① 滚动轴承的游隙是怎样调整的
滚动轴承的游隙调整方法常用调整垫片法和螺钉调整法。
滚动轴承装配时,其游隙不能太大,也不能太小。游隙太大,会造成同时承受载荷的滚动体的数量减少,使单个滚动体的载荷增大,从而降低轴承的旋转精度,减少使用寿命,游隙太小,会使摩擦力增大,产生的热量增加,加剧磨损,同样能使轴承的使用寿命减少。因此许多轴承在装配时都要严格控制和调整游隙。
(1)轴承间隙配合怎么减少轴承的升温扩展阅读:
注意事项:
在北方地区,当冬季环境温度较低时,在修理减速机时,因轴承油膜受冷冻结,容易造成检测得到的轴承的工作油隙较小的错觉,如果把实测的轴承工作游隙调整到既定标准时,无形中加大了轴承的工作游隙。
因此在调整轴承的工游隙时,通常以测得的工作游隙小于轴承的工作游隙标准 10~20m, 并长时间跑合看轴承是否发热。如果轴承不发热,则说明满足技术要求,如果轴承发热则重新调整。
② 推力轴承间隙怎么调整 调整推力轴承间隙的两个方法介绍
1、调整垫片法:
在轴承端盖与轴承座端面之间填放一组软材料(软钢片或弹性纸)垫片;调整时,先不放垫片装上轴承端盖,一面均匀地拧紧轴承端盖上的螺钉,一面用手转动轴,直到轴承滚动体与外圈接触而轴内部没有间隙为止;这时测量轴承端盖与轴承座端面之间的间隙,再加上轴承在正常工作时所需要的轴向间隙;这就是所需填放垫片的总厚度,然后把准备好的垫片填放在轴承端盖与轴承座端面之间,最后拧紧螺钉。
2、调整螺栓法:
把压圈压在轴承的外圈上,用调整螺栓加压;在加压调整之前,首先要测量调整螺栓的螺距,然后把调整螺栓慢慢旋紧,直到轴承内部没有间隙为止,然后算出调整螺栓相应的旋转角。例如螺距为1.5mm,轴承正常运转所需要的间隙,那么调整螺栓所需要旋转角为3600×0.15/l.5=360;这时把调整螺栓反转360,轴承就获得0.5mm的轴向间隙,然后用止动垫片加以固定即可。
③ 电主轴温升都有哪些抑制措施方法
一、减小轴承发热量的措施
(1)适当减小轴承滚珠直径
减小滚珠直径可以减小离心力,从而减小摩擦力矩。但是,滚珠直径的减小应以不过多削弱轴承的刚度为限。一般高速精密滚动轴承的滚珠直径约为标准系列滚珠轴承滚珠直径的70%,而且做成小直径密珠的结构形式,通过增加轴承的滚珠数和滚珠与内外套圈的接触点,提高滚珠轴承的刚度。
(2)采用新材料
陶瓷球轴承与钢质角接触球轴承相比,在高速回转时,滚珠与滚道间的滚动和滑动摩擦减小,发热量降低。比如陶瓷球轴承与钢质角接触球轴承相比的主要优点有:
1、质量轻。材料密度仅为3.218×103kg/m3,只相当于钢球的40%。在高速回转时,滚动体的离心力和陀螺力矩可显著减小从而接触应力减小,摩擦功耗下降,发热量降低。
2、线膨胀系数小。α=3.2×10-6/℃,约为钢球的25%,使得在不同温升的条件下,球与内外环的配合间隙变化小,提高了轴承工作的可靠性,并减小了温升导致的轴承轴向位移,也使得预加载荷变化小。
二、电主轴单元发热的解决方法
电主轴单元异常发热后如何将热量尽快带走,从而有效控制温升。
(1)主轴轴承的润滑冷却措施———油气润滑系统
