❶ 有哪些因素影響軸承的配合
軸承配合的目的在於使軸承內圈或外圈牢固地與軸或外殼固定,以免在相互配合面上出現不利的軸向或圓周方向的滑動。
這種不利的滑動(稱做蠕變)會引起異常發熱、配合面磨損(進而使磨損鐵粉侵入軸承內部)以及振動等問題,使軸承不能充分發揮作用。
因此對於軸承來說,由於承受負荷旋轉,一般必須讓套圈帶上過盈使之牢固地與軸或外殼固定。
軸及外殼的尺寸公差
公制系列的軸及外殼孔的尺寸公差已由GB/T275-93《滾動軸承與軸和外殼的配合》標准化,從中選定尺寸公差即可確定軸承與軸或外殼的配合。
軸承配合的選擇
軸承配合的選擇一般按下述原則進行。
根據作用於軸承的負荷方向、性質及內外圈的哪一方旋轉,則各套圈所承受的負荷可分為旋轉負荷、靜止負荷或不定向負荷。承受旋轉負荷及不定向負荷的套圈應取靜配合(過盈配合),承受靜止負荷的套圈,可取過渡配合或間隙較小的動配合(游隙配合)。
軸承負荷大或承受振動、沖擊負荷時,其過盈須增大。採用空心軸、薄壁軸承箱或輕合金、塑料制軸承箱時,也須增大過盈量。
要求保持高旋轉時,須採用高精度組合軸承,並提高軸及軸承箱安裝孔的尺寸精度,避免過盈過大。如果過盈太大,可能受軸或軸承箱的幾何形狀精度影響軸承套圈的幾何形狀,從而損害軸承的旋轉精度。
非分離型軸承(例如深溝球軸承)內外圈如果都採用靜配合,則軸承安裝、拆卸極為不便,最好將內外圈的某一方採用動配合。
1)負荷性質的影響
軸承負荷根據其性質可分為內圈旋轉負荷、外圈旋轉負荷及不定向負荷,其與配合的關系參照軸承配合標准。
2)負荷大小的影響
內圈在徑向負荷作用下,半徑方向即被壓縮又有伸展,周長趨於微小增加因此初始過盈將減少。過盈減少量可由下式計算:
這里:
⊿dF:內圈的過盈減少量,mm
d:軸承公稱內徑,mm
B:內圈公稱寬度,mm
Fr:徑向負荷,N{kgf}
Co:基本額定靜負荷,N{kgf}
因此,當徑向負荷為重負荷(超過Co值的25% )時,配合必須比輕負荷時緊。
若是沖擊負荷,配合必須更緊。
3)配合面粗糙度的影響
若考慮配合面的塑性變形,則配合後的有效過盈受配合面加工質量的影響,近似地可用下式表示:
〔磨削軸〕
⊿deff=(d/(d+2))*⊿d......(3)
〔車削軸〕
⊿deff=(d/(d+3))*⊿d......(4)
這里:
⊿deff:有效過盈,mm
⊿d:視在過盈,mm
d:軸承公稱內徑,mm
4)軸承溫度的影響
一般來說,動轉時的軸承溫度高於周邊溫度,而且軸承帶負荷旋轉時,內圈溫度高於軸溫,因此熱膨脹將使有效過盈減少。
現設軸承內部與外殼周邊的溫差為⊿t 則不妨可假定內圈與軸在配合面的溫差近似地為(0.01-0.15)⊿t 。因此溫差產生的過盈減少量⊿dt可由式5計算:
⊿dt=(0.10 to 0.15)⊿t*α*d
≒0.0015⊿t*d*0.01......(5)
這里:
⊿dt:溫差產生的過盈減少量,mm
⊿t:軸承內部與外殼周邊的溫差,℃
α:軸承鋼的線膨脹系數,(12.5×10-6)1/℃
d:軸承公稱內徑,mm
因此,當軸承溫度高於軸溫時,配合必須緊。
另外,在外圈與外殼之間,由於溫差或線膨脹系數的不同,反過來有時過盈也會增加。因此在考慮利用外圈與外殼配合面之間的滑動避讓軸的熱膨脹時,需要加以注意。
5)配合產生的軸承內部最大應力
軸承採用過盈配合安裝時,套圈時會膨脹或收縮,從而產生應力。
