胞半透膜的彌散過程,促進新陳代謝、加速血液和淋巴循環、改善細胞缺血缺氧狀態,改善組織營養、改變蛋白合成率、提高再生機能等。使細胞內部結構發生變化,導致細胞的功能變化,使堅硬的結締組織延伸,松軟。
超聲波的機械作用可軟化組織,增強滲透,提高代謝,促進血液循環,刺激神經系統和細胞功能,因此具有超聲波獨特的治療意義。
2.溫熱效應:人體組織對超聲能量有比較大的吸收本領,因此當超聲波在人體組織中傳播過程中,其能量不斷地被組織吸收而變成熱量,其結果是組織的自身溫度升高。
產熱過程既是機械能在介質中轉變成熱能的能量轉換過程。即內生熱。超聲溫熱效應可增加血液循環,加速代謝,改善局部組織營養,增強酶活力。一般情況下,超聲波的熱作用以骨和結締組織為顯著,脂肪與血液為最少。
3.理化效應:超聲的機械效應和溫熱效應均可促發若干物理化學變化。實踐證明一些理化效應往往是上述效應的繼發效應。TS-C型治療機通過理化效應繼發出下列五大作用:
A.彌散作用:超聲波可以提高生物膜的通透性,超聲波作用後,細胞膜對鉀,鈣離子的通透性發生較強的改變。從而增強生物膜彌散過程,促進物質交換,加速代謝,改善組織營養。
B.觸變作用:超聲作用下,可使凝膠轉化為溶膠狀態。對肌肉,肌腱的軟化作用,以及對一些與組織缺水有關的病理改變。如類風濕性關節炎病變和關節、肌腱、韌帶的退行性病變的治療。
C.空化作用:空化形成,或保持穩定的單向振動,或繼發膨脹以致崩潰,細胞功能改變,細胞內鈣水平增高。成纖維細胞受激活,蛋白合成增加,血管通透性增加,血管形成加速,膠原張力增加。
D.聚合作用與解聚作用:水分子聚合是將多個相同或相似的分子合成一個較大的分子過程。大分子解聚,是將大分子的化學物變成小分子的過程。可使關節內增加水解酶和原酶活性增加。
E.消炎,修復細胞和分子:超聲作用下,可使組織PH值向鹼性方面發展。緩解炎症所伴有的局部酸中毒。超聲可影響血流量,產生致炎症作用,抑制並起到抗炎作用。使白細胞移動,促進血管生成。膠原合成及成熟。促進或抑制損傷的修復和癒合過程。從而達到對受損細胞組織進行清理、激活、修復的過程。
量子聲學。
超聲波還可以進行雷達探測.清洗較為精細的物品,如鍾表,可以利用超聲波來擊碎病人體內膽結石,還可以利用超聲波測距.
超聲波檢測還用於電阻焊的焊點強度的檢測。
⑥ 什麼是超聲波
人類耳朵能聽到的聲波頻率為16-20000Hz,因此當物體的振動超過一定的頻率,即高於人耳聽閾上限時,人們便聽不出來了,這樣的聲波被稱為超聲波。超聲波是頻率高於20000Hz的聲波,它方向性好,穿透能力強,易於獲得較集中的聲能,在水中傳播距離遠,可用於測距、測速、清洗、碎石、殺菌消毒等,在醫學、軍事、工業、農業上有很多的應用,通常用於醫學診斷的超聲波頻率為1-5MHz。醫學超聲波檢查的工作原理與聲吶有一定的相似性,即將超聲波發射到人體內,當它在體內遇到界面時會發生反射及折射,並且在人體組織中可被吸收而衰減。因為人體各種組織的形態和結構是不相同的,因此其反射與折射以及吸收超聲波的程度也就不同。醫生們可以通過儀器所反映出的波形曲線或影像的特點來辨別它們。此外,再結合解剖學知識,結合正常與病理的改變,便可診斷所檢查的器官是否有病變。
⑦ 檢查是什麼意思
檢查jiǎnchá
英文:【Examine;Check;Inspect;Review】
解釋:
①為了發現問題而用心查看:~身體ㄧ~工作。
例句:我們要定期去醫院檢查身體。
②翻檢查考(書籍、文件等)。
