导航:首页 > 装置知识 > 螺旋送料装置设计

螺旋送料装置设计

发布时间:2024-05-17 12:04:51

1. WLS无轴螺旋输送机原理、特点、结构、安装调试运行等参数!详细的介绍下!

WLS型无轴螺旋输送机简介:

WLS型无轴螺旋输送机是我厂技术部门在设计生产各类螺旋输送机丰富经验的基础上,参照国家同类产品,联合有关科研部门而设计开发的新型输送机产品.

WLS型无轴螺旋输送机主要用于环保、造纸、化工、食品、医药、饮料等行业输送站附性较强的物料,糊状粘稠物料(如化工原料、废纸浆、麦芽、污泥等)以及易缠绕物料(如生活垃圾),具有独特优势。所以无轴螺旋输送机又称防缠绕输送机、垃圾处理输送机.

WLS型无轴螺旋输送机输送原理

WLS型无轴螺旋输送机在输送原理上与一般螺旋输送机基本相同:即如同一根旋转的螺旋轴,带动一个螺母沿其轴向移动一样,无轴螺旋输送机螺旋体相当于螺旋轴,物料相当于螺旋输送机螺母,当螺旋体连续旋转时则物料也连续输送。无轴螺旋输送机螺旋体为较厚的带状叶片,通过无轴螺旋输送机驱动端驱动,中间无轴,螺旋体与机壳内壁底部衬板接触(滑动).

WLS型无轴螺旋输送机特点

无轴螺旋输送机与传统有轴螺旋输送机相比,因为采用了无中心轴设计,使用具有一定柔性的整体钢制螺旋推送物料,所以具有以下突出优点:

无轴螺旋输送机抗缠绕性强:因为无中心轴干扰,对于输送带状、粘稠物料、易缠绕物料有特殊的优越性,如用于污水处理厂输送中细格栅,其栅条净距50mm的除污机栅渣和压滤机泥饼等物料,或者垃圾处理场所处理运输垃圾,能防止阻塞引起的事故。

无轴螺旋输送机环保性能好。无轴螺旋输送机采用全封闭输送和易清洗的螺旋表面,可保证环境卫生和所送物料不受污染、不泄漏。

无轴螺旋输送机扭距大、能耗低。由于螺旋无轴,物料不易堵塞,排料口不堵塞,因而可以较低速度运转,平稳传动,降低能耗。扭距可4000N/m。

无轴螺旋输送机输送量大。无轴螺旋输送机输送量是相同直径传统有轴螺旋输送机的1.5倍。

无轴螺旋输送机输送距离长。单机输送长度可达60米。并可根据用户需要,采用多级串联式安装,超长距离输送物料。

无轴螺旋输送机能机动工作。我公司开发生产的移动型无轴螺旋输送机,能机动工作,一机多用。既可下方出料,又可端头出料。采用特制衬板,该机可在高温下工作。结构紧凑,节省空间,外型美观,操作简便,经济耐用.

WLS无轴螺旋输送机的结构

WLS无轴螺旋输送机主要由动力装置、头部装配、机壳、无轴螺旋体、耐磨衬板、进料口、出料口、机盖(需要时)、底座等组成。

1、WLS无轴螺旋输送机驱动装置:采用摆线针轮轮减速机或轴装式硬齿面齿轮减速机,设计时应尽可能将驱动装置设在出料口端,使螺旋体在运转时处在受拉状态。

2、WLS无轴螺旋输送机头部装配有推力轴承,可承受输送物料时产生的轴向力。

3、WLS无轴螺旋输送机机壳:机壳为U型,上部加机盖(需要时),材质有不锈钢或碳钢或玻璃钢。

4、WLS无轴螺旋输送机无轴螺旋体:材质为不锈钢或耐磨钢。

5、WLS无轴螺旋输送机耐磨衬板:耐磨的非金属材料。

6、WLS无轴螺旋输送机进、出料口:有方形和圆形两种,用户无要求时按方形的供货

型号名称 WLS150 WLS200 WLS250 WLS300 WLS400 WLS500

螺旋体直径(mm) 150 184 237 284 365 470

外壳管直径(mm) 180 219 273 351 402 500

允许工作角度(α) 0°~30° 0°~30° 0°~30° 0°~30° 0°~30° 0°~30°

最大输送长度(m) 12 13 16 18 22 25

最大输送能力(t/h) 2.4 7 9 13 18 28

电机 型号 L≤7 Y90L-4 Y100L1-4 Y100L2-4 Y132S-4 Y160M-4 Y160M-4

功率kW 1.5 2.2 3 5.5 11 11

型号 L>7 Y100L1-4 Y100L2-4 Y112M-4 Y132M-4 Y160L-4 Y160L-4

功率kW 2.2 3 4 7.5 15 15

WLS无轴螺旋输送机安装、调试及运行

1、WLS无轴螺旋输送机设备安装要求:

a、WLS无轴螺旋输送机进、出料口现场安装,应使进出料口的法兰支撑面与螺旋机的本体轴线平行;与相连接的法兰应紧密贴合不得有间隙。

b、WLS无轴螺旋输送机装好以后,应检查减速机是否加足润滑油、若未加则加足之,其后进行无负载试车;在进行连续半小时以上试运转后,检查WLS无轴螺旋输送机装配的正确性,发现问题应立即停机,处理后再运转,直至处于良好运行状态为止。

c、WLS无轴螺旋输送机运转应平稳可靠,紧固件无松动现象。减速器无渗油、无异常声,电气设备安全可靠。

2、WLS无轴螺旋输送机使用要求:

a、WLS无轴螺旋输送机应无负荷起动,即在机壳内没有物料时起动,起动后方能向WLS无轴螺旋输送机给料。

b、WLS无轴螺旋输送机初始给料时,应逐步增加给料量直至达到额定输送能力,给料应均匀,否则容易造成输送物料的积塞,驱动装置的过载,使整台WLS无轴螺旋输送机损坏。

c、为了保证WLS无轴螺旋输送机无负荷起动的要求,WLS无轴螺旋输送机在停车前应停止加料,等WLS无轴螺旋输送机机壳内物料完全输送完毕后方可停止运转。

d、被输送物料内不得混入坚硬的大块物料,避免螺旋卡死而造成WLS无轴螺旋输送机的损坏。

e、在使用中经常检测WLS无轴螺旋输送机各部分的工作状态、注意各紧固件是否松动,如果发现机件松动,则应立即拧紧螺钉,使之重新坚固。

f、WLS无轴螺旋输送机的机盖在机器运转时不应该取下,以免发生事故

2. 螺旋给料机有哪些主要部件,怎么使用维护

螺旋给料机主要部件:
(1)螺旋:螺旋是该机的主要部件,它由轴和焊接在轴上的螺旋叶片所组成。螺旋叶片和螺纹相同,可分为左旋和右旋两种。
螺旋叶片的型式较多,一般是根据需要选取。常见的螺旋叶片有下列四种。
1)实体螺旋,这种形式应用较广。它结构简单,给料效率高,对散状料最为适宜。
2)带状螺旋,这种螺旋叶片与轴的接触部位是空的,用拉筋支承,螺旋面较窄,能避免物料被粉碎或螺旋叶片与机体被大块物料卡住,在输送大块和粘性物料时被采用。
3)齿状螺旋,这种螺旋在叶片边缘开有若干缺口,由于螺旋带有齿状凹槽,所以能同时起松散、搅动和输送物料的作用,因此多用于输送易被挤紧的物料。
4)弯折齿螺旋,该螺旋凸出的叶片,在转动过程中能使物料不断提升和翻转,它在输送过程中对物料能同时进行混合、冷却和干燥。
(2)加料与卸料装置:螺旋给料机的加卸料装置有多种形式,以适应不同加卸料位置的要求。常见的加料方式有:物料直接落在螺旋叶片上进行加料,或以星形加料器加料,这种加料能够调节进入螺旋给料机的物料量。一般卸料是从机槽底部开卸料口,有时可沿机长方向开设数个卸料口,以适应多点给料需要。
螺旋给料机使用与维护:
a、给料机如用于配料、定量给料时,为保证给料的均匀稳定,防止物料自流应水平安装,如进行一般物料连续给料,可下倾10°安装。对于粘性物料及含水量较大的物料可以下倾15°安装。
b、安装后的给料机应留有20mm的游动间隙,横向应水平,悬挂装置采用柔性连接。
c、空试前,应将全部螺栓坚固一次,尤其是振动电磁的地脚螺栓,连续运转3-5小时,应重新紧固一次。
d、试车时,两台振动电机必须向旋转。
e、给料时在运行过程中应经常检查振幅,电流及噪音的稳定性,发现异常应及时停车处理。
f、电磁轴承每2个月加注一次润滑油,高温季节应每月加注一次润滑油。
螺旋给料机把经过的物料通过称重桥架进行检测重量,以确定胶带上的物料重量,装在尾部的数字式测速传感器,连续测量给料机的运行速度,该速度传感器的脉冲输出正比于给料机的速度,速度信号和重量信号一起送入给料机控制器,控制器中的微处理器进行处理,产生并显示累计量/瞬时流量。该流量与设定流量进行比较,由控制仪表输出信号控制变频器改变给料机的驱动速度,使给料机上的物料流量发生变化,接近并保持在所设定的给料流量,从而实现定量给料的要求。

