A. 鈦的測定
60.2.3.1 過氧化氫光度法
方法提要
試樣用焦硫酸鉀熔融,在硫酸介質中,鈦與過氧化氫生成穩定的黃色配合物[TiO2(SO4)2]2-,以光度法測定鈦。加入磷酸使鐵生成無色的配合物以消除其干擾。
方法適用於鋯鈦砂、鋯英石等礦物中二氧化鈦的測定。本法適合於測定0.01%~1%的TiO2。
儀器
分光光度計。
試劑
焦硫酸鉀。
硫酸。
磷酸。
過氧化氫。
鈦標准溶液ρ(TiO2)=500.0μg/mL稱取0.5000gTiO2(經過灼燒),置於5mL瓷坩堝中,加10~15gK2S2O7,於高溫爐中,升溫至700~750℃熔融150~20min,取出,冷卻,放入250mL燒杯中,用(1+9)H2SO4加熱浸提,並洗凈坩堝,加熱使熔塊溶解,移入1000mL容量瓶中,冷卻後,以(1+9)H2SO4稀釋至刻度,混勻。
校準曲線
移取0mL、0.50mL、1.00mL、1.50mL、2.00mL鈦標准溶液,分別置於一組50mL容量瓶中,加1mL(1+1)H3PO4,以(1+9)H2SO4稀釋至40mL,加入5mLφ=3%的H2O2,用(1+9)H2SO4稀釋至刻度,混勻。在分光光度計上,用1cm比色皿,以試劑空白作參比,於波長420~430nm波長處測量吸光度。繪制校準曲線。
分析步驟
稱取0.2~0.5g(精確至0.0001g)試樣,置於30mL瓷坩堝中,加入5~8gK2S2O7,置於高溫爐中,升溫至700~750℃熔融15~20min,取出,冷卻,放入250mL燒杯中,用(1+9)H2SO4加熱浸提,並洗凈坩堝,加熱使熔塊溶解,冷卻,移入100mL容量瓶中,冷卻後,以(1+9)H2SO4稀釋至刻度,混勻。放置澄清或干過濾。
分取10.0mL清液於50mL容量瓶中,加1mL(1+1)H3PO4,用(1+9)H2SO4稀釋至40mL左右,以下按校準曲線進行測定。
若用60.2.2.1苦杏仁酸重量法中過濾分離鋯(鉿)的濾液測定鈦,分取10.0mL濾液,置於50mL燒杯中,加5mL(1+1)H2SO4,加熱冒煙,取下冷卻,將溶液轉入50mL容量瓶中,加1mL(1+1)H3PO4,加入5mL!=3%的H2O2,用(1+9)H2SO4稀釋至刻度,混勻。以下按校準曲線進行測定。
二氧化鈦含量的計算參見式(60.4)。
注意事項
1)也可以採用目視比色法,分析步驟如下:
移取含TiO20μg、25μg、75μg、100μg、150μg、200μg、250μg、300μg、350μg、400μg、450μg、500μg的鈦標准溶液,分別置於一組25mL比色管中,加0.5mL(1+1)H3PO4,以(1+9)H2SO4稀釋至20mL,加入2.5mL!=3%的H2O2,用(1+9)H2SO4稀釋至刻度,混勻。進行目視比色測定。
2)試樣中含有釩、鉻、鉬、鎢干擾元素時,可在用(1+9)H2SO4浸提後,用氫氧化鈉沉澱,過濾分離干擾元素。
60.2.3.2 二安替比林甲烷光度法
方法提要
試樣經HF、H2SO4分解,冒煙除硅後,再用K2S2O7熔融,鹽酸提取。在鹽酸介質中,鈦與二安替比林甲烷生成穩定的黃色配合物,以光度法測定鈦。配合物顯色45min後可穩定24h,50mL溶液中二氧化鈦含量在0~100μg服從比耳定律。藉以進行光度法測定。
