① 机械系统设计的系统法有哪些内容特性
机械系统设计的系统法就是把研究的对象作为系统或系统的要素和结构,从整体上系统地、全面地进行确定的科学方法。它从系统的观点出发,着眼于整体与局部、系统与环境、人与机之间的相互联系和相互作用,并且综合地、精确地考察研究对象,从而最佳地处理所研究的问题。下面侧重阐述系统分解和系统分析的相关内容。
1、系统分解
任何较大的复杂的系统均可分成若干部分或层次,对于时间过程系统可以分成若干阶段。如何将所研究的系统按不同层次或阶段,以至逐个地把组成系统的要素或子系统区分开来进行分析,使复杂的系统整体变换成许多简单的子系统,这就是系统的分解问题。系统整体如何通过分解简化为若干个子系统,这对于认识整体系统,作出决策,以及协调配合都关系极大。系统分解大体可以分成以下几种类型:
(1)按空间结构关系进行分解
这是系统分解的常用方法。将系统按空间关系划分为若干相互关联的子系统,同一层次的子系统属平行关系。
例如,一个机械厂如按空间关系可以划分为铸造车间、锻造车间、金工车间、装配车间、检修车间等相对独立的各个子系统,彼此之间虽有联系,但基本上属于平行关系。
(2)按系统总目标进行分解
这是将整体系统的总目标划分为若干部分的分目标。这种系统分析法有利体现系统不同的属性。
例如,一台行走式谷物联合收获机其总目标是收获谷物。它可以分解为动力、传动、执行(包括作物茎秆切断、谷粒与谷穗分离、谷粒清选等)、操纵控制、行走、支承等相对独立的子系统。各个子系统分别实现分目标。这种划分任务明确、目的性强。
(3)按系统模型的关联性进行分解
这种方法借助于系统模型的关联性对系统分解。首先对系统建立主框图模型,用图示法或图表法反映各子目标的相互关系;其次按掌握的资料建立定量的数学模型,反映各子目标的函数关系;其三,将属性模型转换为计算机语言以便进行分析计算。通过模型的关联性分解得到系统的各子系统的相互关系。
(4)按系统控制和管理过程进行分解
为了便于系统工程施工以及进入运行阶段的控制和管理,在工程系统中,还必须把一个完整的控制问题变换成一组控制的子问题,然后采取不同方法加以解决。
机械系统的分解采用第2种方法居多。在进行系统分解时,要特别关注系统的整体性和相关性,并把容易综合获得最优的整体方案作为首要条件。
系统分解可以平面分解,也可以分级分解,或者兼有二者的组合分解
系统分解时应注意下述各点:
1)分解数和层次应适宜分解数太少,子系统仍很复杂,不便于子系统的模型化和优化等设计工作;分解数和层次太多,又会给总体系统的综合设计造成困难。
2)避免过于复杂的分界面对那些联系紧密的要素不宜分解拆开,即分解的界面应尽可能选择在要素间结合枝数(联系数)较少和作用较弱的地方。
3)保持能量流、物质流和信息流的合理流动途径通常机械系统工作时都存在着能量、物料和信息三种流的传递和变换,它们在从系统输入到系统输出的过程中,按一定方向和途径流动,既不可中断阻塞,也不能造成干涉或紊流,即便分解成各个子系统,它们的流动途径仍应明确和畅通。
4)了解系统分解与功能分解的关联及不同系统分解时,每个子系统仍是一个子系统,它把具有比较紧密结合关系的要素集合在一起,其结构成员虽稍为简单,但其功能往往还有多项。而功能分解时是按功能体系进行逐级分解,直至不能再分解的单元功能为止。
2、系统分析
系统分析是一种科学的决策方法,其目的是帮助决策者,对所要决策的问题逐步提高其清晰度。它是采用系统的观点和方法,用定性和定量的工具,对所研究的问题进行系统结构和系统状态的分析,提出各种可行的方案和替代方案,并进行分析和评价,为决策者选择最优系统方案提供主要依据。
系统分析的一般程序如下:
1)系统目标设定系统目标是系统分析的出发点和进行评价、决策的主要依据。因此,应进行系统研究——通过对广泛的资料的分析,获得有关信息,并利用有效方法(如进行统计和检验等)对信息进行处理,以确定系统目标。
2)构造模型模型是实体系统的抽象,它应能表示系统的主要组成部分和各部分的相互作用,以及在运用条件下因果作用和反作用的相互关系。构造模型的目的是用较少的风险、时间和费用来对实体系统作研究和实验,以便更好地得到系统的性能。模型包括数学模型、实物模型、计算机模拟及各种图表等。在构造模型时,必须全面考虑系统的各影响因素,分清主次,尽可能如实描述系统的主要特征。在能满足系统目标的前提下,应尽量简化,以需要、简明、易解为原则。