油气润滑是将微量的润滑油均匀、连续地混入压缩空气流,再把喷入要润滑的摩擦副内的一种润滑方法。除了具有很好的润滑性能之外,还有极强的冷却效果。虽油气润滑系统比较昂贵,但对于高精密加工中心来说,一套油气润滑系统不至于将产品成本提高很多。
油气润滑在加工中心中应用,应注意以下事项:
①喷嘴距滚动轴承端面的距离可在3~25mm之间;
②在轴承腔壁上需开设排气孔,以便流通;
③油气润滑系统的用油量极少,大约1mL/h;
④油气润滑系统的含油量:采用油气润滑时影响轴承温升的因素之一是供油量。供油量决定着油气两者混合流中的含油量,给定速度下的轴承温升与该含油量有关,初始阶段轴承温升随含油量增加而迅速下降,而后其影响减弱,当含油量增加到某一数值后温升缓慢增加,继而急剧上升,因而油气两者的混合流中的含油量达到一个最佳值,才能既保证轴承的润滑充足又保证轴承的强力冷却。为此,油气润滑系统参数确定为:空气压力为0.4MPa,空气流量为(3.3~6.7)×10-4m3/s,润滑油运动粘度为32mm2/s,润滑油流量约为(0.28~0.83)×10-10m3/s,调整润滑油流量取得最佳含油量;
⑤油气润滑系统供油的均匀性:采用油气润滑时影响轴承温升的因素之二是供油的均匀性。决定供油均匀性的最主要参数是供油频率。为了获得合适的供油量,不能只降低供油频率,而是合理匹配活塞直径、冲程、供油频率(2~8min),取得最佳方案,获得理想的供油量。轴承润滑方式的选择与轴承的转速、负荷、许用温升及轴承类型有关,一般根据速度因数dm·n值选择。
其中:dm为轴承中径(mm):n为工作转速(r/min)。采用油气润滑系统来解决高速电主轴中陶瓷球轴承的润滑与冷却问题。
油气润滑系统的基本原理是,利用具有一定压力的压缩空气和由定量分配器每隔一定时间定量输出微量的润滑油,在一定长度的管道中混合,通过压缩空气在管道中的流动,带动润滑油沿管道内壁不断地流动,把油气混合物输送到安装于轴承近处的喷嘴(孔径1mm中),经喷嘴射向内圈和滚动体的接触点实现润滑和冷却,达到“最佳供油量”和“压缩空气进行冷却”
油气润滑与油雾润滑的主要区别在于供给轴承的润滑油未被雾化,而是以油粒状被压缩空气吹入轴承,向大气中排放的仅是空气,因此对环境没有污染。具有一定压力的润滑油在接触点除润滑外还有带走热量和密封的作用。由于油滴是喷射而出,故可穿透在高速运转时由于离心力的作用而在轴承周围形成的空气涡流,实现润滑轴承的目的。油气润滑用大量的压缩空气来冷却轴承,使得轴承的温升比用油雾润滑时要低很多。实验表明,使用油气润滑的轴承温升可比使用脂润滑时降低5~80℃,比油雾润滑降低9~160℃,随着dm·n值的增大,降温的效果更明显。
轴承润滑的目的是减少轴承内部摩擦及磨损,防止烧粘,延长疲劳寿命,排出摩擦热,冷却。传统的滚动轴承润滑方法,如油浴润滑法、油杯润滑法、飞溅润滑法、循环润滑法和油雾润滑法等已均不能满足高速主轴轴承对润滑的要求,这是因为高速主轴轴承不仅对油的粘度有严格要求,而且对供油量也有着严格要求。为了获得最佳的润滑效果,供油量过多或过少都是有害的。而油气润滑系统则可以精确地控制各个摩擦点的润滑油量,可靠性极高,因而可在高速主轴轴承领域应用。