方法適用於鋯鈦砂、鋯英石等礦物二氧化鈦的測定。本法適合於測定0.005%~1%的TiO2。
儀器
分光光度計。
試劑
焦硫酸鉀。
安替比林。
鹽酸。
甲醛。
氫氧化銨。
抗壞血酸溶液(10g/L)。
二安替比林甲烷溶液(20g/L)稱取20g二安替比林甲烷於燒杯中,加500mL水,再加30mL(1+1)H2SO4,攪拌至全部溶解,過濾於1000mL容量瓶中,用水稀釋至刻度,混勻。
鈦標准儲備溶液ρ(TiO2)=500.0μg/mL制備方法參見60.2.3.1過氧化氫光度法。
鈦標准溶液ρ(TiO2)=10.0μg/mL用(2.5+97.5)HCl稀釋鈦標准儲備溶液配製。
校準曲線
移取0.00mL、0.50mL、1.00mL、1.50mL、2.00mL、3.00mL鈦標准溶液,分別置於一組50mL容量瓶中,補加(2.5+7.5)HCl至30mL,加0.5~2mL抗壞血酸溶液,混勻,放置3~5min,加入10mL二安替比林甲烷溶液,用水稀釋至刻度,混勻。放置30min後,在分光光度計上,用3cm比色皿,以試劑空白作參比,於波長380~430nm處測量吸光度。繪制校準曲線。
分析步驟
稱取0.2~0.5g(精確至0.0001g)試樣,於鉑坩堝中,加1mL(1+1)H2SO4和5mLHF,蓋上坩堝蓋,在電熱板上加熱至試樣溶解完全,去蓋,繼續加熱至冒白煙,取下冷卻,用水洗坩堝壁,再加熱至冒白煙片刻後,取下冷卻,向坩堝中加入4~6gK2S2O7,於高溫爐中,升溫至700~750℃熔融15~20min,取出,冷卻,放入250mL燒杯中,用50mL(1+1)HCl加熱浸提,洗出坩堝後,加熱使熔塊溶解,取下冷卻,移入100mL容量瓶中,以水稀釋至刻度,混勻。放置澄清或干過濾。
分取5.0~20.0mL試液,於50mL容量瓶中,補加(2.5+7.5)HCl至30mL,以下按校準曲線進行測定。
或分取5.0~20.0mL60.2.2.1苦杏仁酸重量法中過濾分離鋯(鉿)的濾液於50mL容量瓶中,以下按校準曲線進行測定。
二氧化鈦含量的計算參見式(60.4)。
注意事項
1)顯色酸度應控制在0.5~2mol/L范圍內,並盡量保持一致。酸度過高或過低,會使吸光度偏低。
2)在50mL2mol/LHCl介質中,加入(20g/L)二安替比林甲烷溶液不能少於8mL。
3)顯色溶液中1mg的氟離子會使吸光度偏低。高氯酸根能與試劑生成白色沉澱,不應大量存在。
4)鐵(Ⅲ)與試劑形成棕紅色配合物,嚴重干擾測定。用抗壞血酸將鐵(Ⅲ)還原為鐵(Ⅱ)後不幹擾測定。
5)二安替比林甲烷的合成:取安替比林(1,5-二甲基-2-苯基-3-吡唑啉酮)C11H12ON2於燒杯中,加入少量水和1~2mL(1+1)HCl溶解,並按1mg安替比林和3~4mL甲醛(!=40%)的比例加入甲醛。在水浴上加熱30~40min後,用氫氧化銨中和至有微氨味(pH8~9),即析出二安替比林甲烷,冷卻後,過濾,用水洗滌,在105℃烘乾即可。
60.2.3.3 鋅片還原-硫酸高鐵銨容量法
參見第36章釩鈦磁鐵礦、鈦鐵礦和金紅石分析中36.2.1金屬鋅還原-硫酸高鐵銨容量法。
60.2.3.4 鋁片還原-硫酸高鐵銨容量法
參見第36章釩鈦磁鐵礦、鈦鐵礦和金紅石分析中36.2.2鋁片還原-硫酸高鐵銨容量法。
