1. 目前全世界海洋波浪能发电的现状(包括中国)及你对此项目前景的评估
波浪能发电顶级技术在中国,关键技术问题已突破,即将进入产业化发展.目前对波浪能储量的估算是计算波浪沿海岸消散的功率,大洋的波浪具有更大的功率,开发前景相当广阔.
海洋波浪具有巨大的能量,已成为世界各主要国家争相研究开发的焦点之一,抢占这一技术领域的制高点,具有非常重大的战略意义。
100多年来,世界各国科学家提出了许多设想,发明了各种各样的波浪能发电装置,提出的发明专利申请超过千项,尤其是近年来受能源危机和环境污染的巨大压力,清洁无污染、可再生、环境友好、不消耗现有资源的海洋能技术更是受到各海洋国家政府和企业的普遍重视,西方国家利用其科技和技术优势,纷纷投入巨资对各种装置展开试验,并且取得了一定的成绩。比较著名的包括“点头鸭”( Duck)式波能转换装置,海蛇号(Pelamis)波力装置,AquaBuoy波能装置Manchester_bobber 波能装置,Fred_olsen_wec 波能装置,Seavolt_wave_rider波能装置,振荡水柱(Oscillating WaveConverter,简称OWC)式波能转换装置,OWEC波能装置,三叉戟式波能装置,海狗号(Seadog)波能装置,收缩波道式波能转换装置,摆式波能转换装置,振荡浮子式波能转换装置,PS Frog and Frog波能装置等。
我国也对国外的波浪技术展开了跟踪研究,从20世纪80年代初开始对固定式和漂浮式振荡水柱波能装置以及摆式波能装置进行研究。1985年,中科院广州能源研究所成功开发利用对称翼透平的航标灯用波浪发电装置。在山东大管岛研制了一套摆式装置.2005年初,在广东省汕尾市遮浪半岛,我国自主研发的波浪能独立稳定发电系统(采用振荡水柱+液压转换装置)实海况试验获得成功,这是世界首座波浪能独立稳定发电系统。此外,我国还研制了一种波浪能发电系统,即振荡浮子岸式波能转换装置,采用振荡浮子作为波浪能的吸收载体,然后将浮子吸收的能量通过一个液压装置转换出去,用来驱动电机发电。
从国内外试验应用的情况来看,由于海洋环境的复杂性和波浪能源的多变性,普遍没有达到预期的效果。主要表现在能源输出的稳定性问题、能源汇集问题、能源利用效率问题、潮汐变化的影响、采用复杂结构产生的成本效益问题、装置结构的安全性问题、装置的抗腐蚀问题、海洋环境的建设安装问题、与现有生产技术、设备的通用、配套等问题。导致波浪能利用技术多年来一直进展缓慢,没有取得关键性的突破,也导致国内不少人对波浪能利用产生悲观情绪。
长期以来,人们都知道波浪具有巨大的能量,但都普遍认为波浪能是最不稳定的能源,在应用中偏重于提高单次波浪的利用,从波浪能所固有的特点来看,这是十分不利的,我们正常所能应用的波浪能与暴风时所具有的波浪能往往相差几个数量级,为了提高利用单次波浪的功率,往往把单个装置做得很大,而一旦风暴来临,则往往超出其结构、材料的应力,造成装置的破坏,这些从英国制造的第一座(OSPREY),挪威的500 kW岸式波能装置(MOWC),中国3 kW岸式振荡水柱波力电站的研建过程中可以得到验证。
实质上波浪能是一种随机产生的能源,虽然单个波浪的波高,波长,周期,位置都随时间而不同,但是一定水域内的波浪能量随时间的变化是缓慢的,通过提高波浪能采集的覆盖率和进行能量聚集,就可以得到强大稳定的能量输出。上述难题都以基本解决,相信不久人们就能用上这一清洁环保,无消耗无排放,环境友好的再生电力.