3. 螺旋千斤顶的设计

一、设计任务书
设计带式输送机的传动装置
工作条件:带式输送机连续单向运转,工作平稳无过载,空载起动,输送带速度允许误差±5% ;两班制工作(每班按8小时计算),使用期限10年,小批量生产。
具体的设计任务包括:
(1)传动方案的分析和拟定;
(2)电动机的选择,传动装置的运动和动力参数的计算;
(3)传动零件的设计(带传动、单级齿轮传动);
(4)轴和轴承组合设计(轴的结构设计,轴承组合设计,低速轴弯、扭组合强度校核,低速轴上轴承寿命计算);
(5)键的选择及强度校核(低速轴上键的校核);
(6)联轴器的选择;
(7)减速器的润滑与密封;
(8)减速器装配草图俯视图设计(箱体、附件设计等);
二、传动方案的拟定及电动机的选择
已知条件:运输带的有效拉力 F=3000N,传送带的速度为 v=2m/s,滚筒直径为 D=300mm。连续单向运转,工作平稳无过载。
1、 传动方案的拟定
采用V带传动及单级圆柱齿轮传动。
(1)、类型:采用Y系列三相异步电动机
(2)、容量选取:工作机有效功率:
Pw=FV/1000=3000 2/1000=6KW
设 :V型带效率
:滚动轴承效率
:闭式齿轮传动(设齿轮精度为8级)效率
:弹性联轴器效率
:卷筒轴效率
ŋ6: 滚筒效率
查表得 ŋ2=0.99 ŋ3=0.97 ŋ4=0.97 ŋ5=0.98
ŋ6=0.96
传动装置总效率为:
ŋ总= ŋ1 ŋ 2^2 ŋ3 ŋ4 ŋ5 ŋ6
=0.96×0.99^2×0.97×0.97×0.98×0.96=0.83
电动机所需功率为:
Pd=FV/1000×0.83=7.23KW
查《机械设计基础课程设计》附录二, 选取电动机的额定功率 Pe=7.5kW
(3)、确定电动机转速
滚筒转速为:
=60×1000V/πD
=60×1000×2/π×300=127.4r/min
因带传动的传动比2-4为宜,齿轮传动的传动比3-5为宜,则
最大适宜传动比为
最小适宜传动比为
则电动机转速可选范围为:
nd=i =127.4×(6~20)=764.4~2548 r/min
可选的同步转速有
1000r/min 1500r/min 3000r/min
三种,三种方案的总传动比分别为:
i =7.61 i =11.3 =22.76
考虑到电动机转速越高,价格越低,尺寸越小,结构更紧凑,故选用同步转速为 的电动机。
查《机械设计基础课程设计》附录二,得此电动机的型号为 Y132M-4。
电动机型号:Y132M-4
额定功率 :7.5
满载转速 :1440
启动转矩 :2.2
最大转矩 :2.2
由电动机具体尺寸参数 ,得
中心高: 132mm
外型尺寸 : 515*(270/2+210)315
底脚安装尺寸 :216 178
地脚螺孔直径 :12
轴外伸尺寸 :38 80
装键部位尺寸 :10 33 38
2、 计算传动装置的总传动比并分配传动比
(1)、总传动比: i总=11.3
(2)、分配传动比:取带传动比 i带=2.8,则减速器传动比 i齿=11.3/2.8=4。
三、 传动装置的运动和动力参数计算
1、各轴转速计算
nⅠ= /i带=1440/2.8=514.286 r/min
nⅡ=nⅠ/i齿=514.286/4.0=127.4 r/min
滚筒n筒=nⅡ=127.4 r/min
2、各轴输入功率计算
PⅠ= Pd ŋ带=7.23×0.96=6.94kw
PⅡ=PⅠŋ2=6.94×096=6.66 kw
3、 各轴输入转矩计算
Td=9550×Pd/nⅠ=9550×7.23/1440=47.95Nm
TⅠ=9550×PⅠ/nⅠ= 9550×6.94/514.286=128.87Nm
TⅡ=9550×PⅡ/nⅡ=9550×6.66/172.4=499.286Nm
四、传动零件的设计计算
(一)、V带及带轮的设计
已知条件:电动机型号为 Y132M-4 中心高132mm,电动机的输出功率为 7.5kw。满载转速为 1440r/min。每天运转时间为16小时(八小时每班,两班制),I轴转速为 514.286 r/min
齿轮传动传动比:
i=nⅠ/nⅡ=4
(1) 、确定计算功率 每天运转时间为16小时的带式输送机的工况系数 =1.2。则 = Pe=1.2×7.5=9 kw
(2)、 选择V带型号
查表知选A型带
并考虑结构紧凑性等因素,初选用窄V带SPA型。
(3)、确定带轮的基准直径 和
I、初选小带轮直径
一般取 ,并取标准值。查表取小带轮直径为125m m。机中心高为 H=132mm,由 ,故满足要求。
II、验算带速
V=пd1n1/60×1000=3.14×125×1440/60×1000
=9.42m/s
一般应使 ,故符合要求。
III、计算大带轮直径
要求传动比较精确,考虑滑动率 ,取 =0.01
有 =(1- )i带 =(1-0.01)×125×2.825=346.959mm
取标准值 =350mm
则传动比 i=2.8
对减速器的传动比进行修正,得减速器的传动比 i=4
从动轮转速为 n2=127.4r/min
IV、确定中心距和带长
【1】 由式 ,可
得332.5 mm≤a≤950 mm
取初步中心距 =750mm
(需使 a》700)
【2】 初算带长
Dm=(D1+D2)/2=237.5 mm
Δ=(D2-D1)/2=112.5mm
L= +2a+Δ /2=2402mm
选取相近的标准长度 Ld=2500mm
【3】 确定中心距
实际中心距
a≈ +(Ld-L) /2=750+(2500-2402)/2
=800mm
V、验算小轮包角
【1】计算单根V带的许用功率
由SPA带的 =125mm, n=1440r/min
i带=2.8
得 =1.93kw
又根据SPA带 Δ =0.17kw
又由 Ld=2500mm
查表,长度系数
=180°-Δ×60°/a=164.7°
同时由 =164.7°得包角系数 Ka=0.964
【2】、计算带的根数z
Z=Pc/(P0+ΔP0)Kl Ka=4.079
取z=5
SPA带推荐槽数为1-6,故符合要求。
VI、 确定初拉力
单位长度质量 q=0.1kg/m
单根带适宜拉力为:=161.1N
VII、 计算压轴力
压轴力为:
FQ=2z sin( a1/2)= 1596.66N
VIII、张紧装置
此处的传动近似为水平的传动,故可用调节中心距的方案张紧。
VIIII、带轮的结构设计
已知大带轮的直径da2=350mm,小带轮的直径为 da1=125mm。对于小带轮,由于其与电动机输出转轴直接相连,故转速较高,宜采用铸钢材料,
又因其直径小,故用实心结构。
对于大带轮,由于其转速不甚高,可采用铸铁材料,牌号一般为HT150或HT200,
又因其直径大,故用腹板式结构。