(2)主轴轴承外环和内装式电动机的循环冷却措施———油—水热交换系统
为了提高轴承外环的散热效果,在主轴设计中可采用主轴套筒螺旋槽冷却剂热交换系统,对主轴套筒进行强制冷却,从而带走主轴轴承外环异常产生的热量。主轴套筒螺旋槽冷却剂热交换系统采用连续、大流量、冷却液对主轴套筒进行循环冷却,冷却液从主轴套筒上的入油口输入,通过主轴轴承外环主轴套筒上的螺旋槽,与主轴套筒进行充分的热交换,将主轴轴承外环产生的绝大部分热量转移到冷却液中,从主轴套筒上的出油口输出,然后流经热交换器,进行再一次热交换,将冷却液温度降到接近室温后,流回冷却箱,再经过压力泵增压输到入油口,从而实现循环冷却。
主轴套筒螺旋槽冷却剂热交换系统在加工中心中应用,应考虑以下内容:
①冷却剂的选择:常用的冷却剂有制冷剂、水、油及油水混合物,因产品具体情况选取,其中水冷降热比高、价格低廉、维护方便,深受广大用户青睐;
②冷却液或油或油水混合物冷却时介质压力约0.4MPa为宜,介质流量约50L/min为宜。由于主轴电动机两端就是主轴轴承,电动机的发热会直接降低轴承的工作精度,如果主电动机的散热解决得不好,将会影响到机床工作的可靠性和稳定性。有限元分析表明,电主轴的定子和转子是电主轴的两大热源。另外,电动机高速运转条件下,有近1/3的电动机发热量是由电动机转子产生的,并且转子产生的绝大部分热量都通过转子与定子间的气隙传入定子中,只有少部分热量直接传入主轴和端盖上,其余2/3的热量产生于电动机定子。
转子散热条件差,又直接安装在主轴上,设计中应尽量减小电动机径向传热热阻,使转子的发热量尽可能多地通过气隙传到定子和壳体中去,并由冷却液带走。为了提高散热效果,保证电动机的绝缘安全,高速电主轴采用油一水热交换循环冷却系统。系统采用连续、大流量、冷却油对定子进行循环冷却,冷却油从主轴壳体上的入油口输入,通过定子冷却套上的螺旋槽,与电动机定子进行充分的热交换,将电动机产生的绝大部分热量转移到油中,从壳体的出油口输出,然后流经逆流式冷却交换器,与冷却水进行再一次热交换,将热油温度降到接近室温后,流回油箱,再经过压力泵增压输到入油口,从而实现循环冷却。根据主轴电动机的要求,冷却油的入口温度T在10~40℃之间,温升不得超过10℃。
现有的高速主轴主要是通过在主轴壳体内加冷却油,并不断地循环,把热量带走,来进行冷却。其基本的冷却路线是:首先从主轴冷却油温控制器流出冷却油,经过在靠近前端盖的入水口,冷却油进入前端轴承的外围,对前端轴承进行冷却。接着流向主轴的定子和后端轴承进行冷却,最后从出水口流回主轴冷却油温控制器完成循环。
(3)主轴轴承内环和内装式电动机转子的冷却措施———B型内冷
采用主轴套筒螺旋槽冷却液热交换系统,与不采用主轴套筒热交换系统冷却时轴承内环的温度也下降了一些,只有4~5℃,这表明主轴套筒热交换系统对轴承内环的散热效果不明显。要减少主轴轴承内环的温升和热影响,必须采用冷却剂对主轴中心孔冷却(B型内冷),提高主轴轴承内环的散热来实现。
④ 轴承游隙如何调整