2. 海浪发电站效率如何它的工作原理是什么
中国科学院外籍院士王中林领导的团队研制出水能摩擦纳米发电机,组网利用后或可实现每平方公里海面产生兆瓦级电能。 我国海域辽阔,海水流动昼夜不停,这为摩擦纳米发电机提供了稳定的工作环境。 水能摩擦纳米发电机通过摩擦起电和静电感应的耦合将机械能转换为电能的工作方式,与现有的各种发电技术不同,使海浪能的收集成为可能。如果将这些发电机结成网状放置到海洋中,将会使海水无规则的运动转变为源源不断的电能。
另据报道,大连海事大学有一项专利,也是一种利用波浪能发电防止海工平台海潮差腐蚀的方法。通过波浪反复摩擦纳米发电机网络,发电机网络再将海洋波浪能转变为交流电能,并将交流电能转变为直流电能后,将直流电能施加在海工平台腐蚀金属和对电极上。这项技术能够利用海洋环境中海浪的低频机械能,摩擦发电机网络产生电能,为海工平台的易腐蚀金属提供阴极保护的电源。
3. 国内波浪能发电取得了那些成就,在这方面存在那些不足
成就
我国沿岸波浪能资源理论平均功率约1285万千瓦,具有良好的开发应用价值,建立波浪能发电系统发展潜力巨大。中国波浪发电虽然起步较晚,但发展势头良好。微型波浪发电技术已经成熟,小型岸式波力发电技术已进入世界先进行列。
中国科学院广州能源研究所于1989年在广东珠海建成了第一座示范实验波力电站,1996年又建成了一座新的波力实验电站,专家们通过试验积累了宝贵经验。我国首座波力独立发电系统汕尾100千瓦岸式波力电站于1996年12月开工,2001年进入试发电和实海况试验阶段,2005年,第一次实海况试验获得成功。该电站建于广东省汕尾市遮浪镇最东部,为并网运行的岸式振荡水柱型波能装置,设有过压自动卸载保护、过流自动调控、水位限制、断电保护、超速保护等功能。
近年来,我国积极推进新能源开发利用。随着一大批清洁能源发电项目建成投产,我国的发电装机结构进一步得到优化,新能源发电呈加速发展态势。我国波浪能资源蕴藏量丰富,清洁无污染,再生能力强,波浪发电产业得到国家政策的鼓励和扶持,投资前景良好。根据规划,到2020年,我国将在山东、海南、广东各建1座1000千瓦级的岸式波浪发电站。
不足
波浪能的利用并不容易。波浪能是可再生能源中最不稳定的能源,波浪不能定期产生,各地区波高也不一样,由此造成波浪能利用上的困难。利用波浪能发电要依靠波浪发电装置,但是由于海浪具有力量强、速度慢和周期性变化的特点,100多年来,世界各国科学家提出300多种设想,发明了各种各样的波浪能发电装置,但是普遍发电功率很小,而且效果差。
想要充分地利用波浪能发电,有几项难题需要解决。一是独立发电问题。最早的波浪能发电装置需要与柴油机并联工作,这样会造成污染。后来则需要依靠电网,先把波浪能转化的电能供应到电网上,然后才可以利用,这样又会受到电网覆盖范围的限制,造成发电成本高昂、发电功率小、质量差等问题。二是稳定性问题。由于受技术限制,波浪能发电装置只能将吸收来的波浪能转化为不稳定的液压能,这样再转化的电能也是不稳定的。英国、葡萄牙等欧洲国家采用昂贵的发电设施,仍无法得到稳定的电能。三是控制问题。由于波浪的运动没有规律性和周期性,浪大时能量有剩余,浪小时能量供应不足。这就需要有一种设备在浪大时将多余的波浪能储存、再利用。
尚未解决的问题
对于波浪能研究来说,目前存在以下主要技术问题:
1.材料问题——波浪能装置的材料应该具有(1)抗海水腐蚀的特性;(2)廉价;(3)较好的耐久性和可靠性。不锈钢满足第1、3两条,不满足第2条;工程塑料在强度上已有了显著提高,但其耐久性和可靠性还未能满足要求。因此,现有的波浪能装置只是采用普通钢材,靠表面涂层提高抗腐蚀能力,耐久性差强人意。
2.工业产品系列太少——目前并不存在专门为波浪能利用而发展的工业产品,只能逐渐发展。但我国目前许多产品的系列太少,迫使在波浪能研究上改变设计,牺牲效率、合理性,用现有产品拼凑成波浪能。例如小型电机,明显缺乏低转速、功率100W以下的发电机,或低转速、100kW以上的大功率发电机。齿轮等机械,液压泵、液压马达等也存在类似的问题。
3.投入研发经费不足——我国从“七五”开始研究波浪能。从“八五”到“十五”,国家科技部、中国科学院等对波浪能研究开展了持续的支持,3个五年计划共支持了约1000万,用于研制20kW、100kW岸式振荡水柱波能装置各一座,8kW、30kW摆式波能装置各一座,5kW漂浮式波能发电船一座,50kW波浪能独立发电与制淡系统一座。这些研究使我国的波浪能研究水平逐渐发展起来,特别是“十五”期间,我国在波浪能转换效率、波浪能稳定输出和波浪能装置建造技术上有了显著的提高,处于世界先进水平。
但相对国外的波浪能研究,我国的研发经费太少了。3个五年计划共支持了约1000万,研建了6个波浪能装置,全部加起来仅相当于英国近5年投入研究费用的1/60。上述项目均有较大缺口,需要部门、省、地方匹配才能完成。研究费用的欠缺,对我国波浪能研究进展有负面影响。
总的来说,我国的波浪能转换研究进步是明显的,在世界上也有一定影响,目前可以进入示范阶段,但尚未进入商业开发阶段。波浪能利用在技术上并未完全成熟,还需要国家进一步的支持。
4. 海洋波浪能的开发利用
波浪能量如此巨大,存在如此广泛,自古吸引着沿海的能工巧匠们,想尽各种办法,企图驾驭海浪为人所用。
波浪所蕴涵的能量主要是是指海洋表面波浪所具有的动能和势能。波浪的能量与波高的平方、波浪的运动周期以及迎波面的宽度成正比。波浪能是海洋能源中能量最不稳定的一种能源。台风导致的巨浪,其功率密度可达每米迎波面数千kW,而波浪能丰富的欧洲北海地区,其年平均波浪功率也仅为20~40kW/m中国海岸大部分的年平均波浪功率密度为2~7kW/m。
全世界波浪能的理论估算值也为109kW量级。利用中国沿海海洋观测台站资料估算得到,中国沿海理论波浪年平均功率约为1.3X107kW。但由于不少海洋台站的观测地点处于内湾或风浪较小位置,故实际的沿海波浪功率要大于此值。其中浙江、福建、广东和台湾沿海为波能丰富的地区。
将波浪能收集起来并转换成电能或其他形式能量的波能装置有设置在岸上的和漂浮在海里的两种。
按能量传递形式分类有直接机械传动、低压水力传动、高压液压传动、气动传动4种。
其中气动传动方式采用空气涡轮波力发电机,把波浪运动压缩空气产生的往复气流能量转换成电能,旋转件不与海水接触,能作高速旋转,因而发展较快。
波力发电装置五花八门,不拘一格,有点头鸭式、波面筏式、波力发电船式、环礁式、整流器式、海蚌式、软袋式、振荡水柱式、多共振荡水柱式、波流式、摆式、结合防波堤的振荡水柱式、收缩水道式等十余种。
全世界波浪利用的机械设计数以千计,获得专利证书的也达数百件,因此波浪能利用被称为“发明家的乐园”。