机械系统是物理系统,描述物理系统的模型常用图像模型和数学模型。由于计算机技术的渗透,数学模型的应用越来越广,尤其是需要对系统进行精确定量分析的场合。
虽然构造模型对于系统分析是很重要的,但也不能排除经验分析和类比判断。当设计师能够根据自己或他人的经验直观地作出正确的分析判断时,也可不必建立模型,但应提出可靠的例证。
3)系统最优化系统最优化就是应用最优化理论和方法,对各个候选方案进行最优化设计和计算,以获得最优的系统方案。
由于系统的变量众多,结构通常都很复杂,在系统目标设定时,常常有多个目标,其中有些可能是矛盾的,很难完全兼顾,因此,在多目标的系统分解中,常采取合理的妥协和折中的办法,如满意性设计或协调性设计。前者为不一定追求系统的真正最优,而是寻求一个综合考虑功能、技术、经济、使用等因素后的满意的系统;后者在系统中,不一定每项性能指标都达到最优,虽然从局部看不都是最优,但从整体看则是最优,整个系统具有良好的协调性。
4)系统评价系统评价是对系统分析过程和结果的鉴定,其主要目的是判断所设计的系统是否达到了预定的各项技术经济指标。
系统的评价对于决策的有效性关系极大,正确的评价可以使决策获得成功,取得很大的效益,错误的评价可以导致决策失败,付出沉重的代价。
系统评价时,首先要根据系统目标规定一组评价指标,确定系统的评价项目,制定评价的准则。不同的系统应该有不同的评价指标。系统评价的项目是由构成系统的性能要素来确定的,主要包括系统的功能、速度、成本、可靠性、实用性、适应性、寿命、技术水平、生存能力、竞争能力、重量、体积、外观、能耗等因素。由这些因素构成描述系统的有序集合,可以根据系统所处的实际环境条件安排它们的评价顺序。通过对各因素赋予反映价值地位的加权系数,形成一种评价的价值体系。这种价值体系主要是从技术和经济的角度来进行衡量的。
系统评价应视被评价系统的特点和企业具体条件确定指标体系。一般机械系统采用较多的评价指标体系是价值和投资体系,对系统总投资费用和总收益进行分析和评价,以选择技术上先进、经济上合理的最优系统方案。
② 什么是机械系统动力学仿真
系统仿真就是根据系统分析的目的,在分析系统各要素性质及其相互关系的基础上,建立能描述系统结构或行为过程的、且具有一定逻辑关系或数量关系的仿真模型,据此进行试验或定量分析,以获得正确决策所需的各种信息。
计算机试验常被用来研究仿真模型。仿真也被用于对自然系统或人造系统的科学建模以获取深入理解。仿真可以用来展示可选条件或动作过程的最终结果。仿真也可用在真实系统不能做到的情景,这是由于不可访问、太过于危险、不可接受的后果、或者设计了但还未实现、或者压根没有被实现等。
仿真的主要论题是获取相关选定的关键特性与行为的有效信息源,仿真时使用简化的近似或者假定,仿真结果的保真度与有效性。模型验证与有效性的过程、协议是学术学习、改进、研究、开发仿真技术的热点,特别是对计算机仿真。
(2)机械系统建模方法有哪些扩展阅读
系统动力学是研究社会系统动态行为的计算机仿真方法。具体而言,系统动力学包括如下几点:
1、系统动力学将生命系统和非生命系统都作为信息反馈系统来研究,并且认为,在每个系统之中都存在着信息反馈机制,而这恰恰是控制论的重要观点,所以,系统动力学是以控制论为理论基础的。
2、系统动力学把研究对象划分为若干子系统,并且建立起各个子系统之间的因果关系网络,立足于整体以及整体之间的关系研究,以整体观替代传统的元素观。
3、系统动力学的研究方法是建立计算机仿真模型—流图和构造方程式,实行计算机仿真试验,验证模型的有效性,为战略与决策的制定提供依据。
③ 机电系统建模与仿真的内容简介
本书共分6章,内容抄涉及袭机电系统的动力学方程、动力学仿真软件和试验建模方法;面向动力学模型和面向实体模型的机电系统仿真分析方法;重点介绍了MATLAB系统分析与设计工具在基于传递函数的伺服控制系统设计与仿真、基于状态空间模型的控制系统设计、模糊控制系统设计及仿真的应用;基于dSPACE的半物理仿真及辨识试验方法。
本书的特色在于突出机电系统的一体化设计思想,并结合机电系统研究的科研实践,在教材中充实了大量的应用实例,每章课后附有习题和思考题,增强了本书的实用性。本书可作为高等院校机械电子工程专业的研究生教材,也可作为相关专业、科技人员的参考资料。
④ ADAMS机械系统动力学建模一般分为几个步骤
没有那么死的规定吧!简单模型
1-几何模型:ADAMS建和外部导入;
2-加约束、驱动、建立测量;
3-设置仿真
4-数据处理postprocessor.
