1. 超聲波振頭額定電流怎麼計算
知道這兩個參數就夠了,I=P/V。
2. 超聲波功率怎麼計算,電壓與電流的乘積比震子功率怎麼小這么多
這裡面 有個電聲轉換效率的問題
現在普遍的功率是 安裝單個震子的 功率總和相加的。
3. 超聲波輸出功率怎麼計算電流×電壓嗎那麼電壓是380,還是220。謝謝
一般來說,超聲波輸出(電)功率,是超聲波元器件上的電壓和電流的乘積;
而你說的380v或者220v的電壓是哪兒的電壓啊?如果是超聲波設備的輸入電源電壓,也可以計算或者測量其電流,然後得到的功率,計算該設備的總功耗,是包括超聲波輸出電功率在內的;
4. 超聲波的功率怎麼測試
超聲波清洗機功率計算:
(1)、按換能器(俗稱震頭)來計算的,目前市場上換能器的功率有兩種:50W/1PCS;60w/PCS。超聲波清洗機的功率計算方式:換能器的數量N×50W或者N×60W。
(2)、知道清洗槽的長寬就可以了,100mm距離一個震子,橫豎都是這個距離,震子功率一般採用50W或60W的.600×400=240000除以10000=24隻震子,24×50W=1200W 24×60W=1440W。
(3)、槽體一般放置在底部,600×400mm的面上,一般情況均勻排布24個振子就可以了,如果污染重,可適當加大功率,均勻放置28個,總功率大約1400w,用一台1500w的發生器就適合。
(4)、如果振子放如果放在下面,超聲波清洗機的功率計算就是60×40×0.55=1320W。
頻率低,空化效應越容易產生,而且在低頻情況下液體受到的壓縮和稀疏作用有更長的時間間隔,使氣泡在崩潰前能生長到較大的尺寸,增高空化強度,有利於清洗作用。40KHZ左右的頻率,在相同聲強下,產生的空化泡數量比頻率為20KHZ時多,穿透力較強,宜清洗表面形狀復雜或有盲孔的工件,空化噪音較小,但空化強度較低,適合清洗污物與被清洗件表面結合力較弱的場合。
頻率越高,空化閥值越高。頻率低,空化閥值越低,越容易產生空化效應。低頻超聲波清洗一般在大型部件表面或者污物與工件表面粘合度高的情況下使用,高頻超聲波適合於清洗一些精密零件。從超聲波清洗效果及經濟性來考慮,一般選取頻率在20~130KHz。超聲波清洗機功率的選擇對於超聲波清洗機的清洗效果和清洗時間會產生很大的影響,只有合理的選擇超聲波清洗機的功率,才會產生很好的清洗效果。
5. 超聲波功率怎麼計算,電壓與電流的乘積比震子功率怎麼小這么多
這裡面
有個電聲
轉換效率
的問題
現在普遍的功率是
安裝單個震子的
功率總和相加的。
超聲波輸出功率的大小,由
壓電陶瓷片
的直徑和厚度、材質、設計工藝決定,一但
換能器
定型,最大功率也就定型了,衡量輸出能量的大小是一個復雜的過程,不是換能器越大,電路使用功率
管越
多,輸出能量就越大,只有相當復雜的振幅測量儀,才能准確測量超聲波振幅,由於多數用戶對超聲波知識缺少了解,加上一些銷售人員的誤導,導致用戶誤以為,
超聲波設備
耗電越大功率越大。其實消耗電能多少並不能反映輸出超聲波功率的大小,如產生縱向能量低,而消耗電流大,只能說明選用設備的效率低下。
6. 如何通過電流計算超聲波液位計上面的數值,我用的是4-20mA的 比如說我量出來 液位計的輸出電流
信號輸出和量程范圍正比關系:0對應4ma 滿量程對應20ma。
根據量程一算就可以出來。
感測器廠家Q175821424
7. 超聲波流量計的測量原理
當超聲波束在液體中傳播時,液體的流動將使傳播時間產生微小變化,並且其傳播時間的變化正比於液體的流速,其關系符合下列表達式
其中
θ為聲束與液體流動方向的夾角
M 為聲束在液體的直線傳播次數
D 為管道內徑
Tup 為聲束在正方向上的傳播時間
Tdown為聲束在逆方向上的傳播時間
ΔT=Tup –Tdown
設靜止流體中的聲速為c,流體流動的速度為u,傳播距離為L,當聲波與流體流動方向一致時(即順流方向),其傳播速度為c+u;反之,傳播速度為c-u.在相距為L的兩處分別放置兩組超聲波發生器和接收器(T1,R1)和(T2,R2)。當T1順方向,T2逆方向發射超聲波時,超聲波分別到達接收器R1和R2所需要的時間為t1和t2,則
t1=L/(c+u); t2=L/(c-u)
由於在工業管道中,流體的流速比聲速小的多,即c>>u,因此兩者的時間差為 ▽t=t2-t1=2Lu/cc 由此可知,當聲波在流體中的傳播速度c已知時,只要測出時間差▽t即可求出流速u,進而可求出流量Q。利用這個原理進行流量測量的方法稱為時差法。此外還可用相差法、頻差法等。 如果超聲波發射器發射連續超聲脈沖或周期較長的脈沖列,則在順流和逆流發射時所接收到的信號之間便要產生相位差▽O,即▽O=w▽t=2wLu/cc