最早的波浪能利用机械发明专利是1799年法国人吉拉德父子获得的,他们尝试为一种可以附在漂浮船只上的巨大杠杆申请专利,它可以随海浪一起波动来驱动岸边的水泵和发电机。1854-1973年的119年间,英国登记了波浪能发明专利340项,美国为61项。在法国,则可查到有关波浪能利用技术的600种说明书。
早期海洋波浪能发电付诸实用的是气动式波力装置。道理很简单,就是利用波浪上下起伏的力量,通过压缩空气,推动汲筒中的活塞往复运动而做功。1910年,法国人布索.白拉塞克在其海滨住宅附近建了一座气动式波浪发电站,供应其住宅l000瓦的电力。这个电站装置的原理是:与海水相通的密闭竖管中的空气因波浪起伏而被压缩或抽空稀薄,驱动活塞做往复运动,再转换成发电机的旋转运动而发出电力。
1960年代,日本研制成功用于航标灯浮体上的气动式波力发电装置。此种装置已经投入批量生产,产品额定功率从60瓦到500瓦不等。产品除日本自用外,还出口,成为仅有的少数商品化波能装备之一。该产品发电的原理就像一个倒置的打气筒,靠波浪上下往复运动的力量吸、压空气,推动涡轮机发电。
有关专家估计,用于海上航标和孤岛供电的波浪发电设备有数十亿美元的市场需求。这一估计大大促进了一些国家波力发电的研究。
1970年代以来,英国、日本、挪威等国为波力发电研究投入大量人力物力,成绩也最显著。英国曾计划在苏格兰外海波浪场,大规模布设“点头鸭”式波浪发电装置,供应当时全英所需电力。这个雄心勃勃的计划,后因装置结构过于庞大复杂成本过高而暂时搁置。
1980年代,日本“海明”波浪发电试验船取得年发电19万度的良好成绩,实现了海上浮体波浪电站向陆地小规模送电。日本已将“海明”波浪发电船列为“离岛电源”的首选方案,继续研究改进。
中国波力发电研究成绩也很显著。1970年代以来,上海、青岛、广州和北京的五六家研究单位开展了此项研究。用于航标灯的波力发电装置也已投入批量生产。向海岛供电的岸式波力电站也在试验之中。
5. 波浪能发电的类型
波浪能发电方式数以千计,按能量中间转换环节主要分为机械式、气动式和液压式三大类。 通过某种泵液装置将波浪能转换为液体(油或海水)的压能或位能,再由油压马达或水轮机驱动发电机发电的方式。点头鸭液压式装置简图。波浪运动产生的流体动压力和静压力使靠近鸭嘴的浮动前体升沉并绕相对固定的回转轴往复旋转,驱动油压泵工作,将波浪能转换为油的压能,经油压系统输送,再驱动油压发电机组发电。点头鸭装置有较高的波浪能转换效率,但结构复杂,海上工作安全性差,未获实用。图6是收缩斜坡聚焦波道式装置简图。波浪进入宽度逐渐变窄、底部逐渐抬高的收缩波道后,波高增大,海水翻过导波壁进入海水库,波浪能转换为海水位能,然后用低水头水轮发电机组发电。聚焦波道装置已在挪威奥依加登岛250 kW波浪能发电站成功的应用。这种装置有海水库储能,可实现较稳定和便于调控的电能输出, 是迄今最成功的波浪能发电装置之一。但对地形条件依赖性强, 应用受到局限。
6. 利用海浪发电的关键是什么
要利用海浪发电,关键是要探索海浪运动变化的规律,及时准确地将海浪能“收集”起来,加以利用。这就要求人们设计和试验的波力发电装置必须能充分地将大面积的波浪能加以吸收,并集中转换成机械能,再带动发电机运转发出电来。同时要求发电装置坚固结实,以抗御海浪的冲击。为研究这种装置,许多海洋科学家进行了长期反复的探索和实验。早在1799年法国人就开始设计研制波能转换装置,通过100多年的试验,终于在1911年建成了世界上第一个波浪发电装置。1965年,波能发电装置作为导航及灯塔的工作用电开始在实际中运用。