應力過大時,有時套圈會破裂,需要加以注意。
配合產生的軸承內部最大應力可由表2的式子計算。作為參考值,取最大過盈不超過軸徑的1/1000,或由表2的計算式得到的最大應力σ不大於120Mpa{12kgf/mm2}為安全。
配合產生的軸承內部最大應力
這里:
σ:最大應力,MPa{kgf/mm2}
d:軸承公稱內徑(軸徑),mm
Di:內圈滾道直徑,mm
球軸承……Di=0.2(D+4d)
滾子軸承……Di=0.25(D+3d)
⊿deff:內圈的有效過盈,mm
do:中空軸半徑,mm
De:外滾道直徑,mm
球軸承……De=0.2(4D+d)
滾子軸承……De=0.25(3D+d)
D:軸承公稱外徑(外殼孔徑),mm
⊿deff:外圈的有效過盈,mm
Dh:外殼外徑,mm
E:彈性模量,2.08×105MPa{21 200kgf/mm2}
6)其他
精確性要求特別高時,應提高軸與外殼的精度。與軸相比,一般外殼難加工、精度低,因此放鬆外圈與外殼的配合為宜。
採用中空軸及薄壁外殼時,配合必須比通常緊。
採用雙半型外殼時,應放鬆與外圈的配合。對於鑄鋁或輕合金外殼,配合必須比通常緊一些。
7 )溝道圓形和圓度的影響
軸承的溝道的圓形、圓度和波紋度也會對旋轉負載變化時的軸承配合施加影響,優良的磨削和超精工藝狀況決定了軸承的綜合配合精度水平。
❷ 軸兩端軸承高低不一致會有什麼影響
剛剛開始運轉時噪音很大,並且發抖,隨後軸承就散架了,其破壞性是顯而易見的,所以盡可能的讓其保持平衡才對哦,呵呵
❸ 滑動軸承的間隙對軸承有哪些影響
1、軸承和軸瓦的間隙。
2,軸承徑向串動間隙 ;
第一種間隙過大會使軸承或軸瓦撞擊受傷,潤滑油壓力減小;間隙過小會使軸承或軸瓦負荷劇增,甚至燒蝕(抱瓦)。
第二種間隙過大軸承會徑向來回串動,整個機器運轉不穩定;間隙過小使機器負荷增加。
❹ 跟那個平面軸承有關系嗎,平面軸承壞了都有哪些影響
平面軸承一般主要承載軸向載荷,如果出現損壞,會造成軸系軸向支承失效,並間接影響到徑向支承軸承的正常工作,嚴重情況會造成徑向軸承一起破損,軸系抱死等問題出現。
因此當有軸承出現問題,必須及時進行更換,並檢查相關部件是否有破壞或嚴重磨損,必要時,一起進行更換,這樣才可以保證軸系的正常使用。
❺ 兩個軸承孔不同心會引起什麼影響
會影響到軸承以及軸承中間的旋轉體
軸承運轉不暢,很容易損壞軸承
軸承中間的工件也會因為不同心而損壞
❻ 影響軸承質量的因素有哪些
影響軸承質量的因素:
1、結構設計與先進的同時,將有一個較長的軸承壽命。軸承製造會經過鍛造,熱處理,車削,磨削和裝配的多道工序操作。處理的合理性,先進性,穩定性也會影響軸承的使用壽命。影響軸承的熱處理和磨削工藝,往往與軸承的故障有更直接的關系相關的產品質量。近年來,研究軸承的表面層的惡化表明,磨削過程中密切與軸承表面質量相關。
2、軸承材料的冶金質量的影響是主要因素滾動軸承的早期失效。隨著冶金技術的進步(如軸承鋼,真空脫氣等),提高了原材料的質量。原材料質量因素在軸承故障分析中的比重已經明顯下降,但它仍然是軸承失效的主要因素之一。選擇是否恰當仍是必須考慮的軸承故障分析。
3、軸承安裝結束後,為了檢查安裝是否正確,要進行運轉檢查。小型機械可以用手旋轉,以確認是否旋轉順暢。檢查項目有因異物、傷痕、壓痕而造成的運轉不暢,因安裝不良,安裝座加工不良而產生的力矩不穩定,由於游隙過小、安裝誤差、密封摩擦而引起的力矩過大等等。如無異常則可動以開始力運轉。