感觉法:用手指检查滚动轴承的轴向游隙,这种方法应用于轴端外露的场合。当轴端封闭或因其他原因而不能用手指检查时,可检查轴是否转动灵活。
对于不可调轴承的游隙,行业有相应的标准值(CN, C3,C4等等),也可以定制特定的游隙范围。当轴、轴承座尺寸已知,相应的内、外圈配合量就确定了,安装后的游隙就不能改变。由于在设计阶段配合量是一个范围,最后的游隙也存在一个范围,在对游隙精度有要求的应用就不适用。
(4)轴承间隙配合怎么减少轴承的升温扩展阅读:
注意事项:
采用手推法测量要求测量者有较高的测量技能。此法测量误差较大,尤其是游隙处于边缘状态时,容易引起误差,此时应以仪器测量为准。
塞尺测量时,应按标准的规定操作,不得使用滚子从塞尺上滚压过去的方法测量。
测量过程中应保证球落入沟底;闭型轴承在封闭前测量,采用有荷仪器时,测值还应减去载荷引起的游隙增加量。
⑤ 电机轴承发热的应急处理方法
解决方法:滚动轴承的工作性能不仅取决于轴承本身的制造精度,还和与它配合的轴和孔的尺寸精度、形位公差和表面粗糙度、选用的配合以及安装正确与否有关。一般卧式电机中,装配良好的滚动轴承只承受径向应力,但如果轴承内圈与轴的配合过紧,或轴承外圈与端盖的配合过紧,即公盈过大时,则装配后会使轴承间隙变得过小,有时甚至接近于零。这样转动就不灵活,运行中就会发热。如果轴承内圈与轴的配合过松,或轴承外圈与端盖配合过松,则轴承内圈与轴,或轴承外圈与端盖,就会发生相对转动,产生摩擦发热,造成轴承的过热。通常,标准中将作为基准零件的轴承内圈内径公差带移至零线下方,这对同一个轴的公差带与轴承内圈形成的配合,要比它与一般基准孔形成的配合要紧得多。
⑥ 调整轴承间隙的调整方法
现代工业化的发展日新月异,随之而来的是轴承在机械设备中起来的作用也是越来越重要,在不同的机械领域中应用的也是越来越广泛,而说到轴承,就不能不知道轴承的游隙。游隙是在轴承的安装中极其重要的关键技术,游隙的调整和测量关系到整个轴承在机械设备运行中能不能保持完整的状态,也是轴承使用中的一个不可或缺的环节。轴承游隙过大或过小,轴承的工作寿命乃至整个设备运行的稳定性都会降低。本文重点讨论和轴承游隙相关的一些检测、调整方法。
1、轴承游隙
滚动轴承的内、外圈和滚动体之间存在一定的间隙,因此内、外圈之间可以有相对位移。在无负荷作用时,一个套圈固定不动,另一个套圈沿轴承的径向和轴向从一个极限位置到另一个极限位置的移动量,分别称为径向游隙和轴向游隙,
按照轴承所处的状态,游隙分为三种。陌贝网-一站式轴承交易平台,为您提供实时轴承信息。
(1)原始游隙。指滚动轴承安装前自由状态时的游隙,它是由制造厂加工、装配所确定的。
(2)安装游隙,也叫配合游隙。是轴承与轴及轴承座安装完毕而尚未工作时的游隙。由于过盈安装,或是内圈增大,或是外圈缩小,或二者兼有之,均使安装游隙比原始游隙小。
(3)工作游隙。滚动轴承在工作状态时的游隙,工作时内圈温升最大,热膨胀最大,使轴承游隙减小;同时由于负荷的作用,滚动体与滚道接触处产生弹性变形,使轴承游隙增大,轴承的工作游隙比安装游隙大还是小,取决于这两种因素的综合作用。
2、为什么要调整轴承游隙?