7. 波浪能发电的发展
大规模波浪能发电的成本还难与常规能源发电竞争,但特殊用途的小功率波浪能发电,已在导航灯浮标、灯桩、灯塔等上获得推广应用。在边远海岛,小型波浪能发电已可与柴油发电机组发电竞争。今后应进一步研究新型装置,以提高波浪能转换效率;研究聚波技术,以提高波浪能密度,缩小装置尺寸,降低造价;研究在离大陆较远、波浪能丰富的海域利用工厂船就地发电、就地生产能量密集的产品,如电解海水制氢、氨及电解制铝、提铀等,以提高波浪能发电的经济性。预计随着化石能源资源的日趋枯竭, 技术的进步, 波浪能发电将在波浪能丰富的国家逐步占有一定的地位。
我国技术成果
记者从中科院广州能源研究所获悉,由该所研制的“鹰式一号”漂浮式波浪能发电装置,在位于珠江口的珠海市万山群岛海域正式投放,并成功发电,这标志着我国海洋能发电技术取得了新突破。
随着新能源成为人们关注的热点,海洋能发电技术以其独特优势和战略地位吸引了人们的注意,世界各主要海洋国家普遍重视对海洋的开发利用。作为海洋波浪能利用技术的一种,“鹰式一号”漂浮式波浪能发电装置由中科院广州能源研究所究所课题组历经一年半研制完成。课题组不断优化和改进装置模型,共制作了5套装置模型,分别在二维水槽和三维水槽内进行大量试验,最终将实海况装置的设计方案定型为轻质波浪能吸波体与半潜船的结合。
该新型发电装置采用外形经过特殊设计的轻质波浪能吸收浮体,使得浮体的运动轨迹能与波浪运动轨迹相匹配,可最大程度吸收入射波而最小程度减少透射和兴波。日前首次投放的该发电装置安装有两套不同的能量转换系统,总装机20kW,其中液压发电系统装机10kW,直驱电机系统装机10kW,两套系统均成功发电。试验表明,该新型设备实现了快捷、安全和低成本研发海洋波浪能发电装置的目标,为规模化开发利用海洋波浪能打下坚实基础。据介绍,该发电装置由国家海洋可再生能源专项资金项目——“10kW水母式波浪能发电装置研究”专项资助完成。
8. 鹰式波浪能发电装置的鹰头有什么改进
大规模波浪能发电的成本还难与常规能源发电竞争,但特殊用途的小功率波浪能发电,已在导航灯浮标、灯桩、灯塔等上获得推广应用。
在边远海岛,小型波浪能发电已可与柴油发电机组发电竞争。
9. 怎么利用海浪发电海浪发电原理是什么海浪发电装置内部结构
背景:
风与海面作用产生海浪,海浪能是以动能形式表现的水能资源之一。1977年,有人对世界各大洋平均波高1米、周期1秒的海浪进行推算,认为全球海浪能功率约为700亿千瓦,其中可开发利用的约为25亿千瓦,与潮汐能相近。海浪中蕴藏有如此丰富的能量,如将海浪的动能转化为电能,使制造灾难的惊涛骇浪为人类服务,是人们多年来梦寐以求的理想。
早在20世纪70年代,英国爱丁堡大学的工程师斯蒂芬•索尔特就发明了利用海浪发电的“爱丁堡鸭”海浪发电装置。之后,世界上许多国家,如英国、日本、美国、加拿大、芬兰、丹麦、法国等都在研究和试验海浪发电,并相继提出了数百种发电装置设计方案。但是,由于这样或那样的技术问题,海浪发电研究一直没有什么大的突破。直到今天,在能源开发方面,海浪能的利用仍然落后于风能和潮汐能的利用。
现状:
测试海浪发电机的成本很高,而且极其危险,是阻碍海浪发电研究和海浪能利用的重要原因之一。反复无常、变幻莫测的海洋既能产生巨大的能量,也能对机械装置造成毁灭性的破坏。
在苏格兰西海岸的艾斯雷岛上,Wavegen公司建造的500千瓦的“帽贝”海浪发电机已经向电网供电,这是目前世界上最成功的海浪发电装置,然而它是安装在海岸上的。根据海浪发电专家的意见,效率更高、能产生更多电能的海浪发电机必须是漂浮在海洋上的,而不是安装在海岸上的。
为解决一直困扰着海浪发电机设计和建造的各种问题,制造更先进的海浪发电机,欧洲海洋能源中心在英国政府的资助下建立了奥克尼海浪发电试验场。该试验场中安装有抗风暴的系泊设备和铠装电缆,使得安装和测试海浪发电机变得方便而廉价。现在,在奥克尼海浪发电试验场,欧洲海洋能源中心能同时安装四台海浪发电机,研究人员能够同时对不同的海浪发电机进行直接比较,这样就有可能挑选出最好的海浪发电机,从而以很低的成本产生出更多的电能。进一步说,在试验场里还有与电网相连的接入口,这样一来,实验测试用的海浪发电机在开始试验时就可能为研制者带来收益,从而降低了研制成本。
在奥克尼海浪发电试验场中,所有进行测试的海浪发电机都配有“插座”。这些“插座”固定在海底的混凝土墩子上。并由多用途电缆连接岸上设备。多用途电缆包括1条能传送23兆瓦电能的电缆和2条光缆,其中一条光缆用来将海浪发电设备的数据传输到岸上的控制室,另一条光缆将岸上的控制指令传送给海浪发电设备。海底的水流冲击力很强,如果电缆不加以特殊的保护,那么电缆在与岩石不断摩擦后就会遭到毁坏。为了保护好电缆,研究人员采用了铠装电缆,同时用沉重的混凝土护垫将其保护和固定起来。
海浪发电机所产生的电能先被送到岸边的一对变电站,然后再被送入国家电网。而数据收集中心则在离海岸大约35千米的远处。每个系泊位(插座)都由各自独立的控制中心进行控制,各个公司可以在试验场租用一个系泊位,然后通过互联网在自己公司的办公室内进行遥控操作。公司租用一个系泊位,每年要付一笔试验费用,如果试验中的发电设备运行良好的话,公司出售电能的收入将可以基本抵销支付的试验费用。
通过减少海浪发电机的试验费用,欧洲海洋能源中心努力帮助开发者将他们美好的设想转变为现实。眼下,既受到欧洲海洋能源中心试验场设施的诱惑,又得到英国政府的资助,Wavegen公司开始了新的试验。该公司计划开发一种漂浮在海洋上的海浪发电机,并在2004年进行测试,其基本原理与“帽贝”海浪发电机相同,依靠海浪驱动气动涡轮机发电。
奥克尼海浪发电试验场的第一个用户可能是“海蛇”。“海蛇”是英国海洋电力设备公司研制的一款海浪发电机的别称。该公司正在利用欧洲海洋能源中心建造的750千瓦的“海蛇”海浪发电机的样机。据说。“海蛇”的设计寿命为 15-20年,能经受住百年一遇的巨浪的冲击。
海洋发电技术
多亏了名叫George Taylor的企业家,从2007年开始,俄勒冈海边大面积的,有规律的海浪将为西海岸的家庭和企业供电。Taylor现年72岁,在澳大利亚长大,学过电气工程,过去四十年里是美国一家小公司的业主。他最近的一项发明是能将海浪的上下运动转化为电能的浮标,可以由沿海海底电缆控制,并能接入国家电网。
这种浮标是环保主义者的理想之物-从沙滩上就可以看到,引入了一种丰富的可再生的能源,而对海洋生物的影响微乎其微,也不会释放出导致全球变暖的气体。