(二)、齿轮设计
已知条件:已知输入功率P1=6.94kw ,转速为 n1=514.286 r/min,齿数比 u=4,单向运转,载荷平稳,每天工作时间为16小时,预计寿命为10年。
(1)、选定齿轮类型、材料、热处理方式及精度等级
A、采用直齿圆柱齿轮传动。
B、带式输送机为一般机械,速度不高,选用8级精度。
C、查表 小齿轮材料为45钢,调质处理,平均齿面硬度为250HBS。
大齿轮材料为45钢,正火处理,平均齿面硬度为200 HBS。
(2)、初步计算齿轮参数
因为是闭式齿面齿轮传动,故先按齿面接触疲劳强度设计,按齿根弯曲疲劳强度校核。
小齿轮分度圆的直径为
A、 Ad==85
B、 计算齿轮转矩
TⅠ=9550×PⅠ/nⅠ= 9550×6.94/514.286=128.87 Nm
C、 取齿宽系数
齿数比为u=4
D、 取 ,则大齿轮的齿数: =84
E、 接触疲劳极限
[σH]lim =610MPa, [σH]lim =500MPa
应力循环次数
N1=60×514.286×10×300×16=1.48×10
N2=N1/u=3.7×10
查图得接触疲劳寿命极限系数为 =1, =1.1
取安全系数SH=1
则接触应力:
[σ ] =[σ ]lim1ZN1/SH=610×1/1=610MPa
[σ ] =[σ ]lim2ZN2/SH=550MPa
取 [σ ]=550 MPa

则 =85
>=66mm 取d1=70mm
(3)、确定传动尺寸
1、计算圆周速度
v=pd1n1/60*1000=1.77m/s
2、计算载荷系数
查表得使用系数
由 v=1.77 ,8级精度,查图得动载系数
查表得齿间载荷分配系数
查表得齿向载荷分布系数 (非对称布置,轴刚性小)

3、 确定模数: m=d1/z1=70/21=3.33mm,取标准模数为 .5
4、计算中心距:
a=m(z1+z2)/2=183.75mm
圆整为a=185mm
5、精算分度圆直径
d1=mz1=3.5×21=73.5mm
d2=mz2=3.5×84=294mm
6、计算齿宽
b1= d1=1.1×73.5=80mm
取 b2=80mm, b1=85mm
7、计算两齿轮的齿顶圆直径、齿根圆直径
小齿轮:
齿顶圆直径:
da1=m(z1+ha*)=3.5×(21+1)=77mm
齿根圆直径:
df1=m(z1-2ha*-2c)=3.5×(21-2×1-2×0.25)=64.75mm
大齿轮:
齿顶圆直径:
da2=297.5mm
齿根圆直径:
df2=285.25mm
(4)、校核齿根弯曲强度

式中各参数的含义
1、 的值同前
2、查表齿形系数 Ya1=2.8 Ya2=2.23
应力校核系数 Ysa1=1.55 Ysa2=1.77
4、许用弯曲应力
查图6-15(d)、(c)的弯曲疲劳强度系数为
=1

查图得弯曲疲劳寿命系数
,取安全系数 ,故有KFN1=0.85 KFN2=0.8
满足齿根弯曲强度。
(5)结构设计
小齿轮的分度圆直径为 ,故可采用实心结构
大齿轮的分度圆直径为 ,故应采用腹板式结构
(6)、速度误差计算
经过带轮和齿轮设计后,
滚筒的实际转速n= /i= =127.57r/min
滚筒理论要求转速为 127.4r/min
则误差为
故符合要求。
五、轴的设计计算
(一)、低速轴的设计校核
低速轴的设计
已知:输出轴功率为 =6.66KW,输出轴转矩为 =499.286Nm,输出轴转速为 =127.4r/min,寿命为10年。
齿轮参数: z1=21, z2=84,m=3.5,
1、 选择轴的材料
该轴无特殊要求,因而选用调质处理的45钢,查得
2、 求输入轴的功率,转速及扭矩
已求得 ,PI=6.94KW , TI=128.872Nm, nI= 514.286r/min
3、 初步估算最小轴径
最小轴径
当选取轴的材料为45钢,C取110
=
输出轴的最小直径显然是安装联轴器处轴的直径 。
考虑到轴上开有键槽对轴强度的影响,轴径需增大5%。
d=(1+5%)41.3=43.4mm
则d=45mm
为使所选直径 与联轴器的孔径相适应,故需同时选择联轴器。
联轴器的扭矩 ,查表得 ,又TII=499.286Nm,则有
Tc=kT=1.5 499.286Nm=748.9Nm
理论上该联轴器的计算转矩应小于联轴器的公称转矩。
从《机械设计基础课程设计》 查得采用 型弹性套柱联轴器。
该联轴器所传递的公称转矩
取与该轴配合的半联轴器孔径为 d=50mm,故轴径为d1=45mm
半联轴器长 ,与轴配合部分长度 L1=84mm。
轴的结构设计
装联轴器轴段I-II:
=45mm,因半联轴器与轴配合部分的长度为 ,为保证轴端挡板压紧联轴器,而不会压在轴的端面上,故 略小于 ,取 =81mm。
(2)、装左轴承端盖轴段II-III:
联轴器右端用轴肩定位,取 =50mm,
轴段II-III的长度由轴承端盖的宽度及其固定螺钉的范围(拆装空间而定),可取 =45mm.
(3)、装左轴承轴段III-VI:
由于圆柱斜齿轮没有轴向力及 =55,初选深沟球轴承,型号为6211,其尺寸为
D×d×B=100×55×21,故 =55。
轴段III-VI的长度由滚动轴承的宽度B=21mm,轴承与箱体内壁的距离s=5~10(取 =10),箱体内壁与齿轮距离a=10~20mm(一般取 )以及大齿轮轮毂与装配轴段的长度差(此处取4)等尺寸决定:
L3=B+s+a+4=21+10+14+4=49mm
取L3=49mm。
(4)、装齿轮轴段IV-V:
考虑齿轮装拆方便,应使d4>d3=55mm, 轴段IV-V的长度由齿轮轮毂宽度 =80mm决定,取 =77mm。
(5)、轴环段V-VI:
考虑齿轮右端用轴环进行轴向定位,取d5=70mm。
轴环宽度一般为轴肩高度的1.4倍,即
=1.4h=10mm。
(6)、自由段VI-VII:
考虑右轴承用轴肩定位,由6211轴承查得轴肩处安装尺寸为da=64mm,取d6=60mm。
轴段VI-VII的长度由轴承距箱体内壁距离 ,轴环距箱体内壁距离 决定,则 =19mm。
(7)、右轴承安装段VII-VIII:
选用6211型轴承,d7=55mm,轴段VII-VIII的长度由滚动轴承宽度B=21mm和轴承与箱体内壁距离决定,取 。
轴总长为312mm。
3轴上零件的定位
齿轮、半联轴器与轴的周向定位均用平键连接。
按 =45mm,由手册查得平键剖面 ,键槽用键槽铣刀加工,长为70mm。
半联轴器与轴的配合代号为
同理由 =60mm,选用平键为10×8×70,为保证良好的对中性,齿轮轮毂与轴的配合代号为 ,滚动轴承与轴的周向定位是靠过盈配合来保证的,此处选 。
4考虑轴的结构工艺性
轴端倒角取 .为便于加工,齿轮、半联轴器处的键槽分布在同一母线上。
5、轴的强度验算
先作出轴的受力计算简图,如图所示,取集中载荷作用在齿轮的中点,
并找出圆锥滚子轴承的支反力作用点。由表查得代号为6211轴承 ,B=21mm。则
L1=41.5+45+21/2=97mm
L2=49+77/2-21/2=77mm
L3=77/2+10+19+31-21/2=88mm
(1)、计算齿轮上的作用力
输出轴大齿轮的分度圆直径为
d2=294mm,
则圆周力