60.2.3.5 鋅片還原-重鉻酸鉀容量法連續測定鈦和鐵
參見第36章釩鈦磁鐵礦、鈦鐵礦和金紅石分析中36.2.3金屬鋅還原-容量法連續測定鈦和鐵。
B. 金屬鈦ti2 tc4 哪個好 區別
鈦合金的牌號、品種很多,超過種。工業上可利用的用40-50種,最常用的也就十多種。其中包括各種不同品味工業純鈦和被精選出的鈦合金,如Ti-6AL-4V,Ti-5AL-2.5Sn,Ti-2AL-1.5Mn,Ti-3AL-2.5V,Ti-6AL-2Sn-4Zr-2Mo,Ti-6AL-2Sn-4Zr-6Mo,Ti-8AL-1Mo-1V,Ti-13V-11Cr-3AL,Ti-15V—3Cr-3AL-Sn和Ti-10V-2Fe-3AL以及Ti-0.20Pd、Ti-0.3Mo-0.8Ni等。然而對大多數國家來說,前兩個重要合金(Ti-6Al-4V;Ti-5Al-2.5Sn)是為最典型的,也是世界各國公認的。
一、按組織分類
鈦合金一般是按其組織來命名的,即α鈦合金(含近α鈦合金)、β鈦合金及(α+β)鈦合金。中國國家標准中分別用TA、TB、TC作為字頭表示鈦合金的類型,然後跟著一個數字代表合金序號,如TA代表α型鈦合金,TA7鈦合金為Ti5Al-2.5Sn合金;TB代表β鈦合金,TB2為Ti-5Mo-5V-8Cr-3Al合金;TC代表α+β型合金,如TC4鈦合金為Ti-6Al-4V合金。
α鈦合金,主要含有α穩定元素,在室溫穩定狀態下,基本為α相的鈦合金,如工業純鈦(TA0、TA1、TA2、TA3)和TA7(Ti-5Al-5Sn)。α鈦合金主要應用於化工、石化和加工工業,在這些工業中首要考慮的是合金的耐腐蝕性能和可加工變形能力,工業純鈦(TA0-TA3四種),TA9鈦合金含鈀合金(TA9鈦鈀合金)和含少量的鉬和鎳合金(TA10鈦鉬鎳合金)為首選。
近α鈦合金,這類鈦合金中加入少量β穩定元素,在室溫穩定狀態下,退火組織中包含少量β相或金屬間化合物,一般不超過10%,如TA11(Ti-8Al-1Mo-1V),這是美國開發的鈦合金,用於高溫狀態下使用,但鋁含量高會導致熱鹽效應力腐蝕問題;TA15(Ti-6.5Al-1Mo-1V-2Zr)是俄羅斯開發的BT20合金。TA11鈦合金與TA15鈦合金為相類似合金,後者降低了鋁含量增加了鋯,這樣就保持耐熱性並改善了熱鹽效應力腐蝕。α+化合物合金TA13(Ti-2.5CU)是英國開發的IMI230合金。
α+β鈦合金,含有較多的β穩定元素,在室溫穩定狀態下,由α及β相所組成的鈦合金。β含量一般為10%-50%。α+β鈦合金有中等強度,並可熱處理強化,但焊接性能較差。根據鉬當量不同,此類合金又可分成馬氏體型和過渡型。其中典型合金Ti-6Al-4V,該合金是美國水城兵工廠與1954年研製成的,廣泛用於宇航工業,該合金產品占鈦合金產量的55%-65%,可用於生產各種大規格航空鍛件和零件,Ti-6Al-4V合金由於他具有優良的綜合性能,研究的最為深入,使用的時間最長,應用的領域最廣泛,所以該合金誕生半個世紀以來一直保持旺盛的生命力。中國牌號為TC4,美國鈦金屬公司所屬Timet分部牌號為Ti-6Al-4V,美國活性金屬公司為RMI6Al4V,英國鈦金屬公司為IMI318,俄羅斯為BT6,日本住友為ST-Al40,法國為TA6V,德國為LT31.