例句:領導來我們學校檢查學生作業情況。
③檢討 ①:口頭~ㄧ犯了錯誤要做~。
例句:小明被老師罰寫200字檢查。
配圖
⑧ X光,核磁共振,超聲,CT的異同點
1895年,德國菲試堡物理研究所所長兼物理學教授威廉·孔拉德·倫琴把新發現的電磁波命名為X光,這個「X」是無法了解的意思。世人為了表示對發明者的敬意,亦稱之為「琴倫線」。X光是一種有能量的電磁波或輻射。當高速移動的電子撞擊任何形態的物質時,X光便有可能發生。X光具有穿透性,對不同密度的物質有不同的穿透能力。在醫學上X光用來投射人體器官及骨骼形成影象,用來輔助診斷。 1894年,實驗物理學家勒納德在放電管的玻璃壁上開了一個薄鋁窗,成功地使陰極射線射出管外。 1895年,物理學家倫琴在探索陰極射線本性的研究中,意外發現了X光。X光的發現,不僅揭開了物理學革命的序幕,也給醫療保健事業帶來了新的希望。倫琴因此成為第一個諾貝爾物理學獎得主。 x光是穿透性很強的射線,一種高能量光波粒子,所以一般物體都擋不住,射線要被阻擋,關鍵由射線強度、頻率、阻擋物質與射線作用程度、阻擋物質厚度、阻擋物質大小共同決定。一般情況下,常見的X光(醫院用)大約3~5cm的鉛塊就可以阻擋了。但是也會在背景屏上會顯示阻擋物的陰影形狀,就好像日食,雖擋住了太陽光,卻留下了陰影。核磁共振(MRI)又叫核磁共振成像技術。是繼CT後醫學影像學的又一重大進步。自80年代應用以來,它以極快的速度得到發展。其基本原理:是將人體置於特殊的磁場中,用無線電射頻脈沖激發人體內氫原子核,引起氫原子核共振,並吸收能量。在停止射頻脈沖後,氫原子核按特定頻率發出射電信號,並將吸收的能量釋放出來,被體外的接受器收錄,經電子計算機處理獲得圖像,這就叫做核磁共振成像。 核磁共振是一種物理現象,作為一種分析手段廣泛應用於物理、化學生物等領域,到1973年才將它用於醫學臨床檢測。為了避免與核醫學中放射成像混淆,把它稱為核磁共振成像術(MR)。 MR是一種生物磁自旋成像技術,它是利用原子核自旋運動的特點,在外加磁場內,經射頻脈沖激後產生信號,用探測器檢測並輸入計算機,經過處理轉換在屏幕上顯示圖像。 MR提供的信息量不但大於醫學影像學中的其他許多成像術,而且不同於已有的成像術,因此,它對疾病的診斷具有很大的潛在優越性。它可以直接作出橫斷面、矢狀面、冠狀面和各種斜面的體層圖像,不會產生CT檢測中的偽影;不需注射造影劑;無電離輻射,對機體沒有不良影響。MR對檢測腦內血腫、腦外血腫、腦腫瘤、顱內動脈瘤、動靜脈血管畸形、腦缺血、椎管內腫瘤、脊髓空洞症和脊髓積水等顱腦常見疾病非常有效,同時對腰椎椎間盤後突、原發性肝癌等疾病的診斷也很有效。 MR也存在不足之處。它的空間解析度不及CT,帶有心臟起搏器的患者或有某些金屬異物的部位不能作MR的檢查,另外價格比較昂貴。超聲是超過正常人耳所能聽到的聲波,頻率在20000赫茲以上。運用超聲波的物理特性和人體器官組織聲學性質上的差異,以波形、曲線或圖像的形式顯示和記錄出來,以進行疾病診斷的方法,就是超聲檢查。 最早使用的是A型超聲,它為振幅調制型,是一種超聲示波診斷,按不同的反射波判斷疾病,診斷能力有限。後來出現了B型超聲,為輝度調制型,是超聲顯像診斷類型,能直接顯示二維空間圖像,故又稱二維超聲,能直接觀察到器官的影像,診斷能力大大提高。之後,又出現了D型超聲,也稱多普勒型,是超聲頻移診斷法,利用多普勒效應,顯示血液流動和臟器活動的信號。此外,還相繼出現了M型、C型和T型超聲。