径向力

轴向力
Fa=Ft tan =Ft tan 0°=0
(2)、计算轴承的支反力
【1】、水平面上支反力
R =Ft L3/(L2+L3)=
R =FtL2/(L2+L3)=
【2】、垂直面上支反力
【3】、画弯矩图
截面C处的弯矩
a、 水平面上的弯矩

b、 垂直面上的弯矩
c、 合成弯矩M
d、 扭矩
T=T =499286Nmm

e、 画计算弯矩
因单向运转,视扭矩为脉动循环, ,则截面B、C处的当量弯矩为

=299939Nmm
f、 按弯扭组合成应力校核轴的强度可见截面C的当量弯矩最大,故校核该截面的强度

查表得 ,因 ,故安全。
A截面直径最小,故校核其强度

查表得 ,因 ,故安全。
g、 判断危险截面
剖面A、B、II、III只受扭矩,虽有键槽、轴肩及过渡配合等所引起的应力集中均将削弱轴的疲劳强度,但由于轴的最小直径是按扭转强度较为宽裕地确定的,所以剖面A、B、II、III均无需校核。
从应力集中对轴的疲劳强度的影响来看,剖面IV和V处过盈配合所引起的应力集中最严重;从受载的情况看,剖面C处 最大。剖面V的应力集中的影响和剖面IV的相近,但剖面V不受扭矩作用,同时轴径也比较大,故不必作强度校核。剖面C上虽然 最大,但应力集中不大(过盈配合及键槽引起的应力集中均在两端),而且这里轴的直径最大,故剖面C也不必校核。剖面VI显然更不必校核,又由于键槽的应力集中系数比过盈配合的小,因而该轴只须校核IV既可。

(二)、高速轴的设计校核
高速轴的设计
已知:输入轴功率为PⅠ=6.94 kw ,输入轴转矩为TⅠ= 128.87Nm
,输入轴转速为nⅠ=514.286 r/min,寿命为10年。
齿轮参数: z1=21,z2=84,m=3.5, 。
1、选择轴的材料
该轴无特殊要求,因而选用调质处理的45钢,由表查得
1、 求输出轴的功率 ,转速 及扭矩 。
已求得 =127.4 r/min
=6.66kw
=499.286Nm
初步估算最小轴径
最小轴径 d min=
由表可知,当选取轴的材料为45钢,C取110
d min=26.2 mm
此最小直径显然是安装大带轮处轴的直径 。
考虑到轴上开有键槽对轴强度的影响,轴径需增大5%。
则 d min=1.05 26.2=27.5mm,取 =28 mm
2、 轴的结构设计
(1)、装带轮轴段I-II:
=28 mm,轴段I-II的长度根据大带轮的轮毂宽度B决定,已知 =60mm,为保证轴端挡板压紧带轮,而不会压在轴的端面上,故 略小于 ,故取 =57mm。
(2)、装左轴承端盖轴段II-III:
联轴器右端用轴肩定位,取 ,轴段II-III的长度由轴承端盖的宽度及其固定螺钉的范围(拆装空间而定),可取
(3)、装左轴承轴段III-IV:
由于圆柱直齿轮无轴向力及 ,初选深沟球轴承,型号6207,其尺寸为 , 。
轴段III-VI的长度由滚动轴承的宽度,滚动轴承与箱体内壁距离 ,等尺寸决定: 。
(4)、间隙处IV-V:
高速轴小齿轮右缘与箱体内壁的距离 。
取 ,
(5)、装齿轮轴段V-VI:
考虑齿轮装拆方便,应使 ,取 ,轴段V-VI的长度由齿轮轮毂宽度B=80mm决定,取 。
(6)、轴段VI-VII:
与轴段IV-V同。 。
(7)、右轴承安装段VII-VIII:
选用6207型轴承, B=17mm ,轴VII-VIII的长度取
轴总长为263mm。
3、 轴上零件的定位
小齿轮、带轮与轴的周向定位均用平键连接。
按 =28mm,由手册查得平键剖面 ,键槽用键槽铣刀加工,长为45mm。
带轮与轴的配合代号为 。同理由 ,选用平键为 ,为保证良好的对中性,齿轮轮毂与轴的配合代号为 ,滚动轴承与轴的周向定位是靠过盈配合来保证的,此处选 。
4、 考虑轴的结构工艺性
轴端倒角取 。
为便于加工,齿轮、带轮处的键槽分布在同一母线上。
7、轴的强度验算
先作出轴的受力计算简图,如图所示,取集中载荷作用在齿轮的中点,并找出圆锥滚子轴承的支反力作用点。查《机械设计课程设计指导书》得代号为6207的深沟球轴承 a=17mm,则
L1=57/2+50+17/2=87mm
L2=17/2+12+10+80/2=70.5mm
L3=17/2+12+10+80/2=70.5mm
(1)、计算齿轮上的作用力
输出轴小齿轮的分度圆直径为
d1=mz1=3.5 21=73.5mm
则圆周力

径向力

轴向力 Fa=0
(2)、计算轴承的支反力
【1】、水平面上支反力
RHA=FtL3/(L2+L3)=1/2Ft=1753.4N
RHB=FtL2/(L2+L3)= 1/2Ft=1753.4N
【2】、垂直面上支反力

RVA=3220N
RVB= =347N
【3】、截面C处的弯矩
1、 水平面上的弯矩

2、 垂直面上的弯矩

3、 合成弯矩M

4、 扭矩
T= TⅠ= 128.87Nm
5、 计算弯矩
因单向运转,视扭矩为脉动循环, ,则截面C、A、D处的当量弯矩为

6 、 按弯扭组合成应力校核轴的强度
可见截面A的当量弯矩最大,故校核该截面的强度

查表得 ,因 ,故安全。
截面D的直径最小,故校核该截面的强度

因 ,故安全。

5、 判断危险截面
剖面A、B、II、III只受扭矩,虽有键槽、轴肩及过渡配合等所引起的应力集中均将削弱轴的疲劳强度,但由于轴的最小直径是按扭转强度较为宽裕地确定的,所以剖面A、B、II、III均无需校核。
从应力集中对轴的疲劳强度的影响来看,剖面IV和V处过盈配合所引起的应力集中最严重;从受载的情况看,剖面C处 最大。剖面V的应力集中的影响和剖面IV的相近,但剖面V不受扭矩作用,同时轴径也比较大,故不必作强度校核。剖面C上虽然 最大,但应力集中不大(过盈配合及键槽引起的应力集中均在两端),而且这里轴的直径最大,故剖面C也不必校核。剖面VI显然更不必校核,又由于键槽的应力集中系数比过盈配合的小,因而该轴只须校核IV既可。

六、键连接的校核计算
键连接设计
I、 带轮与输入轴间键连接设计
轴径 ,轮毂长度为 ,查手册,选用A型平键,其尺寸为 。
现校核其强度:
, , 。

查手册得 ,因为 ,故满足要求。
II、 小齿轮与输入轴间键连接设计
轴径 d=50mm,轮毂长度为 ,查手册,选用A型平键,其尺寸为 .
现校核其强度:
TI=128872Nmm, , 。

查手册得 ,因为 ,故满足要求。
键连接设计
III、 大齿轮与输出轴间键连接设计
轴径d=60mm,轮毂长度为 ,查手册,选用A型平键,其尺寸为
现校核其强度:
TII=499.286 Nm, , 。

查手册得 ,因为 ,故满足要求。
IV、 半联轴器与输出轴间键连接设计
轴径 ,半联轴器的长度为 ,查手册,选用A型平键,其尺寸为 .
现校核其强度:
, , 。

查手册得 ,因为 ,故满足要求。
七、 滚动轴承的选择及寿命计算
滚动轴承的组合设计及低速轴上轴承的寿命计算
已知条件:
采用的轴承为深沟球轴承。
一、滚动轴承的组合设计
1、滚动轴承的支承结构
输出轴和输入轴上的两轴承跨距为H1=155mm,H2=150mm ,都小于350mm。且工作状态温度不甚高,故采用两端固定式支承结构。
2、滚动轴承的轴向固定
轴承内圈在轴上的定位以轴肩固定一端位置,另一端用弹性挡圈固定。
轴承外圈在座孔中的轴向位置采用轴承盖固定。
3、滚动轴承的配合
轴承内圈与轴的配合采用基孔制,采用过盈配合,为 。
轴承外圈与座孔的配合采用基轴制。
4、滚动轴承的装拆
装拆轴承的作用力应加在紧配合套圈端面上,不允许通过滚动体传递装拆压力。
装入时可用软锤直接打入,拆卸时借助于压力机或其他拆卸工具。
5、滚动轴承的润滑
对于输出轴承,内径为d=55mm,转速为n=127.4 ,则
,查表可知其润滑的方式可为润滑脂、油浴润滑、滴油润滑、循环油润滑以及喷雾润滑等。
同理,对于输入轴承,内径为35,转速为514.286 r/min
,查表可知其润滑的方式可为润滑脂、油 浴润滑、滴油润滑、循环油润滑以及喷雾润滑等
6、滚动轴承的密封
对于输出轴承,其接触处轴的圆周速度