Taylor计划在2010年之前做出一个100吨重,37英尺宽的浮标,能发电500千瓦。四十个那样的浮标连在一起发电的成本比起煤电厂要低得多,更不用说燃烧天然气等珍贵燃料发电的电厂。如此清洁的电能可以用来淡化海水,电解水,为燃料电池汽车提供氢气,或者为其它宏伟的,急需能源的项目提供廉价电能。
海浪发点设备:
海浪发电机由英国Checkmate 海洋能源公司设计,是一种类似蟒蛇的大型发电设备,由橡胶制成。宽度将达到7米,长度达到200米,二十五分之一大小的原型已于最近完成测试。投入使用后,可满足1000个普通家庭的用电需求。据他们透露,“巨蟒”将于2014年左右投入运转。
10. 波浪能的发电
波浪能发电是通过波浪能装置将波浪能首先转换为机械能(液压能),然后再转换成电能。这一技术兴起于上世纪80年代初,西方海洋大国利用新技术优势纷纷展开实验。
波浪能具有能量密度高、分布面广等优点。它是一种取之不竭的可再生清洁能源。尤其是在能源消耗较大的冬季,可以利用的波浪能能量也最大。小功率的波浪能发电,已在导航浮标、灯塔等获得推广应用。我国有广阔的海洋资源,波浪能的理论存储量为7000万千瓦左右,沿海波浪能能流密度大约为每米2千瓦~7千瓦。在能流密度高的地方,每1米海岸线外波浪的能流就足以为20个家庭提供照明。
波浪能 是指海洋表面波浪所具有的动能和势能。波浪的能量与波高的平方、波浪的运动周期以及迎波面的宽度成正比。波浪能是海洋能源中能量最不稳定的一种能源。波浪能是由风把能量传递给海洋而产生的,它实质上是吸收了风能而形成的。能量传递速率和风速有关,也和风与水相互作用的距离(即风区)有关。水团相对于海平面发生位移时,使波浪具有势能,而水质点的运动,则使波浪具有动能。贮存的能量通过摩擦和湍动而消散,其消散速度的大小取决于波浪特征和水深。深水海区大浪的能量消散速度很慢,从而导致了波浪系统的复杂性,使它常常伴有局地风和几天前在远处产生的风暴的影响。波浪可以用波高、波长(相邻的两个波峰间的距离)和波周期 (相邻的两个波峰间的时间)等特征来描述。波浪能的大小可以用海水起伏势能的变化来进行估算,即P=0.5TH2(P为单位波前宽度上的波浪功率,单位kw/m;T为波浪周期,单位s;H为波高,单位m,实际上波浪功率的大小还与风速、风向、连续吹风的时间、流速等诸多因素有关。)。
波浪发电是波浪能利用的主要方式,此外,波浪能还可以用于抽水、供热、海水淡化以及制氢等。波浪能利用的关键是波浪能转换装置。通常波浪能要经过三级转换:第一级为受波体,它将大海的波浪能吸收进来;第二级为中间转换装置,它优化第一级转换,产生出足够稳定的能量;第三级为发电装置,与其它发电装置类似。
南半球和北半球40°~60°纬度间的风力最强。信风区(赤道两侧30°之内)的低速风也会产生很有吸引力的波候,因为这里的低速风比较有规律。在盛风区和长风区的沿海,波浪能的密度一般都很高。例如,英国沿海、美国西部沿海和新西兰南部沿海等都是风区,有着特别好的波候。而我国的浙江、福建、广东和台湾沿海为波能丰富的地区。
虽然大洋中的波浪能是难以提取的,因此可供利用的波浪能资源仅局限于靠近海岸线的地方。但即使是这样,在条件比较好的沿海区的波浪能资源贮量大概也超过2TW。据估计全世界可开发利用的波浪能达2.5TW。我国沿海有效波高约为2~3m、周期为9s的波列,波浪功率可达17~39kw/m,渤海湾更高达42kw/m。