近年,又生產出彩色B超,比B超分辨能力更強。 超聲技術主要用於體內液性、實質性病變的診斷,對於胃、肺和胃腸道的病變則難以進行分辨。超聲檢查對發現病變、確定病變的位置和大小比較容易,確定病變是否為液性或含氣性也較可靠,也尚能分辨腫瘤的良性與惡性。超聲對檢查心臟、腹部和盆腔器官包括妊娠的檢查應用較多,如對肝血管瘤、肝膿腫、肝硬化,膽囊結石及腫瘤,脾和胰腺的疾病以及腹水診斷較為可靠;對腎臟、膀胱、前列腺、腎上腺、子宮、卵巢等疾病的診斷比對甲狀腺、乳腺疾病的檢查診斷准確;對妊娠的診斷,包括胎位、胎盤定位、多胎、死胎、胎兒畸形及葡萄胎判定等,都有相當高的價值。由於超聲診斷儀不似CT昂貴,收費標准較低,因此,在臨床應用較普遍,檢查前的准備也很簡單,如做肝、膽、胰、脾檢查只需在檢查當天禁食和禁水;檢查婦科、前列腺則只需憋足小便即可。 什麼是CT 全稱:computed tomography CT是一種功能齊全的病情探測儀器,它是電子計算機X射線斷層掃描技術簡稱。 CT的工作程序是這樣的:它根據人體不同組織對X線的吸收與透過率的不同,應用靈敏度極高的儀器對人體進行測量,然後將測量所獲取的數據輸入電子計算機,電子計算機對數據進行處理後,就可攝下人體被檢查部位的斷面或立體的圖像,發現體內任何部位的細小病變。 CT的發明 自從X射線發現後,醫學上就開始用它來探測人體疾病。但是,由於人體內有些器官對X線的吸收差別極小,因此X射線對那些前後重疊的組織的病變就難以發現。於是,美國與英國的科學家開始了尋找一種新的東西來彌補用X線技術檢查人體病變的不足。1963年,美國物理學家科馬克發現人體不同的組織對X線的透過率有所不同,在研究中還得出了一些有關的計算公式,這些公式為後來CT的應用奠定了理論基礎。1967年,英國電子工種師亨斯費爾德在並不知道科馬克研究成果的情況下,也開始了研製一種新技術的工作。他首先研究了模式的識別,然後製作了一台能加強X射線放射源的簡單的掃描裝置,即後來的CT,用於對人的頭部進行實驗性掃描測量。後來,他又用這種裝置去測量全身,獲得了同樣的效果。1971年9月,亨斯費爾德又與一位神經放射學家合作,在倫敦郊外一家醫院安裝了他設計製造的這種裝置,開始了頭部檢查。10月4日,醫院用它檢查了第一個病人。患者在完全清醒的情況下朝天仰卧,X線管裝在患者的上方,繞檢查部位轉動,同時在患者下方裝一計數器,使人體各部位對X線吸收的多少反映在計數器上,再經過電子計算機的處理,使人體各部位的圖像從熒屏上顯示出來。這次試驗非常成功。1972年4月,亨斯費爾德在英國放射學年會上首次公布了這一結果,正式宣告了CT的誕生。這一消息引起科技界的極大震動,CT的研製成功被譽為自倫琴發現X射線以後,放射診斷學上最重要的成就。因此,亨斯費爾德和科馬克共同獲取1979年諾貝爾生理學或醫學獎。而今,CT已廣泛運用於醫療診斷上。 CT的成像基本原理 CT是用X線束對人體某部一定厚度的層面進行掃描,由探測器接收透過該層面的X線,轉變為可見光後,由光電轉換變為電信號,再經模擬/數字轉換器(analog/digital converter)轉為數字,輸入計算機處理。圖像形成的處理有如對選定層面分成若干個體積相同的長方體,稱之為體素(voxel),見圖1-2-1。掃描所得信息經計算而獲得每個體素的X線衰減系數或吸收系數,再排列成矩陣,即數字矩陣(digital matrix),數字矩陣可存貯於磁碟或光碟中。