故可采用圈密封。
二、低速轴上轴承寿命的计算
已知条件:
1轴承 ,

2轴承

轴上的轴向载荷为0径向载荷为
查表得 ,则轴承轴向分力
Fs1=Fr1/2Y=567N
Fs2=Fr2/2Y=496N
易知此时
Fs1 > Fs2
则轴承2的轴向载荷

轴承1轴向载荷为
.
且低速轴的转速为127.4
预计寿命 =16 57600h
I、计算轴承1寿命
6、 确定 值
查《机械设计基础课程设计》表,得6207基本动荷 ,基本额定静载荷 。
7、 确定e值
对于深沟球轴承,则可得 e=0.44
8、 计算当量动载荷P

<e
由表查得 ,则

9、 计算轴承寿命
由 =
查可得 ,取 ;查表可得 (常温下工作);6207轴承为深沟球轴承,寿命指数为 ,则
>
故满足要求。
II、计算轴承2寿命
1、确定 值
查《机械设计基础设计》,得6211型轴承基本额定动载荷 ,基本额定静载荷 。
2、 确定e值
对于深沟球轴承6200取,则可得e=0.44
4、 计算当量动载荷P


由表10-5查得 ,则
P=Fr2=1687N
5、 计算轴承寿命

查表10-7,可得 ,取 ;查表10-6可得 (常温下工作);深沟球轴承轴承,寿命指数为 ,则
> ,故满足要求。
八、 联轴器的选择
与低速轴轴端相连的半联轴器为弹性套柱销联轴器,型号为 ,其公称转矩为 ,而计算转矩值为:
,故其强度满足要求。
九、箱体结构设计
箱体采用灰铸铁铸造而成,采用剖分式结构,由箱座和箱盖两部分组
成,取轴的中心线所在平面为剖分面。
箱体的强度、刚度保证
在轴承座孔处设置加强肋,做在箱体外部。外轮廓为长方形。
机体内零件的密封、润滑
低速轴上齿轮的圆周速度为:

由于速度较小,故采用油池浸油润滑,浸油深度为:

高速轴上的小齿轮采用溅油轮来润滑,利用溅油轮将油溅入齿轮啮合处进行润滑。
3、机体结构有良好的工艺性.
铸件壁厚为8mm,圆角半径为R=5。机体外型简单,拔模方便.
4. 对附件设计
A 视孔盖和窥视孔
在机盖顶部开有窥视孔,能看到传动零件啮合区的位置,并有足够的空间,以便于能伸入进行操作,窥视孔有盖板,机体上开窥视孔与凸缘一块,便于机械加工出支承盖板的表面并用垫片加强密封,盖板用铸铁制成,用M8螺钉紧固。
B 油螺塞:
放油孔位于油池最底处,并安排在减速器不与其他部件靠近的一侧,以便放油,放油孔用螺塞堵住,因此油孔处的机体外壁应凸起一块,由机械加工成螺塞头部的支承面,并加封油圈加以密封。
C 油标:
油标位在便于观察减速器油面及油面稳定之处。
油尺安置的部位不能太低,以防油进入油尺座孔而溢出.
D 通气孔:
由于减速器运转时,机体内温度升高,气压增大,为便于排气,在机盖顶部的窥视孔改上安装通气器,以便达到体内为压力平衡.
E 定位销:
为保证剖分式机体的轴承座孔的加工及装配精度,在机体联结凸缘的长度方向各安装一圆锥定位销,以提高定位精度.
F 吊钩:
在机盖上直接铸出吊钩和吊环,用以起吊或搬运较重的物体.

总结:机箱尺寸

名称 符号 结构尺寸/mm
箱座壁厚
8
箱盖壁厚
8
箱座凸缘厚度
12
箱盖凸缘厚度
12
箱底座凸缘厚度
20
箱座上的肋厚
7
箱盖上的肋厚
7
轴承旁凸台的高度
39
轴承旁凸台的半径
23
轴承盖的外径
140/112



钉 直径
M16
数目
4
通孔直径
20
沉头座直径
32
底座凸缘尺寸
22
20



栓 轴承旁连接螺栓直径
M12
箱座的连接螺栓直径
M8
连接螺栓直径
M18
通孔直径
9
沉头座直径
26
凸缘尺寸 15
12
定位销直径
6
轴承盖螺钉直径
M8A
视孔盖螺钉直径
M6
吊环螺钉直径
M8
箱体内壁至轴承座端面距离
55
大齿轮顶圆与箱体内壁的距离
12
齿轮端面与箱体内壁的距离
15

十、润滑与密封
滚动轴承的润滑
由于轴承周向速度为,所以宜开设油沟、飞溅润滑。
润滑油的选择
齿轮与轴承用同种润滑油较为便利,考虑到该装置用于小型设备,选用GB443-89全损耗系统用油L-AN15润滑油。
密封方法的选取
选用凸缘式端盖易于调整,采用闷盖安装骨架式旋转轴唇型密封圈实现密封。密封圈型号按所装配轴的直径确定为GB894.1-86-25轴承盖结构尺寸按用其定位的轴承的外径决定
十一、设计小结
十二、参考资料
1《画法几何及工程制图 第六版》朱辉、陈大复等编 上海科学技术出版社
2、《机械设计基础课程设计》 陈立德主编 高等教育出版社
3、《机械设计计算手册 第一版》王三民主编 化学工业出版社
4、《机械设计 第四版》邱宣怀主编 高等教育出版社

我的设计作业F=3000N V=2m/s D=300mm

4. 设计已螺旋输送机的驱动装置设计说明书

计算内容 计算结果
一, 设计任务书
设计题目:传送设备的传动装置
(一)方案设计要求:
具有过载保护性能(有带传动)
含有二级展开式圆柱齿轮减速器
传送带鼓轮方向与减速器输出轴方向平行
(二)工作机原始数据:
传送带鼓轮直径___ mm,传送带带速___m/s
传送带主动轴所需扭矩T为___N.m
使用年限___年,___班制
工作载荷(平稳,微振,冲击)
(三)数据:
鼓轮D 278mm,扭矩T 248N.m
带速V 0.98m/s,年限 9年
班制 2 ,载荷 微振
二.电机的选择计算
1. 选择电机的转速:
a. 计算传动滚筒的转速
nw= 60V/πd=60×0.98/3.14×0.278=67.326 r/min
b.计算工作机功率
pw= nw/9.55×10³=248×67.326/9.55×10³=1.748Kw
2. 工作机的有效功率
a. 传动装置的总效率
带传动的效率η1= 0.96
弹性联轴器的效率η2= 0.99

滚筒的转速
nw=67.326 r/min
工作机功率
pw=1.748Kw

计算内容 计算结果
滚动轴承的效率 η3=0.99
滚筒效率 η4=0.96
齿轮啮合效率 η5=0.97
总效率 η=η1×η2×η34×η4×η5²=
0.95×0.99×0.994×0.96×0.97²=0.816
c. 所需电动机输出功率Pr=Pw/η=1.748/0.816=2.142kw
3. 选择电动机的型号:
查参考文献[10] 表16-1-28得 表1.1
方案
号 电机
型号 电机
质量
(Kg) 额定
功率
(Kw) 同步
转速(r/min) 满载
转速
(r/min) 总传
动比
1 Y100L1-4 34 2.2 1500 1420 21.091
2 Y112M-6 45 2.2 1000 940 13.962
根据以上两种可行同步转速电机对比可见,方案2传动比小且质量价格也比较合理,所以选择Y112M-6型电动机。
三.运动和动力参数的计算
1. 分配传动比取i带=2.5
总传动比 i=13.962
i减=i/i带=13.962/2.5=5.585
减速器高速级传动比i1= =2.746
减速器低速级传动比i2= i减/ i1=2.034
2. 运动和动力参数计算:

总效率
η=0.816

电动机输出功率
Pr=2.142kw

选用三相异步电动机Y112M-6
p=2.2 kw
n=940r/min
中心高H=1112mm,外伸轴段D×E=28×60

i=13.962
i12=2.746
i23=2.034

P0=2.142Kw

计算内容 计算结果
0轴(电动机轴):
p0=pr=2.142Kw
n0=940r/min
T0=9.55103P0/n0=9.551032.119/940=21.762N.m
Ⅰ轴(减速器高速轴):
p1=p.η1=2.1420.95=2.035Kw
n1= n0/i01=940/2.5=376
T1=9.55103P1/n1=51.687 N.m
Ⅱ轴(减速器中间轴):
p2=p1η12=p1η5η3=2.0350.970.99
=1.954 Kw
n2= n1/i12=376/2.746=136.926 r/min
T2=9.55103 P2/n2=136.283N.m

