㈠ 闹钟的内部零件结构
闹响系统基本结构是由闹钟定时转轴控制一个定时轮片,轮片连接定时指针指示相应的预定时专间。在属定时轮片上有三个位于不同半径同心圆上的斜面小孔,通过定时转轴调整预定时间确定后,三个小孔的位置也随之确定。
定时轮片定时齿轮上部是时针轮片,轮片上有三个孔槽。时针轮片上面有一个跟随片,跟随片有三个斜面凸起,穿过时针轮片的三个孔槽,与定时轮片的三个小孔对应。
(1)闹钟如何发出声音机械结构扩展阅读
闹钟机芯包括走时和闹时两大系统。
①走时系统:指针式石英电子闹钟的走时系统包括石英谐振器、CMOS集成电路(分频和驱动)、步进电机(将电能转换为机械能)、计数和传动机构、指针机构等部件。
数字式石英电子闹钟的走时系统包括石英谐振器、CMOS集成电路(分频、计算和驱动)、液晶显示屏或发光二极管、导电橡胶等部件;此外,指针式和数字式都包括电池、微调电容、夹板和线路版等部件。
②闹时系统:以集成电路或晶体管开关电路(分离元件)输出信号,驱动扬声器或其他声响装置;另一种是直接利用电磁原理,通过线圈的通、断电流,吸动打锤敲击闹铃,或吸动其他声响装置。
㈡ 闹钟是靠什么发出声音的
1、蜂鸣片
压电式蜂鸣片是一种由金属基片(如铜片、不锈钢片)和压电陶瓷片贴合而成的发声元件,具有厚度薄、质量轻、发音清晰、抗电磁干扰、功耗低、可靠性高的特点,被广泛用作指针式石英手表、液晶式石英手表的发声部件,其均被贴合于手表的后盖上。这种发声元件的声源主要来自压电陶瓷片的受迫振动。当在蜂鸣片的两端施加极性不同的电压时,由于压电陶瓷片的逆压电效应,就会产生伸展和收缩的来回横向变形,从而带动金属基片上下弯曲振动。电压大小不同,压电陶瓷片的形变也不同,进而导致金属基片的弯曲幅度也不同。当施加不断变化的交流电压时,金属基片就会周期性地上下弯曲,带动周围的气流振动产生声波。
2、蜂鸣器
蜂鸣器是一种一体化结构的电子讯响器,由于发音较洪亮,被广泛应用于石英钟(包括指针式和液晶式)内部,主要分为压电式蜂鸣器和电磁式蜂鸣器。
压电式蜂鸣器主要由多谐振荡器、压电式蜂鸣片、阻抗匹配器、共鸣箱和外壳组成。多谐振荡器由晶体管或集成电路构成,当接通电源后,它就会起振输出1.5~4.0kHz的音频信号,通过阻抗匹配器升压推动压电式蜂鸣片发声,共鸣箱将声波增强。
电磁式蜂鸣器由多谐振荡器、电磁线圈、磁铁、振动膜片和外壳组成。接通电源后,多谐振荡器产生的音频信号电流通过电磁线圈使得其产生磁场,振动膜片在电磁线圈和磁铁的共同作用下周期性地振动发声。
3、机械闹铃
机械手表的闹时系统包括:闹时原动机构、传动轮系、振动调速器、闹时控制杠杆、闹锤和对闹机构等。闹时系统通过对闹机构能在预先设定的时刻到来时控制振动调速机构打闹。
带闹铃功能的机械手表一般都有两个手表把的,一个用于控制走时,另一个用于控制闹时。这种机械表内部存在两个上条盒,一个为控制走时的发条盒,另一个为控制闹铃的闹条盒。同时,在手表的表盘上还有一根指示闹时时刻的闹针。当上紧闹条后,一旦手表走时到了预先设置的闹时时刻,手表就会起闹。
㈢ 电子闹钟的发声原理
齿轮转到了定时时间后支撑齿轮的突出部分滑入另一齿轮的孔中,这一内下落使接点接通容了电路。从走时震荡电路输出音频经一个三极管功放推动蜂鸣器发声。可手动开关停止发声,随着齿轮的转动,落下的齿轮又会慢慢地被抬起,接点断开而停止发声
㈣ 如何对机械闹钟那两个响铃进行热处理