如果涉及参数化模型和优化,要多一些操作了
⑤ 怎样建立一个机械系统(如 减速箱)的数学模型
首先你要弄清楚你的机械系统对象的物理模型,也就是他是怎么工作的,然后专在它的基础上建立动态模型,属你可以看看《机械控制系统》这本书,对你应该有帮助,里面介绍了一些典型的机械系统以及数学模型和控制模型,有了这些之后,在matlab上仿真就变得很容易了!
⑥ 常用的系统建模方法的适用范围和局限性
第一篇:方法适用范围
一、统计学方法
1.1 多元回归
1、方法概述:
在研究变量之间的相互影响关系模型时候,用到这类方法,具体地说:其可
以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归
方程可以求出因变量的估计值,从而可以进行预测等相关研究。
insking:大量mc,tb,ea策略源代码
zhuanlan.hu.com
insking:500G程序化和量化交易视频分享
zhuanlan.hu.com
2、分类
分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一
定的变化转化为线性回归,比如:y=lnx 可以转化为 y=u u=lnx 来解决;所以这
里主要说明多元线性回归应该注意的问题。
3、注意事项
在做回归的时候,一定要注意两件事:
(1) 回归方程的显著性检验(可以通过 sas 和spss 来解决)
(2) 回归系数的显著性检验(可以通过 sas 和spss 来解决)
检验是很多学生在建模中不注意的地方,好的检验结果可以体现出你模型的
优劣,是完整论文的体现,所以这点大家一定要注意。
4、使用步骤:
(1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间
的大致关系;
(2)选取适当的回归方程;
(3)拟合回归参数;
(4)回归方程显著性检验及回归系数显著性检验
(5)进行后继研究(如:预测等)
1.2 聚类分析
1、方法概述
该方法说的通俗一点就是,将 n 个样本,通过适当的方法(选取方法很多,
大家可以自行查找,可以在数据挖掘类的书籍中查找到,这里不再阐述)选取m
聚类中心,通过研究各样本和各个聚类中心的距离Xij,选择适当的聚类标准,
通常利用最小距离法(一个样本归于一个类也就意味着,该样本距离该类对应的
中心距离最近)来聚类,从而可以得到聚类结果,如果利用sas 软件或者spss 软
件来做聚类分析,就可以得到相应的动态聚类图。
这种模型的的特点是直观,容易理解。
2、分类
聚类有两种类型:
(1) Q 型聚类:即对样本聚类;
(2) R 型聚类:即对变量聚类;
通常聚类中衡量标准的选取有两种:
(1) 相似系数法
(2) 距离法
聚类方法:
(1) 最短距离法(2) 最长距离法
(3) 中间距离法
(4) 重心法
(5) 类平均法
(6) 可变类平均法
(7) 可变法
(8) 利差平均和法
在具体做题中,适当选区方法;
3、注意事项
在样本量比较大时,要得到聚类结果就显得不是很容易,这时需要根据背景
知识和相关的其他方法辅助处理。
4、方法步骤
(1)首先把每个样本自成一类;
(2)选取适当的衡量标准,得到衡量矩阵,比如说:距离矩阵或相似性矩
阵,找到矩阵中最小的元素,将该元素对应的两个类归为一类,
(3)重新计算类间距离,得到衡量矩阵
(4)重复第2 步,直到只剩下一个类;
补充:聚类分析是一种无监督的分类,下面将介绍有监督的分类。
1.3 数据分类
1、方法概述
数据分类是一种典型的有监督的机器学习方法,其目的是从一组已知类别的
数据中发现分类模型,以预测新数据的未知类别。这里需要说明的是:预测和分
类是有区别的,预测是对数据的预测,而分类是类别的预测。
2、分类方法:
(1)神经网路
(2)决策树(这里不再阐述,有兴趣的同学,可以参考数据挖掘和数据仓