打个比方,煮饭的时候水过多或过少,都会影响米饭的口感。同理,轴承游隙过大或过小,轴承的工作寿命乃至整个设备运行的稳定性都会降低。游隙调整的方法由轴承类型决定,一般可以分为游隙不可调轴承和可调轴承。游隙不可调轴承是指轴承出厂后,轴承的游隙就确定了,我们熟知的深沟球轴承、调心轴承、圆柱轴承都属于这一类。
游隙可调轴承是指可以移动轴承滚道的相对轴向位置来获得所需要的游隙,属于这类的有圆锥轴承和角接触球轴承及一些止推轴承。
⑦ 轴承安装过程中怎么调节轴承的游隙
滚动轴承的装配是钳工装配和修理工作中经常要做的一项操作,而滚动轴承游隙的调整和预紧是滚动轴承装配工作的一个重要环节。准确把握游隙调整和预紧的工艺概念,并且在装配工作中正确地运用这种工艺方法,是轴承装配工作质量的保证。
滚动轴承的游隙是指在一个套圈固定的情况下,另一个套圈沿径向或轴向的最大活动量,故游隙又分为径向游隙和轴向游隙两种。
滚动轴承装配时,其游隙不能太大,也不能太小。游隙太大,会造成同时承受载荷的滚动体的数量减少,使单个滚动体的载荷增大,从而降低轴承的旋转精度,减少使用寿命;游隙太小,会使摩擦力增大,产生的热量增加,加剧磨损,同样能使轴承的使用寿命减少。因此,许多轴承在装配时都要严格控制和调整游隙。
预紧就是轴承在装配时,给轴承的内圈或外圈一个轴向力,以消除轴承游隙,并使滚动体与内、外圈接触处产生初变形。预紧能提高轴承在工作状态下的刚度和旋转精度。对于承受载荷较大,旋转精度要求较高的轴承,大都是在无游隙甚至有少量过盈的状态下工作的,这种情况下就需要在装配时对轴承进行预紧。
游隙的调整和预紧通常都是采用使轴承的内圈对外圈作适当的轴向相对位移的方法来完成的。
从以上工艺学概念不难看出,通过对滚动轴承游隙的调整,可以提高轴承的承载能力和旋转精度,提高轴承的使用寿命。但同时会使轴承摩擦加剧,发热量增大,所以,调整游隙或预紧的同时必须保证良好的润滑和散热。如果调整不当或润滑不良,就会反过来使轴承磨损加剧,寿命减少。因此,正确地进行滚动轴承游隙的调整和预紧,还要注意以下问题。
一、装配技术要求是选择装配工艺方法的根本依据
对滚动轴承游隙的调整可以有效地提高轴承的旋转精度,提高轴承的承载能力,延长轴承的使用寿命,同时还可以有效地减少振动和噪声,但并非所有的滚动轴承在装配时都需要进行游隙的调整。而预紧固然可以提高轴承刚性和旋状精度,但是同时会使摩擦加剧,润滑油膜被破坏并产生大量的热,因此,被预紧的轴承必须进行强制润滑和冷却,这种工艺方法仅限于对轴承刚性和旋转精度要求极高的情况下采用,是一种较为特殊的工艺方法,生产实际中也只是在机床主轴装配中用到,其它传动机构的轴承装配几乎见不到。
在滚动轴承装配中是否进行游隙的调整和预紧,要根据技术文件提出的装配技术要求决定。具体地说,在装配技术要求中,一般对于高速、重载或旋转精度要求较高的轴承会有调整轴承游隙或预紧的要求,反之,则会保持轴承游隙,装配时仅作轴向固定即可。从轴承的种类上看,对于圆锥滚子轴承、角接触轴承、推力轴承均需要对其游隙进行调整;对于一般低速、轻载的向心球轴承,多数情况下不需要对其游隙进行调整,而只作轴向固定。
二、要在热平衡条件下达到游隙调整和预紧的要求
滚动轴承实际的理想工作间隙,是在轴承温升稳定后所调整的间隙。因此,轴承游隙的调整应分两个阶段进行:首先在常温下按照有关的操作规范和技术要求对轴承游隙进行调整,至间隙合适并用手转动应感到旋转灵活;然后,将调整机构适当回松(防止试车时由于温度升高而使轴承突然抱死),进行空运转试验,从低速到高速空运转时间不超过2小时,在最高速的空运转时间不少于30分钟,轴承应运转灵活、噪声小、工作温度不超过50℃,最后将调整机构复位并锁紧即可。