这个问题非常来有意思。内自耗小的材料或结构声音衰减慢,材料亚结构影响内耗,对于Q195,我建议淬火后低温回火,910C淬火+180C回火(闹铃尺寸小,应该能淬透)。同时,我建议你再对比正火处理,淬火后中温回火和高温回火对铃声的影响。最好告诉我们试验结果。
㈤ 请问谁懂得 机械闹钟 响铃的原理
机械闹钟响铃原理是:时针轮片带动跟随片一起转动,当走到预定时间时,跟随片进入定时轮片上的小孔,电池接通小马达并转动,带动小锤敲响铃铛,实现音响信号输出,闹响系统工作完成,进入下一周期。
通过定时转轴调整预定时间后,闹响系统开始工作,此时,跟随片上的三个凸起没有在定时轮片的小孔中,而是位于定时轮片的平面上,通断片被撑起,芯片断开。
(5)闹钟如何发出声音机械结构扩展阅读:
机械钟表一般是由动力机构、传动机构、擒纵机构、指针机构等组成,动力机构为机械钟表提供动力 ,并经过经过传动机构来推动擒纵机构工作,再由擒纵机构反过来控制传动机构的转速,然后由传动机构带动指针机构指示时刻。
传动机构是将能量传至擒纵调速机构的一组齿轮,一般由二轮(中心轮)、三轮(过轮)、四轮(秒轮)和擒纵轮齿轴组成。
擒纵调速机构是由擒纵机构和振动机构两部分组成,它依靠振动系统的周期性震动,使擒纵机构保持精确和规律性的间歇运动,从而取得调速作用,叉瓦式擒纵机构是应用最广的一种擒纵机构。
振动机构主要由摆轮、摆轴、游丝、快慢针等组成,摆轮受外力会偏离其平衡位置开始摆动,这时游丝便被扭转而产生恢复力矩,这就是机械钟表在运转时重复循环工作的原理。 此外还有上条拨针机构,作用是上条和拨针。
㈥ 机械闹钟的工作原理是什么(一般的小闹钟)
机械钟表中,利用带簧(发条)恢复变形所放出的能量或利用重物下降的重力作能源,以机械振动系统为时间基准,实现计量时间和时段的机械机构。机械钟表机构有多种类型,但一般都由原动系、传动系、擒纵调速系、上条拨针系和指针系组成,工作原理基本相同。此外,日历手表中还包括日历(或双历)机构,自动手表中还包括自动上条机构。
原动系储存和传递工作能量的机构。分为重锤原动系和弹簧原动系两类。
重锤原动系利用重锤的重力作能源。多用于简易挂钟和落地摆钟。重锤原动系结构简单,力矩稳定,但当上升重锤时,传动系与原动系脱开,钟表机构停止工作。
弹簧原动系利用卷成螺线形的带簧(发条)恢复变形所放出的能量作能源。带簧一端与轴连接,另一端与一个不动的零件或发条盒的壳体连接。弹簧原动系用作携带式钟表的能源,也用于摆钟上。弹簧原动系有带固定条盒式、不带条盒式和带活动条盒式等3种类型。
传动系将原动系的能量传给擒纵调速系的一组传动齿轮。通常由一系列轮片和齿轴组成(图3),在主传动中轮片是主动齿轮,齿轴是从动齿轮。传动比按照以下公式进行计算:i=Z1/Z2式中Z1为主动齿轮齿数,Z2为从动齿轮齿数。对于有秒针装置的钟表,其中心轮的轮片到秒轮的齿轴的传动比必须等于60。钟表传动系的齿形绝大多数是专门设计的。
传动系可按“二轮”(时轮和分轮)在表机芯的平面配置分为两类:①中心二轮式,二轮在表机芯的中央。它又包括直接传动式、秒簧式、短秒针和无秒针式、双三轮式。②偏二轮式,二轮不在表机芯中央。它又包括头轮传出式、二轮传出式、三轮传出式。
直接传动式是经常采用的传动系之一。在这种传动方式中,分轮上部有一凹槽,分轮依靠摩擦与中心轮管相配合;走针机构的运动由中心轮来带动。