二、按強度分類
鈦合金添加元素,利用鉬當量[Mo1]ep和鋁當量[Al]ep來表達:α與近α鈦合金[Mo1]ep為12-13,[Al]ep為5-8;α+β鈦合金[Mo1]ep為5-12,[Al]ep為6-30;β鈦合金(亞穩合金)[Mo1]ep為12-25,[Al]ep為5-8。更適合設計者需要是按強度分類,可分為低強度、普通強度、中等強度、高強度、最高強度分類。
三、按用途分類
1、工業純鈦
工業純鈦是鈦含量不低於99%,並含有少量鐵、氧、碳、氮、氫等雜質的緻密金屬鈦。雜質對純鈦的力學性能影響最明顯的是氧、氮和鐵,尤其是氧。氫與鈦的反應是可逆的,氫對鈦的性能影響主要表現為「氫脆」,通常規定氫含量不得超過0.03%-0.05%氫。工業純鈦在常溫雖是密排六方晶格(α),但其軸比小(c/a=1.587),有較好的可加工性。純鈦的成型性能和焊接性能好,對熱處理不敏感。
工業純鈦作為外科植入物金屬材料已經列入ISO5832-2-1999國際標准,滿足長期植入物的材料應有下列基本要求:抗腐蝕、生物相容、優越的抗拉強度、耐疲勞和有良好的韌性、彈性磨具、抗磨損以及令人滿意的價格。
2、耐腐蝕鈦合金
耐腐蝕鈦合金適合於在強腐蝕性介質中應用,主要為低強合金。在非宇航領域中主要是利用耐腐蝕性能好這一優點。耐蝕鈦合金提高了工業純鈦在還原性介質中(如鹽酸、硫酸、磷酸、草酸和甲酸)的耐腐蝕能力,目前成熟的鈦鉬、鈦鈀、鈦鉬鎳、鈦鎳、鈦鉭等合金。
鈦鉬合金是研究最早(1952年)的,他在還原性的鹽酸中具有優異的耐腐蝕性,Ti-30Mo合金在沸騰的5%碳酸、沸騰的5%硫酸、沸騰10%磷酸、沸騰的10%醋酸和沸騰50%甲酸中,一般最大的腐蝕率為0.0254-0.0508mm/a.而純鈦在93.3℃的10%硫酸溶液中腐蝕率達到38.1-50.8mm/a;Ti-30Mo合金在氧化性介質中耐腐蝕性較差。由於加入高密度的鉬鉿合金的熔煉、加工和焊接帶來一定的空難。由鈦鉬合金又派生除出了鈦鉬鈮、鈦鉬鋯、鈦鉬鈀等耐腐蝕鈦合金。
TA9鈦鈀合金在氧化性介質中具有優良的耐腐蝕性。對還原性介質也有一定的耐腐蝕能力,尤其能改善其在高氯離子濃度介質中的抗縫隙腐蝕能力。TA9鈦合金含0.2%鈀,TA9鈦鈀合金在5%沸騰硫酸中,可以使腐蝕率從48.26mm/a(工業純鈦)降低到0.508mm/a,耐腐蝕能力提高約95倍。該合金具有良好的加工、成型和焊接性能,但含有貴金屬鈀,成本高。
β鈦合金,這類鈦合金中含有足夠多的β穩定元素,在適當冷卻速度下室溫組織全部為β相,通常又可分為可熱處理β鈦合金(亞穩定β鈦合金)和穩定β鈦合金。可熱處理β鈦合金,在淬火狀況下有非常好的工藝塑性,可以進行板材冷成型,並能通過時效處理獲得高達1300-1400MPa的室溫抗拉強度。
TA10鈦鉬鎳合金名義成分為Ti-0.3Mo-0.8Ni,是20實際70年代中期美國研究開發的Ti-12合金,是一種抗縫隙腐蝕的鈦合金,該合金在300℃的抗拉強度比純鈦高一倍,抗還原性介質的腐蝕能力明顯提高,在150-200℃的氯化物中不發生縫隙腐蝕。
鈦鎳合金(Ti-2Ni)在高溫脫鹽裝置中的使用溫度可達到200℃左右。