Ⅲ轴(减速器低速轴):
p3=p2η23= p2η5η3=1.876 Kw
n3= n2/i23=67.319 r/min
T3=9.55103 P3/n3=266.133 N.m
Ⅳ轴(鼓轮轴):
p4=p3η34=1.839 Kw
n4= n3=67.319 r/min
T4=9.55103 P4/n4=260.884 N.m
四.传动零件的设计计算
(一)减速器以外的传动零件
1.普通V带的设计计算
(1) 工况系数取KA=1.2
确定dd1, dd2:设计功率pc=KAp=1.22.2=2.64Kw n0=940r/min
T0=21.762N.m
p1=2.035Kw
n1=376r/min
T1=51.687N.m
p2=1.954Kw
n2=136.926 r/min
T2=136.283 N.m
p3=1.876Kw
n3=67.319 r/min
T3=266.133N.m

p4=1.839 Kw
n4=67.319r/min
T4=260.884 N.m

小带轮转速n1= n0=940 r/min
选取A型V带 取dd1=118mm
dd2=(n1/n2)dd1=(940/376) 118=295mm
取标准值dd2=315mm
实际传动i=dd1/ dd2=315/118=2.669
所以n2= n1/i=940/2.669=352.192r/min(误差为6.3%>5%)
重取 dd1=125mm,
dd2=(n1/n2)dd1=(940/376)125=312.5mm
取标准值dd2=315mm
实际传动比i= dd1/ dd2=315/125=2.52
n2= n1/i=940/2.52=373.016
(误差为8% 允许)
所选V带带速v=πdd1 n1/(601000)=3.14
125940/(601000)=6.152m/s
在5 ~25m/s之间 所选V带符合
(2)确定中心距
①初定a0 :0.7(dd1 +dd2)≤a0≤ 2(dd1 +dd2)

308≤a0≤880 取a0=550mm
②Lc=2 a0+(π/2)( dd1 +dd2)+( dd2 -dd1)²/4 a0
=2550+(3.14/2) (315+125)+(315-125)²/4550=1807.559
③取标准值:Ld=1800mm
④中心距:a=a0+ (Ld­Lc)/2=550+(1800-1807.559)/2

计算内容 计算结果
=546.221mm
取a=547mm,a的调整范围为:
amax=a+0.03 Ld=601mm
amin=a-0.015Ld=520mm

(2)验算包角:
α≈180°-(dd2-dd1) 60° /a=180°-(315-125) 60°/547=159°>120°,符合要求。
(3)确定根数:z≥pc/p0’
p0’=Kα(p0+Δp1+Δp2)
Kα=1.25(1- )=0.948
对于A型带:c1=3.7810-4,c2=9.8110-3,
c3=9.610-15,c4=4.6510-5
L0=1700mm
ω1= = =98.437rad/s
p0= dd1ω1[c1- - c3 (dd1ω1)²- c4lg(dd1ω1)]
=12598.437[3.7810-4- -9.6
10-15 (12598.437)²- 4.6510-5
lg(12598.437)]=1.327
Δp1= c4dd1ω1 =0.148
Δp2=c4dd1ω1 =0.0142
p0’=0.948 (1.327+0.149+0.0142)=1.413 Kw

确定根数:z≥ ≤Zmax
z= = 取z=2
(4)确定初拉力F0
F0=500 =500×
=175.633KN
(5)带对轴的压力Q
Q=2 F0zsin =2 =690.768KN
(二)减速器以内的零件的设计计算
1.齿轮传动设计
(1)高速级用斜齿轮
① 选择材料
小齿轮选用40Cr钢,调质处理,齿面硬度250~280HBS大齿轮选用ZG340~ 640,正火处理,齿面硬度170 ~ 220HBS
应力循环次数N:
N1=60n1jLh=60×376×(9×300×16)=9.74×108
N2= N1/i1=9.74×108 ÷2.746=3.549×108
查文献[2]图5-17得:ZN1=1.02 Z N2=1.11(允许有一点蚀)
由文献[2]式(5-29)得:ZX1 = ZX2=1.0,取SHmin=1.0,Zw=1.0,ZLVR=0.92
按齿面硬度250HBS和170HBS由文献[2]图(5-16(b))得:σHlim1=690Mpa, σHlim2=450 Mpa
许用接触应力[σH]1 =(σHlim1/SHmin)ZN1 ZX1 Zw ZLVR=647.496 Mpa,[σH]2=(σHlim2/SHmin)ZN2 ZX2 Zw ZLVR
=459.540 Mpa
因[σH]2〈[σH]1,所以计算中取[σH]= [σH]2 =459.540 Mpa
②按接触强度确定中心距
初定螺旋角β=12° Zβ= =0.989
初取KtZεt2=1.12 由文献[2]表5-5得ZE=188.9 ,减速传动u=i1 =2.746,取Φa=0.4
端面压力角αt=arctan(tanαn/cosβ)=arctan(tan20°/cos12°)=20.4103°
基圆螺旋角βb= arctan(tanβ×cosαt)= arctan(tan12°×cos20.4103°)=11.2665°
ZH= = =2.450
计算中心距a:

计算内容 计算结果
a≥
=
=111.178mm
取中心距 a=112mm
估算模数mn=(0.007~0.02)a=(0.007~0.02)×=
0.784~2.24
取标准模数mn=2
小齿轮齿数

实际传动比: 传动比误差 在允许范围之内
修正螺旋角β=
10°50′39〃
与初选β=12°相近,Zβ,ZH可不修正。
齿轮分度圆直径

圆周速度
由文献[2]表5-6 取齿轮精度为8级
③验算齿面接触疲劳强度
按电机驱动,载荷平稳,由文献[2]表5-3 取 KA=1.25
由文献[2]图5-4(b),按8级精度和
取KV=1.023
齿宽 ,取标准b=45mm
由文献[2]图5-7(a)按b/d1=45/61.091=0.737,取Kβ=1.051
由文献[2]表5-4,Kα=1.2
载荷系数K= KAKVKβKα=
计算重合度:
齿顶圆直径
端面压力角:
齿轮基圆直径: mm
mm
端面齿顶压力角:

高速级斜齿轮主要参数:
mn=2
z1=30, z2=80
β=
10°50′39〃
mt= mn/cosβ=2.036mm
d1=61.091mm
d2=162.909mm
da1=65.091mm
da2=166.909mm
df1= d1-2(ha*+ c*) mn=56.091mm
df2= d2-2(ha*+ c*) mn=157.909mm
中心距a=1/2(d1+d2)=112mm
齿宽b2=b=
45mm
b1= b2+(5~10)=50mm

计算内容 计算结果

齿面接触应力
安全
④验算齿根弯曲疲劳强度
由文献[2]图5-18(b)得:
由文献[2]图5-19得:
由文献[2]式5-23:

计算许用弯曲应力:

计算内容

计算结果

由文献[2]图5-14得:
由文献[2]图5-15得:
由文献[2]式5-47得计算

由式5-48: 计算齿根弯曲应力:

均安全。
⑵低速级直齿轮的设计
①选择材料
小齿轮材料选用40Cr钢,齿面硬度250—280HBS,大齿轮材料选用ZG310-570,正火处理,齿面硬度162—185HBS
计算应力循环次数N:同高速级斜齿轮的计算 N1=60 n1jL h=1.748×108
N2= N1/i1=0.858×108
计算内容

计算结果
查文献[2]图5-17得:ZN1=1.12 Z N2=1.14
按齿面硬度250HBS和162HBS由文献[2]图(5-16(b))得:σHlim1=690Mpa, σHlim2=440 Mpa
由文献[2]式5-28计算许用接触应力:
[σH]1 =(σHlim1/SHmin)ZN1 ZX1 Zw ZLVR=710.976 Mpa,[σH]2=(σHlim2/SHmin)ZN2 ZX2 Zw ZLVR
=461.472 Mpa
因[σH]2〈[σH]1,所以取[σH]= [σH]2 =461.472 Mpa
②按接触强度确定中心距
小轮转距T1=136.283N.m=136283N.m
初取KtZεt2=1.1 由文献[2]表5-5得ZE=188.9 ,减速传动u=i23=2.034,取Φa=0.35