擒纵调速系由擒纵机构和振动系统构成。按振动系统的特点可分为两类:①有固有振动周期擒纵调速系。它具有可以独立进行振动的、有稳定周期的振动系统。手表、闹钟中的走时系统的擒纵调速系属于此类。②无固有振动周期擒纵调速系。它没有能够独立进行振动的振动系统。这种调速系中的所谓振动系统的往复振动,完全依靠擒纵机构的往复运动。机械闹钟中的闹时系统的擒纵调速系属于此类。这种调速系精度要求不高,结构简单,工作可靠,抗外界干扰能力强,在机械式定时器和钟表引信中大量采用。
擒纵机构联系传动系和振动系统的一种机构。其作用是把原动系的能量传递给振动系统,以维持振动系统的等幅振动;并把振动系统的振动次数传给指针机构,达到计量时间之目的。擒纵机构种类很多,按其与振动系统联系的程度可分为两类。①非自由式擒纵机构:擒纵机构和振动系统经常保持运动上的联系。它包括直进式、后退式和工字轮式擒纵机构等。②自由式擒纵机构:只有在释放和传冲阶段,擒纵机构和振动系统才保持运动上的联系,其余阶段振动系统处于自由运动状态。它包括有销钉式、叉瓦式和天文钟式擒纵机构等。
①后退式擒纵机构:广泛用于低精度摆钟。它的叉瓦锁面和冲面是同一平面(工作面);进瓦的工作面是一圆柱面,其圆心与擒纵叉的转动中心不重合;出瓦的工作面是一平面。叉瓦和擒纵叉作成一体。传冲后,叉瓦工作面将迫使擒纵轮后退一个角度。
②叉瓦式擒纵机构:应用最广的擒纵机构之一。工作时,擒纵轮由传动系取得能量,通过擒纵轮齿和叉瓦(进瓦或出瓦)的作用转变为冲量传送给擒纵叉;通过擒纵叉的叉口和双圆盘的冲击圆盘上的摆钉的相互作用,再将冲量传给振动系统。双圆盘的保险圆盘和叉头钉,摆钉和擒纵叉的喇叭口是保证机构正常工作的保险装置。
③销钉式擒纵机构:与叉瓦式擒纵机构的不同之处是,在擒纵叉上用两根圆柱销钉代替叉瓦,冲量只沿擒纵轮齿冲面传递。这种擒纵机构结构简单,精度要求低,制造方便,多在闹钟和低精度表中采用,俗称粗马结构。振动系统作为时间基准的机构。振动系统的振动周期乘以被测过程内的振动次数,即为该过程经历的时间。机械钟表常用的振动系统有摆、扭转摆和摆轮游丝振动系统。
㈦ 普通的闹钟是怎么响的
闹钟有很多种类,机械地、石英地,自从它被人利用钟摆地原理发明以来已经成为人们生活中不能缺少地物品! 以下主要介绍石英闹钟地原理 石英闹钟也可叫做「水晶振动式电子表」,因为它是利用水晶片地「发振现象」。当水晶接受到外部地加力电压,就会有变形及伸缩地性质,相反,若压缩水晶,便会使水晶两端产生电力;这样地性质在很多结晶体上也可见到,称为「压电效果」。石英表就是利用周期性持续「发振」地水晶,为我们带来准确地时间。首先,将石英表内地水晶片上加电,水晶便会以32768赫兹地周波数,正确地振动;然后必须将此频率化成1Hz(电流一秒间地一次变化)地信号电流周波数。再增加些信号地幅度(由于因振动而产生地电流甚弱),跟着些信号电流再发动转子齿轮,表上地秒针便会随之发动,之后分针,时针地跳动则关乎于机械结构上地原理,如:秒针跳动60下,分针便会跳一下所有石英表都装有一粒电池。它为一块集成电路和一个石英谐振器提供能量,每秒振动327678次。还有比这更快地。集成电路是表地“大脑”。它控制着石英谐振器地振动,并起着分频器地作用。32768次振动被对半分割15次,以达到每秒产生一次脉冲。 有了一秒钏这个时间地“原材料”,就能驱动显示器。