經數字/模擬轉換器(digital/analog converter)把數字矩陣中的每個數字轉為由黑到白不等灰度的小方塊,即象素(pixel),並按矩陣排列,即構成CT圖像。所以,CT圖像是重建圖像。每個體素的X線吸收系數可以通過不同的數學方法算出。 CT設備 CT設備主要有以下三部分:①掃描部分由X線管、探測器和掃描架組成;②計算機系統,將掃描收集到的信息數據進行貯存運算;③圖像顯示和存儲系統,將經計算機處理、重建的圖像顯示在電視屏上或用多幅照相機或激光照相機將圖像攝下。探測器從原始的1個發展到現在的多達4800個。掃描方式也從平移/旋轉、旋轉/旋轉、旋轉/固定,發展到新近開發的螺旋CT掃描(spiral CT scan)。計算機容量大、運算快,可達到立即重建圖像。由於掃描時間短,可避免運動產生的偽影,例如,呼吸運動的干擾,可提高圖像質量;層面是連續的,所以不致於漏掉病變,而且可行三維重建,注射造影劑作血管造影可得CT血管造影(Ct angiography,CTA)。超高速CT掃描所用掃描方式與前者完全不同。掃描時間可短到40ms以下,每秒可獲得多幀圖像。由於掃描時間很短,可攝得電影圖像,能避免運動所造成的偽影,因此,適用於心血管造影檢查以及小兒和急性創傷等不能很好的合作的患者檢查。 CT圖像特點 CT圖像是由一定數目由黑到白不同灰度的象素按矩陣排列所構成。這些象素反映的是相應體素的X線吸收系數。不同CT裝置所得圖像的象素大小及數目不同。大小可以是1.0×1.0mm,0.5×0.5mm不等;數目可以是256×256,即65536個,或512×512,即262144個不等。顯然,象素越小,數目越多,構成圖像越細致,即空間分辨力(spatial resolution)高。CT圖像的空間分辨力不如X線圖像高。 CT圖像是以不同的灰度來表示,反映器官和組織對X線的吸收程度。因此,與X線圖像所示的黑白影像一樣,黑影表示低吸收區,即低密度區,如含氣體多的肺部;白影表示高吸收區,即高密度區,如骨骼。但是CT與X線圖像相比,CT的密度分辨力高,即有高的密度分辨力(density resolutiln)。因此,人體軟組織的密度差別雖小,吸收系數雖多接近於水,也能形成對比而成像。這是CT的突出優點。所以,CT可以更好地顯示由軟組織構成的器官,如腦、脊髓、縱隔、肺、肝、膽、胰以及盆部器官等,並在良好的解剖圖像背景上顯示出病變的影像。 x線圖像可反映正常與病變組織的密度,如高密度和低密度,但沒有量的概念。CT圖像不僅以不同灰度顯示其密度的高低,還可用組織對X線的吸收系數說明其密度高低的程度,具有一個量的概念。實際工作中,不用吸收系數,而換算成CT值,用CT值說明密度。單位為Hu(Hounsfield unit)。 水的吸收系數為10,CT值定為0Hu,人體中密度最高的骨皮質吸收系數最高,CT值定為+1000Hu,而空氣密度最低,定為-1000Hu。人體中密度不同和各種組織的CT值則居於-1000Hu到+1000Hu的2000個分度之間。 CT圖像是層面圖像,常用的是橫斷面。為了顯示整個器官,需要多個連續的層面圖像。通過CT設備上圖像的重建程序的使用,還可重建冠狀面和矢狀面的層面圖像,可以多角度查看器官和病變的關系。 CT檢查技術 分平掃(plain CT scan)、造影增強掃描(contrast enhancement,CE)和造影掃描。 (一)平掃 是指不用造影增強或造影的普通掃描。一般都是先作平掃。 (二)造影增強掃描 是經靜脈注入水溶性有機碘劑,如60%~76%泛影葡胺60ml後再行掃描的方法。血內碘濃度增高後,器官與病變內碘的濃度可產生差別,形成密度差,可能使病變顯影更為清楚。方法分團注法、靜滴法和靜注與靜滴法幾種。 (三)造影掃描 是先作器官或結構的造影,然後再行掃描的方法。例如向腦池內注入碘曲侖8~10ml或注入空氣4~6ml行腦池造影再行掃描,稱之為腦池造影CT掃描,可清楚顯示腦池及其中的小腫瘤。 CT診斷的臨床應用 CT診斷由於它的特殊診斷價值,已廣泛應用於臨床。但CT設備比較昂貴,檢查費用偏高,某些部位的檢查,診斷價值,尤其是定性診斷,還有一定限度,所以不宜將CT檢查視為常規診斷手段,應在了解其優勢的基礎上,合理的選擇應用。 CT診斷的特點及優勢 CT檢查對中樞神經系統疾病的診斷價值較高,應用普遍。對顱內腫瘤、膿腫與肉芽腫、寄生蟲病、外傷性血腫與腦損傷、腦梗塞與腦出血以及椎管內腫瘤與椎間盤脫出等病診斷效果好,診斷較為可*。因此,腦的X線造影除腦血管造影仍用以診斷顱內動脈瘤、血管發育異常和腦血管閉塞以及了解腦瘤的供血動脈以外,其他如氣腦、腦室造影等均已少用。螺旋CT掃描,可以獲得比較精細和清晰的血管重建圖像,即CTA,而且可以做到三維實時顯示,有希望取代常規的腦血管造影。 CT對頭頸部疾病的診斷也很有價值。例如,對眶內佔位病變、鼻竇早期癌、中耳小膽指瘤、聽骨破壞與脫位、內耳骨迷路的輕微破壞、耳先天發育異常以及鼻咽癌的早期發現等。但明顯病變,X線平片已可確診者則無需CT檢查。 對胸部疾病的診斷,CT檢查隨著高分辨力CT的應用,日益顯示出它的優越性。通常採用造影增強掃描以明確縱隔和肺門有無腫塊或淋巴結增大、支氣管有無狹窄或阻塞,對原發和轉移性縱隔腫瘤、淋巴結結核、中心型肺癌等的診斷,均很在幫助。肺內間質、實質性病變也可以得到較好的顯示。CT對平片檢查較難顯示的部分,例如同心、大血管重疊病變的顯圾,更具有優越性。對胸膜、膈、胸壁病變,也可清楚顯示。 心及大血管的CT檢查,尤其是後者,具有重要意義。心臟方面主要是心包病變的診斷。心腔及心壁的顯示。由於掃描時間一般長於心動周期,影響圖像的清晰度,診斷價值有限。但冠狀動脈和心瓣膜的鈣化、大血管壁的鈣化及動脈瘤改變等,CT檢查可以很好顯示。 腹部及盆部疾病的CT檢查,應用日益廣泛,主要用於肝、膽、胰、脾,腹膜腔及腹膜後間隙以及泌尿和生殖系統的疾病診斷。尤其是佔位性病變、炎症性和外傷性病變等。胃腸病變向腔外侵犯以及鄰近和遠處轉移等,CT檢查也有很大價值。當然,胃腸管腔內病變情況主要仍依賴於鋇劑造影和內鏡檢查及病理活檢。 骨關節疾病,多數情況可通過簡便、經濟的常規X線檢查確診,因此使用CT檢查相對較少。 CT檢查范圍 CT可以做哪些檢查嗎? 一、頭部:腦出血,腦梗塞,動脈瘤,血管畸形,各種腫瘤,外傷,出血,骨折,先天畸形等; 二、 胸部:肺、胸膜及縱隔各種腫瘤,肺結核,肺炎,支氣管擴張,肺膿腫,囊腫,肺不張,氣胸,骨折等; 三、 腹、盆腔:各種實質器官的腫瘤、外傷、出血,肝硬化,膽結石,泌尿系結石、積水,膀胱、前列腺病變,某些炎症、畸形等; 四、 脊柱、四肢:骨折,外傷,骨質增生,椎間盤病變,椎管狹窄,腫瘤,結核等; 五、 骨骼、血管三維重建成像;各部位的MPR、MIP成像等; 六、 CTA(CT血管成像):大動脈炎,動脈硬化閉塞症,主動脈瘤及夾層等; 七、 甲狀腺疾病:甲狀腺腺瘤、甲狀腺腺癌等; 其他:眼科及眼眶腫瘤,外傷;副鼻竇炎、鼻息肉、腫瘤、囊腫、外傷等。 