如果軸承因某種原因發生嚴重故障而發,熱則應將軸承拆下,查明發熱原因;如果軸承發熱並伴有雜音,則可能是軸承蓋與軸相擦或潤滑油脂乾枯。此外,還可用手搖動軸承外圈,使之轉動,若沒有松動現象,轉動平滑,則軸承是好的;若轉動中有松動或卡澀現象,則說明軸承存在缺陷,此時應進一步分析和查找原因,以確定軸承能否繼續使用。
❼ 軸承的失效原因和失效的形態是什麼
軸承的失效原因: 一,軸承往往因安裝不合適而導致整套軸承各零件之間的受力狀態發生變化,軸承在不正常的狀態下運轉並過早失效。根據軸承安裝、使用、維護、保養的技術要求,對運轉中的軸承所承受的載荷、轉速、工作溫度、振動、雜訊和潤滑條件進行監控和檢查,發現異常立即查找原因,進行調整,使其恢復正常。此外,對潤滑脂質量和周圍介質、氣氛進行分析檢驗也很重要。 首先,結構設計合理的同時具備有先進性,才會有較長的軸承壽命。軸承的製造一般要經過鍛造、熱處理、車削、磨削和裝配等多道加工工序。各加工工藝的合理性、先進性、穩定性也會影響到軸承的壽命。其中影響成品軸承質量的熱處理和磨削加工工序,往往與軸承的失效有著更直接的關系。近年來對軸承工作表面變質層的研究表明,磨削工藝與軸承表面質量的關系密切。 軸承材料的冶金質量曾經是影響滾動軸承早期失效的主要因素。隨著冶金技術(例如軸承鋼的真空脫氣等)的進步,原材料質量得到改善。原材料質量因素在軸承失效分析中所佔的比重已經明顯下降,但它仍然是軸承失效的主要影響因素之一。選材是否得當仍然是軸承失效分析必須考慮的因素。 軸承失效分析的主要任務,就是根據大量的背景材料、分析數據和失效形式,找出造成軸承失效的主要因素,以便有針對性地提出改進措施,延長軸承的服役期,避免軸承發生突發性的早期失效。 軸承失效基本形態: 1.粘附和磨粒磨損失效 是各類軸承表面最常見的失效模式之一。軸承零件之間相對滑動摩擦導致其表面金屬不斷損失稱為滑動摩損。持續的磨損將使零件尺寸和形狀變化,軸承配合間隙增大,工作表面形貌變壞,從而喪失旋轉精度,使軸承不能正常工作。滑動磨損形式可分為磨粒磨損、粘附磨損、腐蝕磨損、微動磨損等,其中最常見的為磨粒磨損和粘附磨損。 軸承零件的摩擦面之間由外來硬顆粒或金屬磨削引起摩擦面磨損的現象屬於磨粒磨損。它常在軸承表面造成鑿削式或犁溝式的擦傷。外來硬顆粒常常來自於空氣中的塵埃或潤滑劑中的雜質。粘附磨損主要是由於摩擦表面的輪廓峰使摩擦面受力不均,局部摩擦熱使摩擦表面溫度升高,造成潤滑油膜破裂,嚴重時表面層金屬將會局部溶化,接觸點產生粘著、撕脫、再粘著的循環的過程,嚴重時造成摩擦面的焊合和卡死。 2.接觸疲勞(疲勞磨損)失效 接觸疲勞失效是各類軸承最常見的失效模式之一,是軸承表面受到循環接觸應力的反復作用而產生的失效。軸承零件表面的接觸疲勞剝落是一個疲勞裂紋從萌生、擴展到裂紋的過程。初始的接觸疲勞裂紋首先從接觸表面以下最大正交切應力處產生,然後擴展到表面形成麻點狀剝落或小片狀剝落,前者被稱為點蝕或麻點剝落;後者被稱為淺層剝落。如初始裂紋在硬化層與心部交界區產生,造成硬化層的早期剝落,則稱為硬化層剝落。 參考資料: http://www.ttzcw.com/college/coll_info/tp1/2010102915210020504.html