鈦鉭合金(Ti-5Ta)是俄羅斯以4204合金牌號、日本神戶制鋼以KS50Ta牌號生產的抗硝酸腐蝕的α型鈦合金。該合金具有良好的工藝性能和焊接性能,在100-200℃流動的硝酸中腐蝕率低於0.1mm/a。已在硝酸回收裝置和核燃料後處理工序得到了應用。
3、結構鈦合金
按強度分類的低強度鈦合金主要用於耐蝕環境,其他鈦合金用於結構件,稱結構鈦合金。普通強度鈦合金(約500MPa),主要包括工業純鈦、Ti-2Al-1.5Mn(TC1)、和Ti-3Al-2.5V(TA18),獲得了廣泛的應用。由於加工成型性能和可焊接性能好,合金用於製作各種航空板材零件和液壓管等,以及自行車民用產品。中等強度鈦合金(約900MPa)的典型合金是Ti-6Al-4V(TC4),廣泛用於宇航鈦合金工業。板材高強度鈦合金是室溫抗拉強度在1100MPa以上,由近β鈦合金和亞穩定β鈦合金組成,主要用來代替飛機結構中常用的高強度結構鋼,其典型合金有了Ti-13V-11Cr-3Al、Ti-15V-3Cr-3Al-3Sn和Ti-10V-2Fe-3Al合金等。
4、耐熱鈦合金
耐熱鈦合金是適合於在較高溫度下長期工作的鈦合金。它在整個工作溫度范圍內具有較高的瞬時個持久強度。室溫下有較好的塑性、較好的蠕變抗力和良好的熱穩定性。在室溫與高溫下均有好的抗疲勞性能。主要用來製造壓壓氣機中的盤、葉片、進氣機匣以及飛機構件。已得到應用的耐熱鈦合金固溶強化α+β型和近α型鈦合金。能在500℃以下長期工作的α+β型耐熱鈦合金,他們都含有較多的α穩定元素,鋁當量都在6以上。加入適當的β穩定元素,使合金在高溫下不僅顯示高的瞬時強度,而且具有足夠的塑性,典型的合金有TC4(Ti-6Al-4V),TC6(Ti-6Al-2.5Mo-2Cr-0.5Fe-0.3Si)和TC11(Ti-6.5Al-3.5Mo-1.5Zr-0.3Si)。在500℃以下長期工作的α型耐熱鈦合金,它們都含有少量α穩定元素。鋁當量幾乎都在7以上,在平衡狀態下合金有更多的α相,因此這些合金在500℃以上具有更高的蠕變抗力和更好的抗疲勞性和斷裂韌度。由於近α型合金具有這些優良的綜合性能,而使其成為耐熱合金的主要體系。典型的合金有Ti-8Al-1Mo-1V(美國Ti-811)、Ti6Al-2Zr-1Mo-1V(俄羅斯BT20)、Ti-6Al-2Sn-4Zr-2Mo(美國Ti-6242)和Ti-5.5Al-3.5Sn-3Zr-1Nb-0.3Mo-0.3Si(英國IMI-829)。
5、低溫鈦合金
低溫鈦合金是適合於低溫下使用的α和α+β鈦合金。該類合金隨溫度的降低而增加、韌性隨溫度的降低而很少下降,可作低溫結構件。低溫鈦合金發展趨勢是將氧含量由0.2%(普通級)降至0.12%,形成極低間隙級鈦合金(ELI)。能在超低溫(<77K)下使用。典型的合金有Ti-5Al-2.5Sn(ELI)。美國上世紀60年代初研製的Ti-5Al-2.5Sn(ELI為美軍標的MIL-9047),中國上世紀70年代末仿製成功該合金,稱TA7鈦合金,Ti-5Al-2.5Sn(ELI)合金特別適用於在-255℃的低溫下工作的液體燃料儲存容器。