何为模拟针显示 为了把集成电路脉冲转化成运动,模拟指针式石英表上装有一个增速马达,包括一个电磁转子,每承受一下脉冲,就旋转180度,也就是一秒钟。转子连接着由三个齿轮组成地拖动系统,驱动三根指针(时针、分针和秒针),把时间显示在表盘上。还可以加上一个显示屏,显示星期、日期以及流逝地时间。固体状态石英表 在固体状态地石英表中,以一秒为单位地脉冲被传送到集成电路地秒针部份,这个部份负责将液晶显示模地液晶线组织起来,形成一个数字。这种类型在表类物件中是为常见。在制表业中,这通常是用于生产大规模地极为便宜地产品。亚洲地生产厂家已经垄断了这一领域。在更为精致地手表款式中,"固体状态"根据安装在里面地存储器地大小,具有大量地功能:如电话号码,预约登记簿等。混合型石英表 这种类型地石英表具有两种显示功能,即模指针式和数字式,后者提供附属地信息,如星期与日期、精确计时功能、时区。这种手表装有一块集成电路和一微型发动机。
㈧ 机械闹钟内部结构是怎么安排的
机械闹钟内部结构是怎么安排的?闹钟,带有闹时系统的钟,既能显示时间,又能按照人们预定的时间发出音响信号或其他信号。闹钟主要包括动力系统、机械传动及指示系统和闹响系统三部分
㈨ 电子手表的闹钟系统如何发声,工作原理是什么
电子表里由一个芯片控制,该芯片是由一个小程序控制,叫做计数器,计数到一定时间就会对编码器和译码器产生的二进制数进行传递,使半导体器材导通,扬声器发声。
电子表工作原理:
电源-----晶体振荡产生32768HZ频率------分频------整流------滤波------模数转换-----输出。
电子元器件
无方向器件(无源器件):
电阻:单位:欧姆
电容:单位:法拉
电感:单位:亨
有方向器件(有源器件):电解电容、 二极管 、三极管、蜂鸣器
机芯结构:
电源(电池)部分、PCB、元器件、胶罩、五金
检测要求:
检测环境、设备、方法。
精度、工作电流、静态电流、功能。(使用寿命)
生产流程:
PCB---COB---焊锡----测试-----EL片----LCD----入罩----上板(上五金片)----测试----上电池----功能测试-----贴电池贴纸。
常见故障排除:
白板:1、首先电池是否有电,无电,更换电池;有电,将机芯AC点短路即可。2、电池有电,短路任不好的,修理PCB。
断字(缺划):1、可能是螺丝松动,打紧螺丝即可;2、驳马条上有污物,重装去除污物即可;3、LCD或PCB坏,更换以上元件。
按灯字闪或无字:1、电池无电,更换电池;2、电池电压正常,按灯字闪,是亮灯干扰,增加干扰电容;
㈩ 闹钟工作原理及机械结构
工作原理:
机械钟表中,利用带簧(发条)恢复变形所放出的能量或利用重物下降的重力作能源,以机械振动系统为时间基准,实现计量时间和时段的机械机构。机械钟表机构有多种类型,但一般都由原动系、传动系、擒纵调速系、上条拨针系和指针系组成,工作原理基本相同。此外,日历手表中还包括日历(或双历)机构,自动手表中还包括自动上条机构。
原动系储存和传递工作能量的机构。分为重锤原动系和弹簧原动系两类。
重锤原动系利用重锤的重力作能源。多用于简易挂钟和落地摆钟。重锤原动系结构简单,力矩稳定,但当上升重锤时,传动系与原动系脱开,钟表机构停止工作。
弹簧原动系利用卷成螺线形的带簧(发条)恢复变形所放出的能量作能源。带簧一端与轴连接,另一端与一个不动的零件或发条盒的壳体连接。弹簧原动系用作携带式钟表的能源,也用于摆钟上。弹簧原动系有带固定条盒式、不带条盒式和带活动条盒式等3种类型。