库相关书籍)
3、注意事项
神经网路适用于下列情况的分类:
(1) 数据量比较小,缺少足够的样本建立数学模型;
(2) 数据的结构难以用传统的统计方法来描述
(3) 分类模型难以表示为传统的统计模型
神经网路的优点:
分类准确度高,并行分布处理能力强,对噪声数据有较强的鲁棒性和容
错能力,能够充分逼近复杂的非线性关系,具备联想记忆的功能等。
神经网路缺点:
需要大量的参数,不能观察中间学习过程,输出结果较难解释,会影响
到结果的可信度,需要较长的学习时间,当数据量较大的时候,学习速度会制约
其应用。
⑦ 简单的机械模型制作方法是什么
①及时贴制作法来制作标盘、指北针及比例尺是一种简而易行的制作方法。
②有内机玻璃将标盘、容指北针及比例尺制作出来,然后将其粘贴在盘面上,这是一种传统的制作方法,这种方法立体感较强、醒目。
③腐蚀板制作法是一种以1.0~1.5mm厚的不锈钢、铜板作基底,用腐蚀工艺进行加工制作的方法。
④雕刻制作法是以双色板为基底,用雕刻机完成加工制作的一种方法。具体制作方法是用计算机将图文录入、编辑,然后将可加工数据传入铣雕系统进行雕刻加工。
⑧ 在adams/view下进行机械系统建模,其模型主要包含哪些要素
全书共分7章。第1章对Adams/View和Adams/PostProcessor的界面和基本使用方法进行了介绍,并以单专摆为例说明Adams的一般使用过程。第2章介绍了在属Adams/View中最常用的10种基本建模技术。第3章列举了11个例子,说明如何用Adams计算理论力学中的典型问题。第4章列举了10个例子,说明如何用Adams对机械原理中的连杆机构、齿轮机构、凸轮机构以及间歇运动机构进行建模与仿真。第5章列举了6个例子,说明如何用Adams对机械设计中的齿轮机构、链传动、带传动、轴承等进行建模与仿真。第6章以一个折叠机构为例,详细阐述了在Adams中编程的基本方法。第7章列举了3个较复杂的例子,说明如何联合三维软件和Adams进行建模与仿真,以及如何在Adams中做优化设计。[1] 本书从机械类学生的知识基础出发,循序渐进地阐述Adams的应用,适合机械类、近机类的本科生、研究生、教师以及机械工程师使用[1
⑨ 实体建模的具体相关知识
一、实体建模 的概念 1.实体建模实体建模 的的必要性 必要性 2.实体建模 实体建模 的概念 的概念 不仅描述了实体的全部几何信息,而且定义了所有点、线、 面、体的拓扑信息。 实体建模的标志,是在计算机内部以实体描述客观事物。 利用这样的系统,一方面可以提供实体完整的信息,另一 方面、可以实现对可见边的判断,具有消隐的功能。实体 建模是通过定义基本体素,利用体素的集合运算或基本变 形操作实现的,其特点在于覆盖三维立体的表面与其实体 同时生成。由于实体建模能够定义三维物体的内部结构形 状。因此,能完整地描述物体的所有几何信息,是当前普 遍采用的建模方法。 二、实体建模的方法 按照实体生成的方法不同,可分为体素法、扫描法 等几种 体素法是通过基本体素的集合运算构造几何实体的建模方法 有些物体的表面形状较为复杂,难于通过定义基本体素加以描述,可以定义基体,利用基本的变形操 作实现物体的建模,这种构造实体的方法称为扫描 法。扫描法又可分为平面轮廓扫描和整体扫描两种。 实体模型和线框或表面模型的区别:表面模型所 描述的面是孤立的面,没有方向,没有与其它的 面或体的关联;而实体模型提供了面和体之间的 拓扑关系。而且记录了全部点、线、面、体的拓 扑信息,这是实体模型与线框或表面模型的根本 区别。详细 三、三维实体建模中的计算机内部表示 计算机内部表示三维实体模型的方法有很多,并且正向多重模式发 展。常见的有边界表示法、构造实体几何法、混合表示法(即边界 表示法与构造实体几何法混合模式)、空间单元表示法等。 边界表示法简称B—Rep法,它的基本思想是,一个形体可以通过 包容它的面来表示,而每—个面又可以用构成此面的边描述.