式中,w為超聲波角頻率。當測得▽O時即可求出u,進而求得流量Q。此法用測量相位差▽O代替了測量微小的時差▽t,有利於提高測量精度。但存在者聲速c對測量結果的影響。 為了消除聲速c的影響,常採用頻差法。由前可知,上、下游接收器接受到的超聲波的頻率之差為▽f可用下式表示 ▽f=[(c+u)/L]-[(c-u)/L]=2u/L
由此可知,只要測得▽f就可求得流量Q,並且此法與聲速無關。超聲波技術及其應用一、沒測量水位概況
水電站多採用浮子式液位計或投入式液位計來進行水位測量。其缺點為:測量精度低,不可靠,經常出現浮子卡死不動和感測器堵塞導致測不準;維護工作量大,安裝、調試不便,採集到的僅是模擬告警信號,不能直接進入電廠計算機監控系統。對無人值班電廠不實用。
通過對攔污柵水位測量系統進行了反復對比,優化得出最後的方案設計,採用超聲波液位計對柵前、柵後水位進行實時准確監測,超聲波液位計用PLC對採集量進行處理。並且把實時水位和壓差數據送到中控室,超聲波液位計顯示和越限報警。超聲波液位計同時採用RS422/RS232介面,又把實時數據送到大壩集中控制室工控機,處理成計算機通信報文,最終將採集量送到電廠計算機監控系統上位機。
該項目實施後不僅滿足欄污柵柵前、柵後水位及壓差的多點實時監測,及報警功能,而且結束了攔污柵測量系統獨立工作,無法與電廠計算機監控系統通訊的局面。實現與閘門系統的監視功能、控制功能以及故障時ON-CALL尋呼系統功能的集成。滿足了無人值班電站的需要。該技術在雲南省電力系統還是第一家。 超聲波液位計測量水位的原理以及安裝要求 超聲波液位計工作時,高頻脈沖聲波由換能器(探頭)發出,遇被測物體(水面)表面被反射,折回的反射回波被同一換能器(探頭)接收,轉換成電信號。脈沖發送和接收之間的時間(聲波的運動時間)與換能器到物體表面的距離成正比,聲波傳輸的距離S與聲速C和傳輸時間T之間的關系可以用公式表示:S=CⅩT/2
例如:聲速C=344m/s,傳輸時間為50ms,即可算出傳輸的距離為17.2m,測定距離為8.6m。
三.可編程超聲波式攔污柵水位測量系統在田壩電站應用產生的效果
用超聲波液位計測量大壩水位在當今國內尚不普遍,技術上尚無經驗可以借鑒。在這樣的情況下,我們充分利用PLC與超聲波液位計這一領域的先進技術,按照總體規劃,長遠考慮,一次到位,避免重復改造,重復投資的這一原則,對該項目進行自行設計,全面順利地完成了這一課題。在該領域取得了較有價值的經驗。為目前我國國內水電站實現對大壩水位監測系統提供了一個可以借鑒的範例。
8. 超聲波能量如何計算有沒有具體的計算公式
超聲波能量無法計算,但可以使用超聲波熱量表進行測量。
超聲波熱量表通過超聲波的方法測量流量及顯示水流經熱交換系統所釋放或吸收熱能量的儀表。它通過兩種感測器測得的物理量——熱載體的流量和進出口的溫度,再經過密度和熱焓值的補償及積分計算,才能得到熱量值。它是一種以微處理器和高精度感測器為基礎的機電一體化產品。
1、超聲波速差法(時差法)原理:是依靠超聲波信號在流體中傳播的時間差,來測量流體流量。
2、當超聲波速在流體中傳播時,流體的流動將使超聲波信號的傳播速度發生傳播的時間差。時間差的大小與流體的流速成正比關系。由此,便可測量流體流量。
(8)超聲波測量怎麼計算電流擴展閱讀:
超聲波的兩個主要參數:
1、頻率:F≥20KHz(在實際應用中因為效果相似,通常把F≥15KHz的聲波也稱為超聲波);
2、功率密度:p=發射功率(W)/發射面積(cm2),通常p≥0.3w/cm2。
在液體中傳播的超聲波能對物體表面的污物進行清洗,其原理可用「空化」現象來解釋:超聲波振動在液體中傳播的音波壓強達到一個大氣壓時;
其功率密度為0.35w/cm2,這時超聲波的音波壓強峰值就可達到真空或負壓,但實際上無負壓存在,因此在液體中產生一個很大的壓力,將液體分子拉裂成空洞一空化核。
此空洞非常接近真空,它在超聲波壓強反向達到最大時破裂,由於破裂而產生的強烈沖擊將物體表面的污垢撞擊下來。這種由無數細小的空化氣泡破裂而產生的沖擊波現象稱為「空化」現象。太小的聲強無法產生空化效應。
9. 調節超聲波清洗機發生器的電流是怎麼計算的
超聲波發生器顯示的電流值*220,就是功率的大小,由於輸出的佔80%左右,再除於0.8就是實際功率了。