传动系将原动系的能量传给擒纵调速系的一组传动齿轮。通常由一系列轮片和齿轴组成(图3),在主传动中轮片是主动齿轮,齿轴是从动齿轮。传动比按照以下公式进行计算:i=Z1/Z2式中Z1为主动齿轮齿数,Z2为从动齿轮齿数。对于有秒针装置的钟表,其中心轮的轮片到秒轮的齿轴的传动比必须等于60。钟表传动系的齿形绝大多数是专门设计的。
传动系可按“二轮”(时轮和分轮)在表机芯的平面配置分为两类:①中心二轮式,二轮在表机芯的中央。它又包括直接传动式、秒簧式、短秒针和无秒针式、双三轮式。②偏二轮式,二轮不在表机芯中央。它又包括头轮传出式、二轮传出式、三轮传出式。
直接传动式是经常采用的传动系之一。在这种传动方式中,分轮上部有一凹槽,分轮依靠摩擦与中心轮管相配合;走针机构的运动由中心轮来带动。
擒纵调速系由擒纵机构和振动系统构成。按振动系统的特点可分为两类:①有固有振动周期擒纵调速系。它具有可以独立进行振动的、有稳定周期的振动系统。手表、闹钟中的走时系统的擒纵调速系属于此类。②无固有振动周期擒纵调速系。它没有能够独立进行振动的振动系统。这种调速系中的所谓振动系统的往复振动,完全依靠擒纵机构的往复运动。机械闹钟中的闹时系统的擒纵调速系属于此类。这种调速系精度要求不高,结构简单,工作可靠,抗外界干扰能力强,在机械式定时器和钟表引信中大量采用。
擒纵机构联系传动系和振动系统的一种机构。其作用是把原动系的能量传递给振动系统,以维持振动系统的等幅振动;并把振动系统的振动次数传给指针机构,达到计量时间之目的。擒纵机构种类很多,按其与振动系统联系的程度可分为两类。①非自由式擒纵机构:擒纵机构和振动系统经常保持运动上的联系。它包括直进式、后退式和工字轮式擒纵机构等。②自由式擒纵机构:只有在释放和传冲阶段,擒纵机构和振动系统才保持运动上的联系,其余阶段振动系统处于自由运动状态。它包括有销钉式、叉瓦式和天文钟式擒纵机构等。
①后退式擒纵机构:广泛用于低精度摆钟。它的叉瓦锁面和冲面是同一平面(工作面);进瓦的工作面是一圆柱面,其圆心与擒纵叉的转动中心不重合;出瓦的工作面是一平面。叉瓦和擒纵叉作成一体。传冲后,叉瓦工作面将迫使擒纵轮后退一个角度。
②叉瓦式擒纵机构:应用最广的擒纵机构之一。工作时,擒纵轮由传动系取得能量,通过擒纵轮齿和叉瓦(进瓦或出瓦)的作用转变为冲量传送给擒纵叉;通过擒纵叉的叉口和双圆盘的冲击圆盘上的摆钉的相互作用,再将冲量传给振动系统。双圆盘的保险圆盘和叉头钉,摆钉和擒纵叉的喇叭口是保证机构正常工作的保险装置。
③销钉式擒纵机构:与叉瓦式擒纵机构的不同之处是,在擒纵叉上用两根圆柱销钉代替叉瓦,冲量只沿擒纵轮齿冲面传递。这种擒纵机构结构简单,精度要求低,制造方便,多在闹钟和低精度表中采用,俗称粗马结构。振动系统作为时间基准的机构。振动系统的振动周期乘以被测过程内的振动次数,即为该过程经历的时间。机械钟表常用的振动系统有摆、扭转摆和摆轮游丝振动系统。
机械结构:
闹钟是用发条储存能量,是一种高锰钢材料;经过许多级别齿轮增加角速度,注意齿形不是渐开线,是摆线,为了减少摩擦力,适合在小力矩下高效率传动;经过往复摆动的擒纵机构,一种有固有振动周期的结构实现定时要求,就是恒角速度;擒纵机构用的像发条的游丝是恒弹合金,是一种弹性元件,其机械特性受温度影响比较小。