边 通过点.点通过三个坐标值来定义。详细 按照实体、面、边、顶 点描述,在计算机内部存贮了这种网状的数据结构 1.边界表示法 (Boundary Representation) 边界表示法的优点在于含有较多的关于面、边、点及其相互关系的 信息,这些信息对于工程图绘制及图形显示都是十分重要的,并且 易于同二维绘图软件衔接和同曲面建模软件联合应用。 边界表示法也有其缺点,由于它的核心是面.因而对几何物体的整 体的描述能力相对较差,无法提供关于实体生成过程的信息。 例如一个三维物体最初是由哪些基本体素,经过哪种集合运算拼合 而成的,也无法记录组成几何体的基本体素的原始数据。同时描述 所需信息量较大、并有信息冗余。 构造实体几何(Constructive Solid Geometry)表示法 原理:构造实体几何法简称CSG法 ,通过基本体 素及它们的集合运算(如并、交、差)进行表示的, 即通过布尔运算生成二叉树结构进行表示。 CSC法与B-Rep法的主要区别在于存储的主要是 物体的生成过程,所以也称为过程模型。详细 特点: 与边界表示法相比,CSG法构成实体几何模型相当简单,生成速 度快.处理方便,无冗余信息,与机械装配的方式非常类似,而且 能够详细地记录构成实体的原始特征及参数,对于同一形体,CSG 法数据量只有B-Rep法的1/10。详细 CSG表示法的数据结构通常有两套数据结构一个是由基本体素以及集合运算和几何变换所生成实体的二叉树的 数据结构,另一套是描述这些体素的位置及其体、面、边、点的信 3.混合模式CSG的数据结构可以方便的转换成其它的数据结构,但 与此相反,其它数据结构转换成CSG数据结构却很困难, 甚至有些情况下是无法实现的。 不能存储最终实体的更详细的几何信息。必须经过运 算转化为边界表示法(B-REP)后,才能对实体的点、边、 面等信息进行查询和编辑。 采用CSG法可以方便地实现对实体的局部修改。详细 原理:混合模式建立在边界表示法与构造立体几何法的基础之上,在同一系统中,将两者结台起来,共同表示 实体。 对CAD/CAM集成系统来说,单纯的几何模型不能满足要求, 往往需要在几何模型的基础上附加制造信息,构造产品模 型。人们在实践中总结出B—Rep法和CSG法各自的持点,试 图在系统中采用混合方法对物体进行描述。详细 方法:以CSG法为系统外部模型,以B—Rep法为内部模型, CSG法适于做用户接口,方便用户输入数据,定义体素及确定 集合运算类型,而在计算机内部转化为B—Rep的数据模型,以 便存贮物体更详细的信息。这相当于在CSG树结构的节点上扩 充边界法的数据结构.可以达到快速描述和操作模型的目的 特点:混合模式是在CSG基础上的逻辑扩展,起主导 作用的是CSG结构,结合B—Rep的优点可以完整地表达 物体的几何、拓扑信息,便于构造产品模型,使造型技 术大大前进了一步。 4.空间单元表示法 空间单元表示法是通过一系列空间单元构成的图形来表示物 体的一种方法。这些单元(Cell)都是具有一定大小的立方 基本思想:是将一个三维实体有规律地分割为有限个单元,这些单元均为具有一定大小的立方体;在计算机内部通过定义各 个单元的位置是否填充来建立整个实体的数据结构。 空间单元表示法数据结构通常是四叉 四叉树常用作二维物体描述对三维实体需采用八叉树。详细 空间单元表示法 的特点 空间单元表示法是一种数字化的近似表示法,用来描述比 较复杂的。尤其是内部有孔、或具有凸凹等不规则表面的实 体。显然,所分割单元的大小、数量均影响实体模型的精度, 数目越多,精度越高,相应的系统处理数据的时间也越长, 存贮这些数据所占的空间也越大。 由于这种方法是空间上的近似,它并不能表达一个物体任 意两部分之间的关系,也没有关于点、线、面的概念。但是 它的算法比较简单,在CAD/CAM系统中可以作为物理特性 计算和有限元计算的基础。