三、保持良好的润滑
良好的润滑不仅可以起到减小摩擦的作用,同时还对轴承和轴上零件具有冷却作用。滚动轴承游隙进行调整以后,摩擦会有所加剧,产生的热量会使整个传动系统温度有所升高。如果不能及时散热,这些热量就(下转第44页)(上接第39页)会使传动零件尺寸发生变化,从而影响到滚动轴承间隙的变化,产生更多的热量,形成恶性循环。因此,对于经过游隙调整的滚动轴承,必须要保持良好的润滑,以减少摩擦,更重要的是用不断循环流动的润滑油带走大量的热,控制温度的升高,实现传动系统的热平衡。
还要特别注意:在进行空运转试验之前,一定要首先检查润滑系统各部位供油是否正常,特别是经过预紧的轴承部位,更需要特别留意其润滑油供给充足,工作状况良好。
总之,滚动轴承游隙的调整和预紧工艺,是提高轴承旋转精度和承载能力、降低传动系统振动和噪声的有效手段,操作中除了应达到滚动轴承装配的一般技术要求外,还要重点考虑轴承温升和润滑对调整工作的影响,并且在进行空运转试验之后还要进行细致的检查和二次调整,耐心细致的工作态度也是装配维修钳工不可缺少的良好品质。
⑧ 滑动轴承相对间隙和温升的关系
滑动轴承一般用在承载力比较高的地方,同时也具有自润滑性功能,所以滑动轴承有些时候又称荣昌无油轴承,它是以RCB-650高强度铜合金(CuZn25Al5,CuZn24Al6Fe3Mn4)作为基础材料,根据使用工况按一定比例在其工作面加工出孔穴并填入固体润滑剂, 高强度的铜合金提供了很高的承载能力而固体润滑剂则可以形成较低的摩擦副。在干摩擦条件下我们在轴承表面设计一层预润滑膜可以确保在最短的时间内将固体润滑剂转移到对偶件上并形成有效的固体润滑膜.
同时滑动轴承一般是要求与座孔紧配合,与轴是间隙配合,所以滑动轴承需要相对间隙。
⑨ 轴承老是发热怎么办
发热,就说明你的轴承使用中是出了问题的了。
如果是成熟产品使用中出了问题,多是润滑出了问题,再有就是工作条件超出了原先的技术要求,特别是盲目追求高产量而增加工作负荷及加快生产速度,也有可能是轴承本身的寿命极限到了,确实需要更换了,至于安装或是选型出了问题,应该会在产品的研发过程中会多一点,蓝色这位兄台最后一点说的也是常有的事,外界传导造成的温升,他举的例子很现实,电机空载和有负载是有着本质上的区别的,我再补充一点,液泵、气泵和风机,液体或是气体的温度,有可能随着整机的工作会有很大的变化,泵体和轴承的温度会随之升高或降低。
总之,发热的问题比较复杂,要全面的分析,不可盲目地继续使用,若造成轴承卡死,损失会更大,烧电机,断轴都是有可能会发生的。
来源:中国回转支承交易网
⑩ 请问轴承间隙的调整方法
轴承内部的轴向间隙可以借助移动外圈的轴向位置来实现。
1 调整垫片法:
在轴承端盖与轴承座端面之间填放一组软材料(软钢片或弹性纸)垫片;调整时,先不放垫片装上轴承端盖,一面均匀地拧紧轴承端盖上的螺钉,一面用手转动轴,直到轴承滚动体与外圈接触而轴内部没有间隙为止;这时测量轴承端盖与轴承座端面之间的间隙,再加上轴承在正常工作时所需要的轴向间隙;这就是所需填放垫片的总厚度,然后把准备好的垫片填放在轴承端盖与轴承座端面之间,最后拧紧螺钉。
2 调整螺栓法:
把压圈压在轴承的外圈上,用调整螺栓加压;在加压调整之前,首先要测量调整螺栓的螺距,然后把调整螺栓慢慢旋紧,直到轴承内部没有间隙为止,然后算出调整螺栓相应的旋转角。例如螺距为1.5mm,轴承正常运转所需要的间隙,那么调整螺栓所需要旋转角为3600×0.15/l.5=360;这时把调整螺栓反转360,轴承就获得0.5mm的轴向间隙,然后用止动垫片加以固定即可。