由於CT的高分辨力,可使器官和結構清楚顯影,能清楚顯示出病變。在臨床上,神經系統與頭頸部CT診斷應用早,對腦瘤、腦外傷、腦血管意外、腦的炎症與寄生蟲病、腦先天畸形和腦實質性病變等診斷價值大。在五官科診斷中,對於框內腫瘤、鼻竇、咽喉部腫瘤,特別是內耳發育異常有診斷價值。 在呼吸系統診斷中,對肺癌的診斷、縱隔腫瘤的檢查和瘤體內部結構以及肺門及縱隔有無淋巴結的轉移,做CT檢查做出的診斷都是比較可靠的。 在心臟大血管和骨骼肌肉系統的檢查中也是有診斷價值的。 CT的幾個重要概念: 1,解析度:是圖象對客觀的分辨能力,他包括空間解析度,密度解析度,時間解析度。 2,CT值:在CT的實際應用中,我們蔣各種組織包括空氣的吸收衰減值都與水比較,並將密度固定為上限+1000。將空氣定為下限-1000,其它數值均表示為中間灰度,從而產生了一個相對的吸收系數標尺。 3,窗寬和窗位 4,部分容積效應 5,雜訊 因此,在日常生活中的人群里,如感覺到身體不適,還是應該及早到醫院做檢查,以明確診斷。做到早檢查,早發現,早診斷,早治療。
⑨ 醫院里的CR、DR、CT、磁共振、B超都是什麼有啥區別
MR、CT、CR、DR、DSA、X線都是醫學影像疾病診斷的一種。
MRI是磁共振影像檢查,可以獲得橫斷面,矢狀面和冠狀面的影像。空間分辯率好。
CT是一種X線診斷設備,是一種復雜的X線設備,可以獲得橫斷面圖像。和MRI比較密度解析度高是其特點。
CR和DR和X線診斷同CT一樣也是通過X線來完成圖像的。不同的是,CR和DR比普通的X線機器在圖像的獲取上共先進,CR是IP板,DR更高級,是通過PACS來完成的。
DSA是做介入手術的時候用的,血管造影,數字剪影,圖像顯示血管走向,方便介入手術的進行。它也是X線設備的一種。
B型超聲檢查(type-Bultrasonic),俗稱「B超」,是患者在就診時經常接觸到的醫療檢查項目。超聲診斷技術作為影像診斷技術的一個重要組成部分,確有許多優於CT、核磁共振的特點。
1、判斷方式不同
磁共振指的是自旋磁共振(spinmagneticresonance)現象。
其意義上較廣,包含核磁共振(nuclearmagneticresonance,NMR)、電子順磁共振(electronparamagneticresonance,EPR)或稱電子自旋共振(electronspinresonance,ESR)。
超聲在診斷疾病時,有多種形式:
①以振幅(amplitude)形式診斷疾病的稱「一維顯示」,因振幅第一個英文字母是A,故稱A超,又稱一維超聲。
②以灰階即亮度(brightness)模式形式來診斷疾病的稱「二維顯示」,因亮度第一個英文字母是B,故稱B超,又稱二維超聲或灰階超聲。
CT(ComputedTomography),即電子計算機斷層掃描,它是利用精確準直的X線束、γ射線、超聲波等。
DR指在計算機控制下直接進行數字化X線攝影的一種新技術,即采非晶硅平板探測器把穿透人體的X線信息轉化為數字信號,並由計算機重建圖像及進行一系列的圖像後處理。
CR是計算機X射線(computedradiography)的英文縮寫。CR是醫學影像疾病診斷的一種。它使用數字化影像,方便接入PACS系統,可結合計算機技術處理圖像,提高影像質量。
2、價格不同
DR、CT、磁共振、B超的價格相對高。
CR價格相對低廉,一套CR即可實現全院X線設備的數字化。