计算中心距a: a≥
=145.294mm
取中心距 a=150mm估算模数m=(0.007~0.02)a=(0.007~0.02)×150=
1.05~3
取标准模数m=2
小齿轮齿数

齿轮分度圆直径

齿轮齿顶圆直径:

齿轮基圆直径: mm
mm
圆周速度
由文献[2]表5-6 取齿轮精度为8级
按电机驱动,载荷平稳,而工作机载荷微振,由文献[2]表5-3 取 KA=1.25
按8级精度和 取KV=1.02
齿宽 b= ,取标准b=53mm
由文献[2]图5-7(a)按b/d1=53/100=0.53,取Kβ=1.03
由文献[2]表5-4,Kα=1.1
载荷系数K= KAKVKβKα=
计算端面重合度:

安全。
③校核齿根弯曲疲劳强度
按z1=50, z2=100,由文献[2]图5-14得YFa1=2.36 ,YFa2=2.22
由文献[2]图5-15得YSa1= 1.71,YSa2=1.80。
Yε=0.25+0.75/ εα=0.25+0.75/1.804=0.666
由文献[2]图5-18(b),σFlim1=290Mp, σFlim2=152Mp
由文献[2]图5-19,YN1= YN2=1.0,因为m=4〈5mm,YX1= YX2=1.0。
取YST=2.0,SFmin=1.4。
计算许用弯曲应力:
[σF1]= σFlim1YST YN1 YX1/SFmin=414Mp
[σF2]= σFlim2YST YN2 YX2/SFmin=217Mp
计算齿根弯曲应力:
σF1=2KT1YFa1YSa1Yε/bd1m=2×1.445×136283×2.36×1.71×0.666/53×100×2=99.866Mp〈[σF1]
σF2=σF1 YFa2YSa2/ YFa1YSa1=98.866Mp〈[σF2]
均安全。
五.轴的结构设计和轴承的选择
a1=112mm, a2=150mm,
bh2=45mm, bh1= bh2+(5~10)=50mm
bl2=53mm, bl1= bl2+(5~10)=60mm
(h----高速轴,l----低速轴)
考虑相邻齿轮沿轴向不发生干涉,计入尺寸s=10mm,考虑齿轮与箱体内壁沿轴向不发生干涉,计入尺寸k=10mm,为保证滚动轴承放入箱体轴承座孔内,计入尺寸c=5mm,初取轴承宽度分别为n1=20mm,n2=22,n3=22mm,3根轴的支撑跨距分别为:
计算内容

低速级直齿轮主要参数:
m=2
z1=50, z1=50 z2=100
u=2.034
d1=100mm
d2=200mm
da1=104mm
da2=204mm
df1=
d1-2(ha*+ c*) m=95mm
df2=
d2-2(ha*+ c*) m=195mm
a=1/2(d2+ d1)=150mm
齿宽b2 =b=53mm
b1=b2+
(5~10)=60mm

计算结果
l1=2(c+k)+bh1+s+bl1+n1=2×(5+10)+50+10+60+20=170mm
l2=2(c+k)+bh1+s+bl1+n2=2×(5+10)+50+10+60+20=

172mm
l3=2(c+k)+bh1+s+bl1+n3=2×(5+10)+50+10+60+20=172mm
(2)高速轴的设计:
①选择轴的材料及热处理
由于高速轴小齿轮直径较小,所以采用齿轮轴,选用40r钢,
②轴的受力分析:
如图1轴的受力分析:

lAB=l1=170mm,
lAC=n1/2+c+k+bh1/2=20/2+5+10+50/2=50mm
lBC= lAB- lAC=170-50=120mm
(a) 计算齿轮啮合力:
Ft1=2000T1/d1=2000×51.687/61.091=162.131N
Fr1=Ft1tanαn/cosβ1692.13×tan20°/cos10.8441°=627.083N
Fa1= Ft1tanβ×tan10.8441°=324.141N
(b) 求水平面内支承反力,轴在水平面内和垂直面的受力简图如下图:

RAx= Ft1 lBC/ lAB=1692.131×120/170=1194.445N
RBx= Ft1-RAx=1692.131-1194.445=497.686N
RAy=(Fr1lBC+Fa1d1/2)/lAB=(627.083×120+324.141×
61.091/2)/170=500.888N
RBy= Fr1-RAy=627.083-500.888=126.195N
(c) 支承反力

弯矩MA= MB=0,MC1= RA lAC=64760.85N.mm
MC2= RB lBC=61612.32N.mm
转矩T= Ft1 d1/2=51686.987N.mm
计算内容

计算结果

d≥ ③轴的结构设计
按经验公式,减速器输入端轴径A0 由文献[2]表8-2,取A0=100
则d≥100 ,由于外伸端轴开一键槽,
d=17.557(1+5%)=18.435取d=20mm,由于da1<2d,用齿轮轴,根据轴上零件的布置、安装和定位的需要,初定轴段直径和长度,其中轴颈、轴的结构尺寸应与轴上相关零件的结构尺寸联系起来考虑。
初定轴的结构尺寸如下图:

高速轴上轴承选择:选择轴承30205 GB/T297-94。
(2)中间轴(2轴)的设计:
①选择轴的材料及热处理
选用45号纲调质处理。
②轴的受力分析:
如下图轴的受力分析:

计算内容

计算结果

lAB=l2=172mm,
lAC=n2/2+c+k+bh1/2=22/2+5+10+50/2=51mm
lBC= lAB- lAC=172-51=121mm
lBD=n2/2+c+k+bl1/2=22/2+5+10+60/2=56mm
(a) 计算齿轮啮合力:
Ft2=2000T2/d2=2000×136.283/162.909=1673.118N
Fr2=Ft2tanαn/cosβ=1673.118×tan20°/cos10.8441°=620.037N
Fa2=Ft2tanβ=1673.118×tan10.8441°=320.499N
Ft3=2000T2/d3=2000×136.283/100=2725.660N
Fr3=Ft3tanα=2725.660×tan20°=992.059N
(b)求水平面内和垂直面内的支反力
RAx=(Ft2lBC+Ft3lBD )/lAB=(1673.118×121+2725.660×56)/172=2064.443N
RBx=Ft2+Ft3-RAX=1673.118+2725.660-2064.443=2334.35N
RAY=(Fa2d2/2-Fr2lBC+Fr3lBD)/lAB=(320.449×162.909/2-620.037×121+992.059×56)=190.336N
RBY=Fr3-Fr2-RAY=992.059-620.037-190.336=
计算内容

计算结果
181.656N
RA=2073.191N, RB=2341.392N
③轴的结构设计
按经验公式, d≥A0 由文献[2]表8-2,取A0=110
则d≥110 ,取开键槽处d=35mm
根据轴上零件的布置、安装和定位的需要,初定轴段直径和长度,其中轴颈、轴的结构尺寸应与轴上相关零件的结构尺寸联系起来考虑。
初定轴的结构尺寸如下图:

中间轴上轴承选择:选择轴承6206 GB/T276-94。
(3)低速轴(3轴)的设计:
①选择轴的材料及热处理
选用45号纲调质处理。
②轴的受力分析:
如下图轴的受力分析:

计算内容

计算结果

初估轴径:
d≥A0 =110
联接联轴器的轴端有一键槽,dmin=33.5(1+3%)=34.351mm,取标准d=35mm
轴上危险截面轴径计算:d=(0.3~0.4)a=(0.3~0.4)×150=45~60mm 最小值dmin =45×(1+3%)=46.35mm,取标准
计算内容 计算结果
50mm
初选6207GB/T276-94轴承,其内径,外径,宽度为40×80×18
轴上各轴径及长度初步安排如下图:

③低速级轴及轴上轴承的强度校核
a、 低速级轴的强度校核
①按弯扭合成强度校核:
转矩按脉动循环变化,α≈0.6
Mca1= Mc=106962.324N.mm
Mca2=
Mca3=αT=159679.800N.mm
计算弯矩图如下图:

计算内容

计算结果

Ⅱ剖面直径最小,而计算弯矩较大,Ⅷ剖面计算弯矩最大,所以校核Ⅱ,Ⅷ剖面。
Ⅱ剖面:σca= Mca3/W=159679.8/0.1×35³=37.243Mp
Ⅷ剖面:σca= Mca2/W=192194.114/0.1×50³=15.376Mp
对于45号纲,σB=637Mp,查文献[2]表8-3得
[σb] -1=59
Mp,σca<[σb] -1,安全。
②精确校核低速轴的疲劳强度
a、 判断危险截面:
各个剖面均有可能有危险剖面。其中,Ⅱ,Ⅲ,Ⅳ剖面为过度圆角引起应力集中,只算Ⅱ剖面即可。Ⅰ剖面与Ⅱ剖面比较,只是应力集中影响不同,可取应力集中系数较大者进行验算。Ⅸ--Ⅹ面比较,它们直径均相同,Ⅸ与Ⅹ剖面计算弯矩值小,Ⅷ剖面虽然计算弯矩值最大,但应力集中影响较小(过盈配合及键槽引起的应力集中均在两端),所以Ⅵ与Ⅶ剖面危险,Ⅵ与Ⅶ剖面的距离较接近(可取5mm左右),承载情况也很接近,可取应力集中系数较大值进行验算。
计算内容

计算结果
b.较核Ⅰ、Ⅱ剖面疲劳强度:Ⅰ剖面因键槽引
起的应力集中系数由文献[2]附表1-1查得:kσ=1.76, kτ=1.54
Ⅱ剖面配合按H7/K6,引起的应力集中系数由文献[2]附表1-1得:kσ=1.97, kτ=1.51。Ⅱ剖面因过渡圆角引起的应力集中系数查文献[2]附表1-2(用插入法): (过渡圆角半径根据D-d由文献[1]表4.2-13查取) kτ=1.419,故应按过渡圆角引起的应力集中系数验算Ⅱ剖面
Ⅱ剖面产生的扭应力、应力幅、平均应力为:
τmax =T/ WT=266.133/0.2×35³=31.036Mp,
τa=τm =τmax /2=15.52Mp
绝对尺寸影响系数查文献[2]附表1-4得:εσ =0.88,ετ =0.81,表面质量系数查文献[2]附表1-5:βσ =0.92,βτ =0.92
Ⅱ剖面安全系数为:
S=Sτ=
取[S]=1.5~1.8,S>[S] Ⅱ剖面安全。
b、 校核Ⅵ,Ⅶ剖面:
Ⅵ剖面按H7/K6配合,引起的应力集中系数查附表1-1,kσ=1.97, kτ=1.51
Ⅵ剖面因过渡圆角引起的应力集中系数查附表1-2, ,kσ=1.612,kτ=1.43
Ⅶ剖面因键槽引起的应力集中系数查文献[2]附表1-1得:kσ=1.82, kτ=1.62。故应按过渡圆角引起
计算内容

计算结果
的应力集中系数来验算Ⅵ剖面
MVⅠ=113 RA=922.089×113=104196.057N.mm, TVⅠ=266133N.mm
Ⅵ剖面产生的正应力及其应力幅、平均应力:
σmax= MVⅠ/W=104196.057/0.1×50³=8.336Mp
σa=σmax=8.366 σm=0
Ⅵ剖面产生的扭应力及其应力幅,平均应力为:
τmax =TⅥ/ WT=266133/0.2×50³
绝对尺寸影响系数由文献[2]附表1-4得:εσ =0.84,ετ
=0.78
表面质量系数由文献[2]附表1-5查得:βσ =0.92,βτ =0.92
Ⅵ剖面的安全系数:
Sσ =
Sτ=
S=
取[S]= 1.5~1.8,S>[S] Ⅵ剖面安全。
六.各个轴上键的选择及校核
1.高速轴上键的选择:
初选A型6×32 GB1095-79:b=6mm,L=32mm,l=26mm,查文献[2]表2-10,许用挤压应力[σp]=110Mp,σp= 满足要求;

计算内容

高速轴上
选A型6×32 GB1095-79:b=6mm,L=32mm,l=26mm
中间轴
选A型10×32 GB1095-79:b=10mm,h=8mm,L=32mm,l=22mm,

计算结果
2.中间轴键的选择:
A处:初选A型10×32 GB1095-79:b=10mm,h=8mm,L=32mm,l=22mm, [σp]=110Mp
σp= 满足要求;
B处:初选A型10×45 GB1095-79:
b=10mm,h=8mm,L=32mm,l=22mm,[σp]=110Mp
σp= 满足要求.
3. 低速轴上键的选择:
a.联轴器处选A型普通平键
初选A型10×50 GB1096-79:b=10mm,h=8mm,L=50mm,l=40mm,查文献[2]表2-10,许用挤压应力[σp]=110Mp
σp= 满足要求.
b. 齿轮处初选A型14×40 GB1096-79:b=14mm,h=9mm,L=40mm,l=26mm, [σp]=110Mp
σp= 满足要求.
七.联轴器的选择
根据设计题目的要求,减速器只有低速轴上放置一联轴器。
查表取工作情况系数K=1.25~1.5 取K=1.5
计算转矩 Tc=KT=1.5×266.133=399.200Mp
选用HL3型联轴器:J40×84GB5014-85,[T]=630N.m, Tc<[T],n<[n],所选联轴器合适。
低速轴
联轴器处选A型10×50GB1096-79:b=10mm,h=8mm,L=50mm,l=40mm
低速轴
齿轮处初选A型14×40GB1096-79:
b=14mm,h=9mm,L=40mm,l=26mm

选用HL3型联轴器:J40×84GB5014-85
参考资料:机械课程设计,理论力学

5. 螺旋振动给料机ug三维图怎么画

螺旋振动给料机ug三维图应该这样画:
1、缠绕型螺旋线不能直接设计出来,需要在没有画螺旋线之前,先绘制出一个曲线的形状,依便做缠绕(绘制一个圆);
2、进入到螺旋线命令下,其类型要使用沿脊线(沿一条轨迹线之意,也就是步骤1绘制的圆),将重要的参数部分重点用箭头标出;
3、配合使用管道、渲染,我们设计出了一个金灿灿的三维零件图形。

6. 螺旋输送机工作原理是什么

当螺旋轴转动时,由于物料的重力及其与槽体壁所产生的摩擦力,使物料只能在叶片的推送下沿着输送机的槽底向前移动,其情况好像不能旋转的螺母沿着旋转的螺杆作平移运动一样。物料在中间轴承的运移,则是依靠后面前进着的物料的推力。所以,物料在输送机中的运送,完全是一种滑移运动。为了使螺旋轴处于较为有利的受拉状态,一般都将驱动装置和卸料口安放在输送机的同一端,而把进料口尽量放在另一端的尾部附近。 旋转的螺旋叶片将物料推移而进行输送,使物料不与螺旋输送机叶片一起旋转的力是物料自身重量和螺旋输送机机壳对物料的摩擦阻力。叶片的面型根据输送物料的不同有实体面型、带式面型、叶片面型等型式。螺旋输送机的螺旋轴在物料运动方向的终端有止推轴承以随物料给螺旋的轴向反力,在机长较长时,应加中间吊挂轴承。

山东中煤工矿物资集团有限公司

地址:济宁高新区开源路北11号

阅读全文

与螺旋送料装置设计相关的资料

热点内容
路由器上有unknown连接是什么设备 浏览:525
启辰D50分离轴承多少钱 浏览:386
牙机雕刻机与电动工具 浏览:208
外汇期货交易实验装置 浏览:791
设备投资怎么算 浏览:95
好的摄影器材有哪些 浏览:463
温州新五金制品有限公司怎么样 浏览:293
锦州五金机电城出租出售 浏览:417
卡尔蔡司公司有哪些医学器材 浏览:261
重庆市机械凿打岩石套什么定额 浏览:557
阀门外面加个框是什么意思 浏览:756
会议设备系统哪里有 浏览:340
打印室需要哪些设备多少钱 浏览:577
通用型机床设备加工用于什么 浏览:290
书画工具箱套装 浏览:772
燃烧固体需要哪些仪器 浏览:969
2213ktn1是什么轴承 浏览:640
电脑固体硬盘怎么加机械硬盘 浏览:197
昆山汽车门板超声波焊接机怎么样 浏览:787
发说说怎么隐藏设备 浏览:804